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Abstract

Exposure assessment models are deterministic models derived from physical-chemical
laws. In real workplace settings, chemical concentration measurements can be noisy
and indirectly measured. In addition, inference on important parameters such as
generation and ventilation rates are usually of interest since they are difficult to
obtain. In this paper we outline a flexible Bayesian framework for parameter infer-
ence and exposure prediction. In particular, we devise Bayesian state space models
by discretizing the differential equation models and incorporating information from
observed measurements and expert prior knowledge. At each time point, a new mea-
surement is available that contains some noise, so using the physical model and the
available measurements, we try to obtain a more accurate state estimate, which can
be called filtering. We consider Monte Carlo sampling methods for parameter estima-
tion and inference under nonlinear and non-Gaussian assumptions. The performance
of the different methods is studied on computer-simulated and controlled laboratory-
generated data. We consider some commonly used exposure models representing
different physical hypotheses.

Keywords: Bayesian modeling; Eddy-diffusion; Exposure assessment; Industrial hygiene;
Kalman filters; Physical Models; State-Space Modeling; Two-zone model; Well-mixed model.
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1 Introduction

In industrial hygiene, estimation of a worker’s exposure to chemical concentrations in the

workplace is an important concern. In many situations, chemical concentrations are un-

observed directly and partial noisy measurements are available. Exposure models aim at

capturing the underlying physical processes generating chemical concentrations in the work-

place. Exposure modeling through statistical and mathematical models may provide more

accurate exposure estimates than monitoring (17). Industrial hygienists seek to infer these

latent processes from the available measurements as well as quantification of uncertainty in

parameter estimation. For example, generation and ventilation rates are crucial parameters

that are difficult to obtain since most workplaces do not collect information routinely. Tra-

ditional approaches involve using deterministic physical models that ignore the existence of

uncertainty by assigning values to those parameters (13). These approaches however don’t

provide accurate representation in a real workplace environment. Bayesian methods com-

bining professional judgment from experts and direct measurements (10) were successful in

different settings (3). For example, (21) introduced a nonlinear regression on the solution

of the differential equations representing the underlying physical model within a Bayesian

setting for the two-zone model using Gaussian errors. The model has some limitations

since it ignores extraneous factors and variations and requires a closed-form solution of the

differential equations. This severely limits the number of applicable physical models. (15)

introduced an R package (B2Z
¯

), which implements the Bayesian two-zone model proposed

by (21). (16) demonstrated that straightforward Bayesian regression can be ineffective in

predicting exposure concentrations in industrial workplaces since the information is lim-

ited to partial measurements. They introduced a process-based Bayesian melding approach

where measurements are related to the physical model through a stochastic process that

captures the bias in the physical model and a measurement error. The resulting infer-

ence suffers from inflated variability because of the additional complexities in the model,

cumbersome computations and opaque interpretation.

Physical models for industrial hygiene are represented by differential equations that

model the rate of change in concentrations. We propose using Bayesian state space models

by discretizing the physical model differential equations and incorporating information from
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observed measurements and experts prior knowledge. This approach will enrich the existing

methods, as industrial hygienists will no longer be restricted to fitting a confined selection of

physical models amenable to analytic solutions. Any conceivable physical model, in theory,

can be accommodated. Neither will they be restricted to Gaussian data, an assumption

that most industrial hygiene practitioners will agree is rarely tenable, especially given the

small to moderate number of measurements they have to deal with.

At each time point, a new measurement is available that contains some noise, so using

the physical model and the available measurements, we try to obtain a more accurate state

estimate, which can be called filtering. The importance of filters lies in their ability to

produce estimates of the latent process using information generated by the observations

which may provide a poor representation of the latent process if used alone. The aim is to

infer the latent process using those observations, along with the physical model that theo-

retically describes it, as well as incorporating professional knowledge. We consider Monte

Carlo based filtering methods for parameter estimation and inference in state space models.

We also relax the assumption of Gaussian error terms and consider other alternatives.

In particular, we consider different filtering methods under different assumptions. The

widely deployed Kalman filter (KF) (6) offers an optimal solution under linearity and nor-

mality assumptions. State-by-state update sampler (7) can provide state estimates under

nonlinear and/or non-Gaussian models. The different models are compared and assessed

using computer-simulated data and lab-generated data. In the lab-generated data, most

of the model parameters are known up to a considerable level of accuracy. Experiments

were conducted in a controlled chamber that mimics real workplace settings where concen-

trations were generated at different ventilation and generation rates and under different

exposure physical models.

Our contribution in this article expands upon the existing exposure models to allow for

better prediction of the quantities of interest. The article is organized as follows. Section 2

provides a brief review of three families of commonly referenced exposure physical models.

Section 3 describes the Bayesian approaches used. Section 4 illustrates our model through

applying it to the simulated data and lab-generated data. Section 5 concludes the article

suggesting some future work.
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2 Physical models and their statistical counterparts

Bayesian state space representations for exposure assessment models combine direct mea-

surements of the environmental exposure, physical models and prior information. There

are several physical models varying in their level of complexity (18). Three commonly

used families of physical models are the well-mixed compartment (one-zone) model, the

two-zone model and the turbulent eddy diffusion model. We use discrete approximations

to the deterministic physical models and introduce stochastic error terms to derive corre-

sponding dynamic statistical models. This obviates the need for exact analytic solutions to

the differential equations, which can be sensitive to the choice of initial conditions. Prior

specifications for the model parameters produce Bayesian state space models (SSMs).

Dynamic steady-state models combine measurements with the true underlying state.

They are composed of (i) a measurement equation that relates the observations (or some

function thereof) to the true concentrations; and (ii) a transition equation describing the

concentration change from time t to time t + δt. We will derive the dynamic models from

the respective differential equations for three popular physical models in industrial hygiene.

2.1 Well-mixed compartment (one-zone) model

The well-mixed compartment model assumes that a source is generating a pollutant at a

rate G (mg/min) in a room of volume V (m3) with ventilation rate Q(m3/min). The room

is assumed to be perfectly mixed, which means that there is a uniform concentration of

the contaminant throughout the room (Figure 1). The loss term KL(mg/min) measures

the loss rate of the contaminant due to other factors such as chemical reactions or the

contaminant being absorbed by the room surfaces.

The differential equation describing this model is

V
d

dt
C(t) + (Q+KLV )C(t) = G . (1)
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Figure 1: One-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q and loss rate KL

The solution to the differential equation is

C(t) = exp{−t(Q+KLV )/V }C(t0)+((Q+KLV )/V )−1 [1− exp{−t(Q+KLV )/V }]G/V .

(2)

Theoretically, the steady state concentration is the limit of C(t) as t → ∞ which is G/Q

(mg/m3). Details of the steady state solution are provided in the supplementary material.

Further specifications yield the Bayesian SSM corresponding to (1). For example,

Measurement: Zt = f(Ct) + νt , νt
iid∼ Pν,θν ;

Transition: Ct+δt =

(
1− δt

Q+KLV

V

)
Ct + δt

G

V
+ ωt , ωt

iid∼ Pω,θω .

Q ∼ Unif(aQ, bQ) ; G ∼ Unif(aG, bG) ; KL ∼ Unif(aKL , bKL) ; σ2 ∼ IG(aσ, bσ) ;

(3)

where Zt represents measurements (perhaps transformed), f(·) is a function that maps Ct

to the scale of Zt, Pν,θν and Pω,θω are probability distributions to be specified, while the

prior distributions for the physical parameters are customarily specified as uniform within

certain fixed physical bounds.
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2.2 Two-zone model

The two zone model assumes the presence of a source for the contaminant in the workplace.

Two zones or regions are defined: (i) the region closer to the source is called the “near field”,

while the rest of the room is called the far “far field”, which completely encloses the near

field. Both fields are assumed to be a well-mixed box, i.e., two distinct places that are

in the same field have equal levels of concentration of the contaminant. Similar to the

one-zone model, this model assumes that a contaminant is generated at a rate G(mg/min),

in a room with supply and exhaust flow rates (ventilation rate) Q(m3/min) and loss rate

by other mechanisms KL(mg/m3). This model includes one more parameter that indicates

the airflow between the near and the far field β(m3/min). The volume in the near field

is denoted by VN(m3) and the volume in the far field is denoted by VF (m3). Figure 2

illustrates the dynamics of the system.

Figure 2: Two-zone model schematic showing key model
parameters; generation rate G, ventilation rate Q, airflow β and

loss rate KL

The following system of differential equations represents the two-zone model

d
dt
C(t)︷ ︸︸ ︷

d

dt

 CN(t)

CF (t)

 =

A︷ ︸︸ ︷ −β/VN β/VN

β/VF −(β +Q)/VF +KL


C(t)︷ ︸︸ ︷ CN(t)

CF (t)

+

g︷ ︸︸ ︷ G/VN

0

 . (4)
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The solution to the differential equations is

C(t) = exp(tA)C(t0) + A−1 [exp(tA)− I] g , (5)

where exp(tA) is the matrix exponential. Theoretically, for large values of t, the steady

state concentration in the near field is G/Q + G/β (mg/m3), and G/Q (mg/m3) in the

far field. We note that the matrix exponential may be numerically unstable to compute in

general. For example, for non-diagonalizable matrices a Jordan decomposition (see, e.g.,

4) may be required, which is very sensitive to small perturbations in the elements of A.

Hence, we will avoid this approach.

Analogous to (3), the discrete counterpart of (4) can be

Measurement: Zt = f(Ct) + νt , νt
iid∼ Pνt,θν ;

Transition: Ct+δt = (δtA(θc;x) + I)Ct + δtg(θc;x) + ωt ; ωt
iid∼ Pωt,θω ;

Q ∼ Unif(aQ, bQ) ; G ∼ Unif(aG, bG) ; KL ∼ Unif(aKL , bKL) ; β ∼ Unif(aβ, bβ) ,

where Zt is the 2 × 1 vector with near-field and far-field measurements (or some func-

tion thereof) at time t, Ct is the unobserved concentration state at time t, A(θc;x) = −β/VN β/VN

β/VF −(β +Q)/VF +KL

 and g(θc;x) =

 G/VN

0

. Similar to the one-zone

model, we will specify distributions for νt and for ωt, where θν and θω are parameters

in Pν,θν and Pω,θω , respectively.

2.3 Turbulent eddy diffusion model

In real workplace settings, the rooms may neither be perfectly mixed nor consist of well-

mixed zones. Furthermore, the concentration state could depend upon space and time.

A popular model for such settings is the turbulent eddy diffusion model. This model

accounts for a continuous concentration gradient from the source outward. It takes into

account the worker’s location relative to the source. The concentration C(s, t) is a function

of the location s = (x, y) in a two-dimensional Euclidean coordinate frame and time t.

Without loss of generality, the source of the contaminant is assumed to be at coordinate
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(0, 0). The parameter that is unique to this model is the turbulent eddy diffusion coefficient

DT (m2/min). It describes how quickly the emission spreads with time (Figure 3) and is

assumed to be constant over space and time. There has been very little research on the

Figure 3: Eddy diffusion model schematic showing key model
parameter; diffusion coefficient DT

values of DT due to the difficulty of measuring it. Some studies suggest a relationship

between DT and air change per hour (ACH) (19). We will provide inference for this

parameter.

The exact contaminant concentration at location s relative to the source of emission is

C(s, t) =
G

2πDT ‖s‖

{
1− erf

(
‖s‖√
4DT t

)}
, (6)

where erf(z) = 2
π

∫ z
0

exp(−u2)du. The steady state concentration at location s is theoreti-

cally the limit of the concentration as t→∞, which is G/(2πDT (s)) (mg/m3).

The following differential equation represents the change in concentration over time

d

dt
C(s, t) =

G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
.

A general dynamic modeling framework accounting for space and time is as follows:

Measurement: Z(t, s) = f(C(t, s)) + νt(s) + ηt , νt(s)∼Pνt(s),θν , ηt ∼ Pηt,θη ;

Transition: C(s, t+ δt) = C(s, t) + δt
G

4(DTπt)3/2
exp

(
−||s||2/4DT t

)
+ ω(s, t+ δt) , ω(s, t)∼Pωt,s,θω ;

DT ∼ Unif(aDT , bDT ) ; G ∼ Unif(aG, bG) , (7)
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where Pνt(s),θν and Pωt,s,θω are spatial-temporal stochastic processes. Note that νt(s) is

a spatial-temporal process discrete in time and continuous in space. This is reasonable

because the measurments are taken over discrete time intervals and the estimation for the

latent concentration states are required at those intervals. On the other hand, ω(s, t) would

ideally be a process continuous in both space and time because it models spatial-temporal

associations between concentration states at arbitrary space-time coordinates.

3 Model Implementation and Assessment

For each physical model in Section 2 we will consider two different Bayesian SSMs. We

will refer to the first as a Gaussian SSM. Gaussian (linear) SSMs result from specifying

f(Ct) = BtCt, where Bt is a known p×p design matrix (usually the identity matrix), Pν,θν ≡

N(0,Σν) and Pω,θω ≡ N(0,Σω) are p-variate Gaussian densities. These deliver accessible

distribution theory for updating parameters using Kalman-filters or Gibbs samplers. Let

T = {t1, . . . , tn} be timepoints where concentration measurements Zt have been measured.

A Bayesian hierarchical SSM is

p(θc)× IW (Σω | rω, Sω)× IW (Σν | rν , Sν)×N(Ct0 |m0,Σ0)

×
n∏
i=1

N(Cti |Ati(θc)Cti−1
+ δigti ,Σω)×

n∏
i=1

N(Zti |BtiCti ,Σν) , (8)

where p(θc) is the prior distribution on θc, δi = ti− ti−1, and the other distributions follow

definitions as in (10). Gibbs updates are implemented using p(Cti | ·) = N(Cti |Mtimti ,Mti),

where mti = Σ−1ν Zti + Σ−1ti|ti−1
Ati(θc)Cti−1

and Mti = (Σ−1ν + Σ−1ti|ti−1
)−1, where Σti|ti−1

=

Ati(θc)Mti−1
Ati(θc)

T + Σω and Mt0 = Σ0, p(Σν | ·) = IW (Σν | rν|·, Sν|·) and p(Σω | ·) =

IW (Σω | rω|·, Sω|·), where rν|· = rν + n, Sν|· = Sν +
∑n

i=1(Zti − BtiCti)(Zti − BtiCti)
T ,

rω|· = rω + n and Sω|· = Sω +
∑n

i=1(Cti − Ati(θc)Cti−1
)(Cti − Ati(θc)Cti−1

)T .

Note that the two-zone model has p = 2, while the one-compartment and eddy-diffusion

models have p = 1. Gaussian Bayesian SSMs for p = 1 specify Pν,θν ≡ N(0, σ2) and

Pω,θω ≡ N(0, τ 2). The measurement equation is linear in the state Ct. The IW (·, ·) priors

in (8) are replaced by IG(σ2 | aσ, bσ) and IG(τ 2 | aτ , bτ ). The full conditionals now assume
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the form p(Cti | ·) = N(Cti |Mtimti ,Mti), where mti = σ−2Zti + σ−2ti|ti−1
Ati(θc)Cti−1

and

Mti = 1/(σ−2 + σ−2ti|ti−1
), where σ2

ti|ti−1
= Ati(θc)

2Mti−1
+ τ 2, p(σ2 | ·) = IG(σ2 | aσ|·, bσ|·)

and p(τ 2 | ·) = IG(τ 2 | aτ |·, bτ |·), where aσ|· = aσ + n/2, bσ|· = bσ +
∑n

i=1(Zti − BtiCti)
2/2,

aτ |· = aτ + n/2 and bτ |· = bτ +
∑n

i=1(Cti − Ati(θc)Cti−1
)2/2.

Although Gausian SSMs are very popular in dynamic modeling of physical systems,

especially due to convenient updating schemes, the Gaussian assumption for the concentra-

tion measurements may be untenable. Our second Bayesian SSM assumes that Zt = log Yt

are log-concentration measurements and f(Ct) = logCt in the measurement equation. We

still specify Pν,θν as Gaussian, which means that Zt’s are log-normal and is probably a more

plausible assumption than in Gaussian SSMs. In the transition equation, again the Gaus-

sian assumption on ωt seems implausible: if the measurements of the state are log-normal,

then why should Ct be Gaussian? Since Ct is positive, a Gamma or log-normal specifica-

tion for Pω,θω seems much more plausible. For p = 2, we will specify logarithmic bivariate

normal distributions, while for p = 1 we will explore with both Gamma and log-normal

densities. We will refer to all of these models as non-Gaussian Bayesian SSMs.

The turbulent eddy-diffusion model requires some further specifications. While the

framework in (7) is rich, unfortunately it will not usually be applicable to practical indus-

trial hygiene settings because typically very few measurements are available over distinct

locations in a workplace chamber and estimating the processes will be unfeasible. Hence,

we will need simpler specifications. For example, we can consider a setting with locations

{s1, s2, . . . , sm} and n time-points. We fit the model in (7) with Zt(si) = log Yt(si) are

log-concentration measurements and f(Ct(si)) = logCt(si). We further specify Pηt,θη as

a white-noise process, i.e., ηt
iid∼ N(0, τ 2) for every t and s, and Pνt(s),θν is a temporally

indexed spatial Gaussian process with an exponential covariance function, independent

across time. This means that the m × 1 vector νt
ind∼ N(0, σ2

tRt(φt)), where Rt(φt) is an

m×m matrix with (i, j)-th element exp(−φtdij) and dij = ‖si − sj‖.

Note that Pνt(s),θν can, in theory, be a continuous-time spatial-temporal process speci-

fied through a space-time covariance function (see, e.g., 2). Alternatively, one could treat

time as discrete and evolving, for each location s, as an autoregressive process so that

νt(s) = γνt−1(s) + ηt(s) with ηt(s) being spatial processes independent across time (see,
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e.g., 20; 8). One could continue to embellish the model in (7) using spatial-temporal struc-

tures that represent richer hypotheses and more flexible modeling. However, in realistic

industrial hygiene applications such specifications will rarely lead to estimable models given

the scarcity of data points. For example, most settings will provide measurements from

only a handful of locations (e.g., m ∼ 5) and some moderate numbers of time points (e.g.,

n ∼ 100). Therefore, we will not explore these specifications any further. Moreover, even

when we assume independence across time it will be difficult to estimate models with time-

varying spatial process parameters. Hence, we let νt
iid∼ N(0, σ2R(φ)) so that each m × 1

vector νt has the same m-variate Gaussian distribution.

Finally, we turn to smoothing and filtering. Smoothing is achieved by evaluating at each

time point ti the posterior expectation of the concentration value given the entire observed

data y = {yti : i = 1, 2, . . . , n}, including observations before and after ti. Thus, we sample

from the posterior density p(Cti | y) in posterior predictive fashion by sampling a Cti from

its full conditional, p(Cti | ·), for each sampled value of the parameters. For linear Gaussian

SSM, Kalman smoother can be used where the smoothed distribution at time t also follows

a Gaussian distribution. For the nonlinear non-Gaussian SSM, (5) provided a discussion

of the different smoothing approaches. This provides an idea about the structure of the

smoothing distribution of the collection of states (11). Filtering, on the other hand, aims

to estimate the posterior expectation of the concentration value Cti , given the data up to

ti, i.e., {y(tj) : j = 1, 2, . . . , i}. We have implemented both smoothing and filtering for all

the physical models considered above.

To compare between models, we adopt a posterior predictive loss approach (see, e.g.,

(9)). We generate the posterior predictive distributions for each data point, yrep,i for

i = 1, 2, . . . , n by sampling from p(yrep | y) =

∫
p(yrep | θ, {Ct})p(θ, {Ct} | y)dθ, where θ

denotes the full collection of unknown parameters and {Ct} is the collection of latent

concentrations over the entire time frame. We will compute the posterior predictive mean,

µrep,i = E[yrep,i | y], and dispersion, Σrep,i = var[yrep,i | y], for each yrep,i; these are easily

calculated from the posterior samples for each yrep,i. We will prefer models that will perform

well under a decision-theoretic balanced loss function that penalizes departure of replicated

means from the corresponding observed values (lack of fit), as well as the uncertainty in
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the replicated data. Using a squared error loss function, the measures for these two criteria

are evaluated as G =
∑n

i=1 ‖yi − µrep,i‖2, where ‖ · ‖ denotes the Euclidean norm, and

P =
∑n

i=1 Tr(Σrep,i), where Tr(A) denotes the trace of the matrix A. We will use the score

D = G+ P as a model selection criteria, with lower values of D indicating better models.

4 Data Analysis

In this section we evaluate the performance of the models discussed in Section 3, for the

three physical exposure models illustrated in Section 2, using computer-simulated datasets

as well as experimental lab-generated data. In particular, we consider two models: a

Gaussian linear model and a non-Gaussian nonlinear model, and they will be referred to

as Gaussian SSM and non-Gaussian SSM respectively. The prior settings are based on

physical knowledge and experience, and discussed in the following section.

The computer-simulated data was generated using R computing environment. The lab-

generated data experiments were conducted in test chambers. (1) examined parts of this

data using the deterministic one-zone and two-zone models and showed that performance is

highly reliable on the model assumptions and knowing the generation (G) and ventilation

(Q) rates. (19) studied the eddy diffusion data using a deterministic model and concluded

that it is suitable for indoor spaces with persistent directional flow toward a wall boundary,

as well as in rooms where the airflow is solely driven by mechanical ventilation (no natural

ventilation involved). These results imply the need for a more flexible model that accounts

for uncertainty and also be used for parameter inference.

4.1 Prior settings

In Bayesian exposure models, reasonable informative priors are usually used, based on ex-

pert knowledge and physical considerations (16). We assigned informative priors on the

generation rate G, ventilation rate Q, loss rate KL, airflow rate β and diffusion coefficient

DT using uniform distributions for the plausible values of the parameters. For the simu-

lation data, uniform priors were assigned within at least 20% of the true values following

the prior settings in (15). The model parameters used to generate the one-zone model data
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were taken from physical considerations as illustrated by (21) at values, Q = 13.8 m3/min,

G = 351.5 mg/min, V = 3.8 m3, KL = 0.1 mg/min and σ = 0.1. In the two-zone model,

following (21), the generation and ventilation rates were fixed at the same values as in the

one-zone model. In addition, β was fixed at 5 m3/min, VN = π × 10−3 m3, VF = 3.8 m3,

and Σν =

 0.1 0

0 0.1

. For the eddy diffusion data, we fixed G = 351.5 mg/min, Dt = 1

m2/min, σ2
η = 0.1 and used a geostatistical exponential covariance with σ = φ = 1.

In the one-zone and two-zone models, we assume that G ∼ Unif(281, 482), Q ∼

Unif(11, 17), KL ∼ Unif(0, 1), and β ∼ Unif(0, 10) in the two-zone model and DT ∼

Unif(0, 3) in the eddy diffusion model. For the exponential covariance function, the spa-

tial range is given by approximately 3/φ which is the distance where the correlation drops

below 0.05. The prior on φ ∼ Uni(0.5, 3) implies that the effective spatial range, i.e., the

distance beyond which spatial correlation is negligible, is between 1 and 6 units.

Wider ranges were considered in the lab-generated data analysis because the exact true

values for some of the parameters were unknown but rather a range. The ranges of the

true values in the well mixed compartment and two-zone models for G, Q, KL and β are

(40−120)(mg/min), (0.04−0.77)(m3/min), < 0.01 and (0.24−1.24)(m3/min) respectively.

We assume that G ∼ Unif(30, 150), Q ∼ Unif(0, 1), KL ∼ Unif(0, 1) in the one-zone and

two-zone models and β ∼ Unif(0, 5) in the two-zone model. For the eddy diffusion model,

the true value for G is 1318 (mg/sec) and from literature (19) the range for DT is (0.001-

0.2) m2/sec, hence we assigned priors of G ∼ Unif(1104, 1650) and Dt ∼ Unif(0, 1). Non

informative priors were assigned to the variance covariance matrices using IW (3, I) (10).

4.2 Simulation results

Monte Carlo filtering methods were used to estimate the latent processes and the model pa-

rameters. The effectiveness of the model is assessed through checking whether the 95% C.I.s

of the parameters include the true values, MSE and posterior predictive loss (D=G+P), in

addition to graphical assessment.
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4.2.1 One-zone model

We simulated 100 exposure concentrations at equally spaced time points using the exact

solution to the ODE in equation (2). The initial concentration C(0) was assigned a value of

1 mg/m3. Theoretically, the steady state concentration is G/Q ≈ 25 mg/m3. The models

applied to the synthetic data and compared are: Gaussian SSM and non-Gaussian SSM.

The Gaussian SSM in (8) assumes linearity and Gaussian errors, where the Kalman filter

equations are used, where

At(θc) =

(
1− δt

Q+KLV

V

)
and g = δt

G

V
.

Table 1 shows the medians and 95% credible intervals of the MCMC posterior samples

of the model parameters, MSE and D=G+P for the two aforementioned models. Figure 4

shows the simulated concentrations, measurements and the mean of the posterior samples

of the latent states conditional on the measurements, in addition to smoothed estimates

obtained from the Non-Gaussian SSM filtered states. Details of the performances are as

follows:

• Non-Gaussian SSM: The 95% C.I.s include the true values for all the parameters

except KL. The latent state estimates are very close to the true simulated values as

shown in Figure 4.

• Gaussian SSM: The 95% C.I.s for the generation rate G and the ventilation rate Q

include the true values. The interval for the loss rate KL does not cover the true

parameter value. The model estimates for the latent states are closer to the observed

values than the true values.

The D=G+P scores and MSE results suggest that the nonlinear non-Gaussian model out-

performs the linear Gaussian one, which is also confirmed in Figure 4.

4.2.2 Two-zone model

We simulated 100 exposure concentrations at the near and far fields at equally spaced

time points using the exact solution (5). The initial concentrations CN(0) and CF (0) were
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Table 1: Posterior predictive loss (D=G+P), MSE, medians and 95% C.I. of the posterior
samples of the one-zone model parameters for the simulated data

Parameter Non-Gaussian SSM Gaussian SSM

G(351.5) 326.8 (283.3, 351.7) 363.5(314.2,413.8)
Q(13.8) 12.9(11.1, 14.8) 12.8(11.4, 14.3)
KL(0.1) 0.34(0.19,0.78) 0.30(0.28, 0.41)

D=G+P 312.2=5.9+306.3 435.8=232.8+203.0
MSE 0.07 2.3
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Figure 4: Plot of the simulated concentrations, measurements and the mean of the
posterior samples of the latent states conditional on the measurements for:

a: Non-Gaussian SSM and b: Gaussian SSM

assigned values 0 and 0.5 mg/m3 respectively. Theoretically, the steady state concentration

at the near field is G/Q + G/β ≈ 95 mg/m3, and G/Q ≈ 25 mg/m3 at the far field. The
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Gaussian SSM in (8) assumes linearity and Gaussian errors, such that

At(θc) = δtA+ I and g = δtg.

Table 2 shows the medians and 95%C.Is of the MCMC posterior samples of the model

parameters, MSE and D=G+P scores. Figure 5 shows the simulated concentrations, mea-

surements and the mean of the posterior samples of the latent states conditional on the

measurements at the near and the far fields in addition to smoothed estimates obtained

from the non-Gaussian SSM filtered states. Moreover, we compared the performance of the

two SSMs to the simple Bayesian nonlinear regression model (BNLR) proposed by (21).

Details of the performances of the three models are as follows:

• Non-Gaussian SSM: The 95% C.I.s include the true values for all the parameters.

The estimates of the latent states are close to the true values at both the near field

and the far field as shown in Figure 5.

• Gaussian SSM: The 95% C.I.s for all the parameters except the ventilation rate Q

do not include the true values. The model estimates of the latent states are closer to

the true values at the near field than the far field.

• BNLR: The 95% C.I.s include the true values for all the parameters.

The D=G+P scores indicate that the non-Gaussian model provides better fit than the

BNLR and the Gaussian models. MSE and Figure 5 confirm these results.

Table 2: Posterior predictive loss (D=G+P), MSE, medians and 95% C.I. of the posterior
samples of the two-zone model parameters for the simulated data

Parameter Non-Gaussian SSM Gaussian SSM BNLR

G(351.5) 347.3(315.6,379.3) 450.5(395.2, 480.2) 335.1(302.5,382.6)
Q(13.8) 14.7(12.1,16.8) 13.5(11.1, 16.7) 14.4(11.2, 15.8)
KL(0.1) 0.38(0.02,0.78) 0.22(0.16,0.35) -
β(5) 5.0(4.3,5.8) 0.40(0.23,1.2) 5.1(4.0, 6.8)

D=G+P
1049840= 1118550= 2504429=

1010905+38934.0 1033428+85121.7 1359016+ 1145413
MSE 15.3 116.1 54.9
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Figure 5: Plot of the simulated near and far fields concentrations, measurements and the
mean of the posterior samples of the latent states conditional on the measurements for:

a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

4.2.3 Turbulent eddy diffusion model

We simulated a total of 500 exposure concentrations at 5 different locations over equally

spaced 100 time points using the exact equation (6). Table 3 shows the medians and 95%

C.I.s of the MCMC posterior samples of the model parameters, MSE and D=G+P. Figure 6

shows the simulated concentrations, measurements and the mean of the posterior samples

of the latent states conditional on the measurements at three locations and the smoothed

estimates obtained from the non-Gaussian SSM filtered states. Figure 7 shows image plot

of the posterior mean surface of the latent spatial process νt(s). The plot indicates higher

concentration values near the source of emission at the bottom-left corner and lower values

away from the source. Details of the performance of the two models are as follows:
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• Non-Gaussian SSM: The 95% C.I.s include the true values for all the parameters.

The estimates of the latent states are close to the true values at the five locations.

• Gaussian SSM: The 95% C.I.s include the true value for the generation rate G but

not for the eddy diffusion coefficient DT . The model estimates for the latent states

are closer to the observed values than the true values.

MSE and D=G+P for the Non-Gaussian SSM indicate a better fit.

Table 3: Posterior predictive loss (D=G+P), MSE, medians and 95% C.I of the posterior
samples of the turbulent eddy diffusion model parameters for the simulated data

Parameter Non-Gaussian SSM Gaussian SSM

G(351.5) 355.9(284.0,477.5) 449.6(301.0,480.5)
DT (1) 1.2(0.9,1.5) 1.4(1.3,1.6)

D=G+P 7062.4=1564.5+5497.9 22025.7=1112.5+20913.1
MSE 3.11 5.55

4.3 Experimental Chamber Data Results

In this section we study the performance of the non-Gaussian and Gaussian SSMs on

controlled lab-generated data in which solvent concentrations have been measured under

different scenarios. We are interested in the inference through the posterior distributions

of the parameters Q and G in the one-zone model, in addition to β in the two-zone model,

and Q and DT in the eddy diffusion model.

4.3.1 One-zone model

A series of studies were conducted in an exposure chamber under different controlled con-

ditions. (1) constructed a chamber of size (2.0m× 2.8m× 2.1m = 11.8m3), where two in-

dustrial solvents (acetone and toluene) were released using different generation G(mg/min)

and ventilation Q(m3/min) rates. In particular, three levels of ventilation rates correspond-

ing to ranges of 0.04-0.07 m3/min, 0.23-0.27 m3/min and 0.47-0.77 m3/min were used. The

loss rate KL was determined from empirical studies to be < 0.01. Solvent concentrations

were measured every 1.5 minutes. Details of the experiments can be found in (1).
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Figure 6: Plot of the simulated concentrations, measurements and the mean of the
posterior samples of the latent states conditional on the measurements at three locations

for:
a: Non-Gaussian SSM and b: Gaussian SSM

Table 4 shows the medians and 95% C.I.s of the MCMC posterior samples in addition

to MSE and D=G+P. The non-Gaussian SSM 95% C.I.s cover the true values for both

G and Q, while Gaussian SSM 95% C.I.s include the true values for G at low and high

ventilation levels. Figure 8 shows that the estimated latent concentrations are close to the

measurements. Posterior predictive loss (D=G+P) indicates better fit of the non-Gaussian

SSM model.
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Figure 7: Interpolated surface of the mean of the random spatial effects posterior
distribution

Table 4: Posterior predictive loss (D=G+P), MSE, medians and 95% C.I. of the posterior
samples of the one-zone model parameters using toluene and acetone solvents

Parameter Ventilation level True value Non-Gaussian SSM Gaussian SSM

G
low 43.2 38.1(30.2,62.9) 35.3(30.2, 46.7)

medium 43.2 45.06(30.5,101.9) 72.9(45.6,94.9)
high 39.55 81.7(32.9,142.4) 38.1(30.5,51.4)

Q
low 0.04-0.07 0.27(0.02, 0.41) 0.20(0.15,0.27)

medium 0.23-0.27 0.50(0.02,0.97) 0.15(0.10,0.21)
high 0.47-0.77 0.59(0.03,0.98) 0.30(0.23,0.45)

D=G+P
low 129.4=88.8+40.6 208.0=4.3+203.7

medium 9.8=0.52+9.2 77.7=0.20+77.1
high 7.5=1.0+6.5 38.2=0.1+38.1

MSE
low 0.01 0.02

medium 0.02 0.02
high 0.03 0.02

4.3.2 Two-zone model

The near field box of size (0.51m× 0.51m× 0.41m = 0.105m3) was constructed within the

far field box (1). The volume of the far field is 11.79 m3, which is the chamber volume

minus the near field volume. The airflow parameter β cannot be directly measured, but it

was estimated from the local air speed to range from 0.24 to 1.24 m3/min. Similar to the

one-zone model, three different experimental data sets at three different ventilation levels

were used. Table 5 shows the medians and 95% C.I.s of the MCMC posterior samples,

MSE and D=G+P. At all ventilation rates, non-Gaussian SSM 95% C.I.s include the true
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Figure 8: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements for:

a: Non-Gaussian SSM and b: Gaussian SSM

values of Q but only at a medium ventilation rate, it includes the true value for G. The

Gaussian SSM 95% C.I.s cover the true value of Q at medium ventilation level but none

of the generation rates G. The BNLR 95% C.I.s only cover the true value of Q at a high

ventilation level. The true value for β was not directly measured and hence is unknown,

however, it was estimated to be between 0.24 and 1.24. In general, non-Gaussian SSM 95%

C.I.s for β are closer to those values.

MSE and D=G+P scores clearly indicate that non-Gaussian SSM produced better fit

than the BNLR and the Gaussian SSM which is also confirmed in Figure 9.
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Table 5: Posterior predictive loss (D=G+P), MSE, medians and 95% C.I. of the posterior
samples of the two-zone model parameters using toluene and acetone solvents

Parameter Ventilation True Non-Gaussian Gaussian BNLR
level value SSM SSM

G
low 43.2 30.4(30.0, 32.2) 115.8(88.9, 143.9) 28.1(28.0,28.4)
med 86.4 73.7(60.2,90.5) 141.6(130.6,149.7) 28.5(28.0,30.8)
high 120.7 49.8(33.9,68.3) 132.9(121.6,148.0) 43.7(37.8,50.3)

Q
low 0.04-0.07 0.68(0.09, 0.98) 0.28(0.23,0.36) 0.62(0.60,0.65)
med 0.23-0.27 0.38(0.11,0.50) 0.25(0.20,0.31) 0.38(0.29,0.50)
high 0.47-0.77 0.46(0.45,0.98) 0.14(0.11,0.16) 0.5(0.30,0.64)

β
low 0.24-1.24 3.0(2.3,3.7) 5.1(4.1,6.0) 4.9(4.7,5.0)
med 0.24-1.24 2.9(2.5, 3.4) 2.3(2.0,2.8) 4.5(3.4,5.0)
high 0.24-1.24 2.2(1.5, 2.8) 2.5(2.0,3.0) 4.1(2.7,4.9)

D=G+P

low 5653= 554650= 248358=
189+5464 554234+416 73006+ 175352

medium 22262= 850014= 93267=
10596+11666 424452+425562 16824+76443

high 20941= 479098= 119212=
4345+16596 240278+238820 64968+54244

MSE
low 0.62 1835.2 129.2

medium 13.0 2952.4 96.5
high 52.9 2930.2 632.3

4.3.3 Turbulent eddy diffusion model

(19) constructed a chamber of size (2.8m × 2.15m × 2.0m = 11.9m3), where toluene was

released. Measurements were taken at two locations at distances 0.41 m and 1.07 m away

from the source every two minutes. Due to the limited spatial information from the two

locations, an unstructured covariance for νt(s) was used instead of the geostatistical expo-

nential covariance that was considered in the simulation analysis. Non informative prior

was assigned to the covariance matrix using IW (3, I) (10).

Table 6 shows the medians and 95% C.I.s of the MCMC posterior samples, MSE and

the D=G+P. The value of DT is difficult to measure; hence, the true value is unknown.

However, (19) demonstrated that most of the reported values of DT in literature range from

0.001 to 0.01 m2/sec. The 95%C.I.s for DT in non-Gaussian SSM lie within that range.

In addition, the 95%C.I.s of G include the true value. The 95%C.I.s of the Gaussian SSM

do not include any of the true parameter values. Figure 9 shows that the latent state
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Figure 9: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements in the near field and far field for:

a: Non-Gaussian SSM, b: Gaussian SSM and BNLR

estimates for both models are closer to the measurements in the first location than in the

second location. MSE and D=G+P scores show that non-Gaussian SSM provides a better

fit.

Table 6: Posterior predictive loss (D=G+P), MSE, medians and 95% C.I. of the posterior
samples of the turbulent eddy diffusion model parameters using toluene solvent

Parameter True value Non-Gaussian SSM Gaussian SSM

G 1318.33 1207.3(1107.2,1371.7) 1118.7(1104.5,1294.3)
DT 0.001-0.01 0.007(0.006,0.008) 0.67(0.64,0.78)

D=G+P 100877.8=59369.9+41507.9 32383410=258952.4+32124457

MSE 337.3 1454.8
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Figure 10: Plot of the measured concentrations and the mean of the posterior samples of
the latent states conditional on the measurements at the two locations for:

a: Non-Gaussian SSM and b: Gaussian SSM

5 Discussion

We have proposed a framework of Bayesian SSMs for analyzing experimental exposure

data specific to industrial hygiene. This approach combines information from physical

models of industrial hygiene, observed data and prior information. We derive a likelihood

by discretizing the physical models. It also expands upon the Gaussian noise assumptions,

hence industrial hygienists will not be restricted to Gaussian SSMs.

In practical industrial hygiene settings, Gaussian SSMs are still often used as approx-

imations to analyze possibly non-Gaussian data. To do so, some possibly inappropriate

accommodations may need to be made. For example, (12) allowed negative values in esti-

mating PM10 concentrations, while (14) used Kalman filters to predict gas concentrations

by using a tuning parameter to fix σ2
ω and σ2

ν in a one dimensional autoregressive expo-

sure model, rather than pursuing full statistical inference. Our simulation experiments
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and results demonstrate that Gaussian SSM’s may yield extremely poor fits when data

are non-Gaussian. This was especially evident for the two-zone analysis. Our results will,

we hope, inform the industrial hygiene community about some of the pitfalls of Gaussian

SSMs.

Non-Gaussian SSM’s tended to perform better than linear Gaussian SSM’s, a result

that appeared to be consistent across different exposure models and different experimental

conditions. Moreover, our analysis of the two-zone data revealed that the discretized models

outperform the BNLR method proposed by (21) for two zone data. This is unsurprising

given that our approach is richer by accommodating stochastic distributions at two levels—

one each for the measurement and transition equations—whereas BNLR accommodates

only an error distribution from a nonlinear regression. Finally, our proposed approach

also enjoys better interpretation than the hierarchical Gaussian process models of (16) as

they provide greater precisions in estimates because the random effects in the hierarchical

models of (16) tend to inflate variances.

The eddy diffusion data has some limitations related to the small size of the chamber,

which rendered a small difference between the concentrations in the two locations which

also makes it hard to measure the spatial variation for Model (7) implementation. Despite

that, in most cases, a nonlinear non-Gaussian Bayesian SSM was able to characterize the

data well and the model seems robust to most of the experimental scenarios.

We conclude with some indicators for future research. First, as alluded to earlier, we

will need to do a much more comprehensive spatiotemporal analysis for eddy diffusion ex-

periments. While our simulation experiments showed the promise of spatiotemporal SSM’s

in analyzing eddy diffusion experiments, our chamber data analysis had limited scope be-

cause of the very small number of spatial measurements. Another important consideration

is misaligned data, such as was considered in (16) for two zone experiments where not

all measurements for the near and far fields came from the same set of timepoints. An

advantage of the Bayesian paradigm is that we can handle missing data, hence misaligned

data, very easily and indeed our Bayesian SSMs should be able to handle them as eas-

ily as the models in (16). Future work will include such analysis and also extensions to

spatiotemporal misalignment for eddy-diffusion experiments, where not all timepoints gen-
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erated measurements for the same set of spatial locations.

 
347



SUPPLEMENTARY MATERIAL

Discretization of the differential equations: We approximate the deterministic phys-

ical model through discretization. The Taylor expansion of C(t) at t = t∗ is C(t) =∑∞
n=0

C(n)(t∗)
n !

(t− t∗)n, where C(n)(t∗) = dn

dtn
C(t)

∣∣∣
t=t∗

. Let t = t∗ + δt hence

C(t∗ + δt) =
∞∑
n=0

C(n)(t∗)

n !
(δt)

n = C(t∗) +
C ′(t∗)

1 !
δt + o(δt), (9)

for small δt. From the above equation we can express C ′(t∗) as

C ′(t∗) =
C(t∗ + δt)− C(t∗)

δt
+ o(δt). (10)

In the applications to the three physical models we replace the first order deriva-

tive d
dt
C(t) at t = t∗ with equation (10) using the appropriate value of δt. In the

one zone and two-zone models a value δt = 0.01 was found to provide an accurate

approximation, while for the eddy diffusion model δt = 1 was used.

Steady states derivations: The steady state is achieved as t→∞ in the exact solution

of the ODE.

lim
t→∞

exp{tFt}C(t0) + F−1t [exp{tFt} − I]g. (11)

For the one zone model Ft = −(Q + KLV )/V and g = G/V so 11 = F−1t [−I]g =

G/(Q+KLV ). Since KL is usually small, it can be approximated by G/Q. Hence as

t→∞ C(t) ≈ G/Q.

For the two zone model, Ft = A =

 −β/VN β/VN

β/VF −(β +Q)/VF +KL

 and g = G/VN

0

. Since KL is usually small it can be ignored for simplicity. The term

exp(tFt), where exp() is the matrix exponential, can be written as exp(tLΛL−1) =∑
etλGi where Gi = uiv

T
i , ui is the i-th column of L and vTi is the i-th row of L−1. It
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easily follows that etFt =
m∑
i=1

etλiGi. The eigenvalues are available in closed form (21)

as

λ1 = 1
2

[
−
(
βVF+(β+Q)VN

VNVF

)
+

√(
βVF+(β+Q)VN

VNVF

)2
− 4

(
βQ
VNVF

)]
,

λ2 = 1
2

[
−
(
βVF+(β+Q)VN

VNVF

)
−
√(

βVF+(β+Q)VN
VNVF

)2
− 4

(
βQ
VNVF

)]
.

(12)

As long as β and Q are positive, the sum of the two eigenvalues are negative.

Hence etFt =
m∑
i=1

etλiGi → 0 as t → ∞ and the first term becomes 0 and the sec-

ond term becomes A−1[−I]g. The determinant of A is det(A) = Qβ/VNVF , and

A−1 =

 −((β +Q)/VF )(VNVF/βQ) −(β/VN)(VNVF/βQ)

−(β/VF )(VNVF/βQ) −((β)/VN)(VNVF/βQ)

. So the steady state

is a 2× 1 vector equal to A−1[−I]g =

 G
Q

+ G
β

G
Q

. So as t→∞ CN(t) ≈ G
Q

+ G
β

and

CF (t) ≈ G
Q

.

The steady state for the eddy diffusion model is theoretically the value of C(s, t) in

equation (6) when t→∞. Clearly limt→∞
G

2πDT (||s||)

(
1− erf ||s||√

4DT t

)
= G

2πDT (||s||)
.
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