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Abstract
We introduce an information theoretic approach—Shannon’s entropy to specify econometric func-

tions as an alternative to avoid parametric assumptions. We investigate the performances of Shan-
non’s entropy in estimating the regression (conditional mean) and response (derivative) functions.
We have demonstrated that they are easy to implement, and are advantageous over parametric mod-
els and nonparametric kernel techniques.

Key Words: Shannon’s entropy, maximum entropy distributions, regression function, response
function.

1. Introduction

In the literature of estimation, specification, and testing of econometric models, many para-
metric assumptions have been made. For example, a regression function is often considered
to be linear. However, parametric econometrics has drawbacks since particular specifi-
cations may not capture the true data generating process. As a matter of fact, the true
functional forms of econometric models are hardly known. Misspecification of parametric
econometric models may therefore result in invalid conclusions and implications. Alter-
natively, data-based econometric methods can be adopted to avoid the disadvantages of
parametric econometrics and implemented into practice. One widely-used approach is the
nonparametric kernel technique, see Ullah (1988), Pagan and Ullah (1999), Li and Racine
(2007) and Henderson and Parmeter (2015). However, nonparametric kernel procedures
have some deficiencies, such as the “curse of dimensionality” and a lack of efficiency due
to a slower rate of convergence of the variance to zero. In view of this, we propose a new
information theoretic (IT) procedure for econometric model specification by using clas-
sical maximum entropy formulation. This is consistent, efficient, and based on minimal
distributional assumptions.

Shannon (1948) derived the entropy (information) measure. Using Shannon’s entropy
measure Jaynes (1957a, 1957b) developed the maximum entropy principle to infer proba-
bility distribution. Entropy is a measure of a variable’s average information content, and
its maximization subject to some moments and normalization provides a probability dis-
tribution of the variable. The resulting distribution is known as the maximum entropy
distribution; see more on this in Zellner and Highfield (1988), Ryu (1993), Golan et al.
(1996), Harte et al. (2008), Judge and Mittelhammer (2011) and Golan (2018). We note
that the joint probability distribution based on the maximum entropy approach is a purely
data-driven distribution where parametric assumptions are avoided, and this distribution can
be used to determine the regression function (conditional mean) and its response function
(derivative function) which are of interest to empirical researchers.

We organize this paper in the following order. We present the IT based regression and
response functions using a bivariate maximum entropy distribution in Section 2. A recur-
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sive integration process is developed for their implementations. In Section 3 we carry out a
simulation example to illustrate the small sample efficiency of our methods. In Section 4,
we present asymptotic theory on our IT based regression and response function estimators.
In Section 5, we draw conclusions.

2. Estimation of Distribution, Regression, and Response Functions

We consider {yi, xi} , i = 1, . . . , n independent and identically distributed observations
from an absolutely continuous bivariate distribution f (y, x). Suppose the conditional mean
of y given x exists and it provides a formulation for the regression model as

y = E(y|x) + u (1)

= m (x) + u,

where the error term u is such that E(u|x) = 0, and the regression function (conditional
mean) is

E(y|x) = m(x) =

∫
y
y
f(y, x)

f(x)
dy. (2)

When the joint distribution of y and x is not known, which is often the case, we propose
the IT based maximum entropy method to estimate the densities of the random variables
and introduce a recursive integration method to solve the conditional mean of y given x.

2.1 Maximum Entropy Distribution Estimation: Bivariate and Marginal

Suppose x is a scalar and the marginal density of it is unknown. Our objective is to ap-
proximate the marginal density f(x) by maximizing the information measure (Shannon’s
entropy) subject to some constraints. That is

Max
f

H(f) = −
∫
x
f(x) log f(x)dx,

subject to ∫
x
φm(x)f(x)dx = µm = Eφm(x), m = 0, 1, ...,M,

where φm(x) are known functions of x. φ0(x) = µ0 = 1. See, for example, Jaynes (1957a,
1957b) and Golan (2018). The total number of constraints is M + 1. In particular, φm(x)
can be moment functions of x. We construct the Lagrangian

L (λ0, λ1, . . . , λM ) = −
∫
x
f(x) log f(x)dx+

∑M

m=0
λm

(
µm −

∫
x
φm(x)f(x)dx

)
,

where λ0, λ1, . . . , λM represent Lagrange multipliers. The solution has the form

f (x) = exp

[
−
∑M

m=0
λmφm(x)

]
=

exp
[
−
∑M

m=1 λmφm(x)
]

∫
x exp

[
−
∑M

m=1 λmφm(x)
]
dx

≡
exp

[
−
∑M

m=1 λmφm(x)
]

Ω (λm)
,

where λm is the Lagrange multiplier corresponding to constraint
∫
x φm(x)f(x)dx = µm,

and λ0 (with m = 0) is the multiplier associated with the normalization constraint. With
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some simple algebra, it can be easily shown that λ0 = log Ω (λm) is a function of other
multipliers. Replacing f (x) and λ0 into L (λ0, λ1, . . . , λM ) = L (λ), we get

L (λ) =
∑M

m=1
λmEφm(x) + λ0.

The Lagrange multipliers are solved by maximizing L (λ) with respect to λm’s. The above
inferred density is based on minimal information and assumptions. It is the flattest density
according to the constraints. In this case, the Lagrange multipliers are not only the inferred
parameters characterizing the density function, but also capture the amount of informa-
tion conveyed in each one of the constraints relative to rest of the constraints used. They
measure strength of the constraints.

In particular, when M = 0, f (x) is a constant and hence x follows a uniform dis-
tribution. When the first moment of x is known, f (x) has the form of an exponential
distribution. When the first two moments of x are known, f (x) has the form of a normal
distribution. Furthermore, if more moment information is given, i.e. M ≥ 3, to estimate
the Lagrange multipliers, we use the Newton method considered in the literature. See Mead
and Papanicolaou (1984) and Wu (2003).

In the bivariate case, the joint density of y and x is obtained from maximizing the
information criterion H (f) subject to some constraints. Here, we assume the moment
conditions up to 4th order are known. Then

Max
f

H(f) = −
∫
x

∫
y
f(y, x) log f(y, x)dydx (3)

subject to∫
x

∫
y
ym1xm2f(y, x)dydx = µm1m2 = E (ym1xm2) , 0 ≤ m1 +m2 ≤ 4. (4)

We construct the Lagrangian

L (λ, λ00) = −
∫
x

∫
y
f(y, x) log f(y, x)dydx (5)

+
∑4

m1=0

∑4

m2=0
λm1m2

(
µm1m2 −

∫
x

∫
y
ym1xm2f(y, x)dydx

)
,

where λ = (λm1m2)14×1 for all 1 ≤ m1 + m2 ≤ 4. The solution of the joint density
distribution yields the form

f (y, x) = exp
[
−
∑4

m1+m2=0
λm1m2y

m1xm2

]
(6)

=
exp

[
−
∑4

m1+m2=1 λm1m2y
m1xm2

]
∫
x

∫
y exp

[
−
∑4

m1+m2=1 λm1m2y
m1xm2

]
dydx

≡
exp

[
−
∑4

m1+m2=1 λm1m2y
m1xm2

]
Ω (λm1m2)

,

where λm1m2 is the Lagrange multiplier that corresponds to the constraint∫
x

∫
y y

m1xm2f(y, x)dydx = µm1m2 , and λ00 = log Ω (λm1m2) (with m1 + m2 = 0)
is the multiplier associated with the normalization constraint which is a function of other
multipliers. See, e.g., Golan (1988, 2018) and Ryu (1993).
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For deriving our results in Section 2, we rearrange the terms in f(y, x) and write

f(y, x) = exp
[
−
(
λ04x

4 + λ03x
3 + λ02x

2 + λ01x+ λ00
)]

(7)

× exp
{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)
]}
y

where

λ30(x) = λ30 + λ31x, λ20(x) = λ20 + λ21x+ λ22x
2,

λ10(x) = λ10 + λ11x+ λ12x
2 + λ13x

3.

Replacing f(y, x) and λ00 into L (λ, λ00) = L (λ), we obtain the Lagrange multipliers by
maximizing

L (λ) =
∑4

m1+m2=1
λm1m2µm1m2 + λ00. (8)

The marginal density of x is computed by integrating f(y, x) over the support of y,

f(x) =

∫
y
f(y, x)dy (9)

= exp
[
−
(
λ04x

4 + λ03x
3 + λ02x

2 + λ01x+ λ00
)]

×
∫
y

exp
{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)
]}
y.

We note that f(x) = f(x,λ) and f(y, x) = f(y, x,λ). When the Lagrange multipliers λ
are estimated as λ̂ from (8), we get f̂(x) = f(x, λ̂) and f̂(y, x) = f(y, x, λ̂).

Although the above results are written under fourth order moment conditions in (4),
they can be easily written when 0 ≤ m1 + m2 ≤ M . We have considered fourth order
moment conditions without any loss of generality since they capture data information on
skewness and kurtosis.

2.2 Regression and Response Functions

Based on the bivariate maximum entropy joint distribution (7) and the marginal density (9),
the conditional mean (regression function) of y given x is represented as

m(x) = E(y | x) =

∫
y
y
f(y, x)

f(x)
dy (10)

=

∫
y y exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy∫

y exp {− [λ40y4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y]} dy
.

Given the values of the Lagrange multipliers, we define

Fr (x) ≡
∫
y
yr exp

{
−
[
λ40y

4 + λ30(x)y3 + λ20(x)y2 + λ10(x)y
]}
dy. (11)

where r = 0, 1, 2, . . .. The regression function m(x) thus takes the form

m(x) = m (x,λ∗) =
F1(x)

F0(x)
=
F1 (x,λ∗)

F0 (x,λ∗)
, (12)

where λ∗ = (λm1m2)10×1 for all 1 ≤ m1 +m2 ≤ 4 except λ0m2 for m2 = 1, . . . , 4. When
the Lagrange multipliers are estimated from (8) by Newton method,

m̂(x) = m
(
x, λ̂∗

)
=
F1

(
x, λ̂∗

)
F0

(
x, λ̂∗

) . (13)
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This is the IT nonparametric regression function estimator. Furthermore, the response func-
tion β (x) = dm(x)

dx (derivative) can be written as

β (x) = β (x,λ∗) =
F ′1 (x,λ∗)F0 (x,λ∗)− F1 (x,λ∗)F ′0 (x,λ∗)

F 2
0 (x,λ∗)

, (14)

and its estimator is given by
β̂ (x) = β

(
x, λ̂∗

)
(15)

We note thatF ′r (x) represents the first derivative ofFr (x) with respect to x, r = 0, 1, 2, . . ..

2.3 Recursive Integration

It is unlikely to solve out the exponential polynomial integrals in the numerator and denom-
inator from (10) in explicit forms. Numerical methods can be used to solve the problem
by integrating the exponential polynomial function at each value of x. However, for large
sample size, numerical methods are quite computationally expensive and hence are not
satisfactory. We develop a recursive integration method which can not only solve the con-
ditional mean m(x) but also reduce the computational cost significantly.

According to the definition of Fr (x) in (11), the changes in F0, F1 and F2 are given by

F ′0 = −λ′30(x)F3 − λ′20(x)F2 − λ′10(x)F1 (16)

F ′1 = −λ′30(x)F4 − λ′20(x)F3 − λ′10(x)F2

F ′2 = −λ′30(x)F5 − λ′20(x)F4 − λ′10(x)F3,

where λ′ (x) denotes the first derivative of λ (x) with respect to x. Due to the special prop-
erties of (11), integrals of higher order exponential polynomial functions can be represented
by those of lower orders. Based on this fact, F3, F4 and F5 in (16) are replaced by the linear
combinations of F0, F1 and F2, resulting in a system of linear equations

F ′0(x) = Λ00(x)F0(x) + Λ01(x)F1(x) + Λ02(x)F2(x) (17)

F ′1(x) = Λ10(x)F0(x) + Λ11(x)F1(x) + Λ12(x)F2(x)

F ′2(x) = Λ20(x)F0(x) + Λ21(x)F1(x) + Λ22(x)F2(x).

Starting from an initial value x0, for a very small increment h, we trace out F0(x), F1(x)
and F2(x) over the entire range of x

F0(x0 + h) ≈ F0(x0) + F ′0(x0)h (18)

F1(x0 + h) ≈ F1(x0) + F ′1(x0)h

F2(x0 + h) ≈ F2(x0) + F ′2(x0)h

The IT estimators m̂(x) in (13) and β̂(x) in (15) are thus evaluated using (17) and (18)
with λ∗ replaced by λ̂∗. The results for finite domain integration are similar to the above.

3. Simulation Example

Here we consider a nonlinear data generating process (DGP) to evaluate the performance
of our proposed IT estimator of regression and response functions.

The true model considered is a nonlinear function1

yi = −1

5
log
(
e−2.5 + 2e−5xi

)
+ ui (19)

1This simulation example is similar to Rilstone and Ullah (1989).
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where i = 1, 2, . . . , n, the variables yi and xi are in log values, and xi are independent and
identically drawn from uniform distribution with mean 0.5 and variance 1

12 . The error term
ui follows independent and identical normal distribution with mean 0 and variance 0.01.

The goal is to estimate the response coefficient β(x) = ∂y
∂x . Two parametric approxi-

mations considered are

Linear : yi = β0 + β1xi + ui

Quadratic : yi = β0 + β1xi + β2x
2
i + ui.

These two parametric models are not correctly specified. Thus, one can expect that the es-
timation of the response coefficients may be biased. Besides these two parametric models,
local constant nonparametric estimation of the response coefficient is also of our interest
as a comparison with our IT method estimator. The local constant (Nadaraya-Watson)
nonparametric kernel estimator is m̃ (x) =

∑
yiwi (x), where wi (x) = K((xi−x)/b)∑

K((xi−x)/b)
in which K (·) is a kernel function and b is the bandwidth, for example, see Pagan and
Ullah (1999). We have used normal kernel and cross-validated bandwidth. The bias and
root mean square error (RMSE) results from linear function, quadratic approximation, local
constant nonparametric method and IT method are reported in Table 1, averaged over 1000
replications of sample size 200. The values of the response coefficients shown are evalu-
ated at the population mean of x, which is 0.5. Standard errors are given in the parentheses.
True value of the response coefficient β(x = 0.5) = 0.6667.

Table 1
Linear Quadratic Nonparametric IT

β(x) = ∂y
∂x 0.6288 0.6296 0.6468 0.6550

(0.0276) (0.0263) (0.0904) (0.0268)
Bias 0.0379 0.0371 0.0199 0.0117

RMSE 0.0469 0.0455 0.0926 0.0292

The biases for nonparametric kernel and IT estimators are smaller than those under linear
and quadratic approximations. However, nonparametric estimation yields a larger RMSE
compared with the three other methods. Even though nonparametric and IT estimations
both have the advantage of avoiding the difficulties associated with the functional forms,
results have indicated that the IT method outperforms the nonparametric method. This may
be because the rate of convergence for MSE to zero for the IT estimator is n−1 whereas that
of nonparametric kernel estimator is known to be (nb)−1 where b is small (Li and Racine
(2007)).

4. Asymptotic Properties of IT Estimators

First, we define

Zi
14×1

=
(
yi, xi, y

2
i , x

2
i , y

3
i , x

3
i , y

4
i , x

4
i , yixi, yix

2
i , y

2
i xi, yix

3
i , y

3
i xi, y

2
i x

2
i

)T
, (20)

µ̂
14×1

= (µ̂10, µ̂01, µ̂20, µ̂02, µ̂30, µ̂03, µ̂40, µ̂04, µ̂11, µ̂12, µ̂21, µ̂13, µ̂31, µ̂22)
T ,

µ
14×1

= (µ10, µ01, µ20, µ02, µ30, µ03, µ40, µ04, µ11, µ12, µ21, µ13, µ31, µ22)
T ,

where µ̂m1m2 = 1
n

n∑
i=1

ym1
i xm2

i , µm1m2 = E (ym1
i xm2

i ), m1,m2 = 0, 1, 2, 3, 4 and 1 ≤

m1+m2 ≤ 4, and all the bold letters represent vectors. Suppose the following assumptions
hold.
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1. Zi, i = 1, . . . ,n are independent and identically distributed from (µ,Σ) .

2. Σ = COV(Zi) is assumed to be positive semi-definite, where the diagonals of Σ are

Var (ym1
i xm2

i ) = µ(2m1)(2m2) − µ
2
m1m2

,

and the off-diagonals of Σ are

Cov
(
ym1
i xm2

i , y
m∗1
i x

m∗2
i

)
= µ(m1+m∗1)(m2+m∗2)

− µm1m2µm∗1m∗2 .

3. µ(m1+m∗1)(m2+m∗2)
< ∞, ∀m1,m2,m

∗
1,m

∗
2 = 0, 1, 2, 3, 4, m1 + m2 ≤ 4,m∗1 +

m∗2 ≤ 4.

Now we present the following proposition.

Proposition 1. Under assumptions 1 to 3, as n goes to∞,
√
n (µ̂− µ) ∼ N (0,Σ) . (21)

Now, suppose the unique solution for each Lagrange multiplier exists. Then from (8),
the vector λ = (λ10, λ01, λ20, λ02, λ30, λ03, λ40, λ04, λ11, λ12, λ21, λ13, λ31, λ22)

T can be
expressed as a function of µ, i.e.

λ = g (µ) and λ̂ = g (µ̂) . (22)

Since from Proposition 1,
√
n (µ̂− µ) ∼ N (0,Σ) as n→∞, it follows that

√
n
(
λ̂− λ

)
∼ N

(
0, g(1) (µ) Σg(1) (µ)T

)
as n −→∞, (23)

where g(1) (µ) = ∂g(µ)
∂µT is the first derivative of g (µ) with respect to µ.

Using the results in Proposition 1 and (23),
√
n
(
λ̂∗− λ∗

)
follows

N
(
0, g∗(1) (µ) Σg∗(1) (µ)T

)
as n −→ ∞, where λ∗ = g∗ (µ) and g∗(1) (µ) = ∂g∗(µ)

∂µT .

We get the following proposition for m̂ (x) and β̂ (x) .

Proposition 2. Under assumptions 1 to 3 and (23), the asymptotic distributions of m̂ (x) =

m
(
x, λ̂∗

)
and β̂ (x) = β

(
x, λ̂∗

)
are given as n→∞,

√
n
(
m
(
x, λ̂∗

)
−m (x,λ∗)

)
∼ N

(
0,m(1) (x,λ∗) g∗(1) (µ) Σg∗(1) (µ)T m(1) (x,λ∗)T

)
,

(24)
where m(1) (x,λ∗) = ∂m(x,λ∗)

∂λ∗T
is the first derivative of m (x,λ∗) with respect to λ∗. And

√
n
(
β
(
x, λ̂∗

)
− β (x,λ∗)

)
∼ N

(
0, β(1) (x,λ∗) g∗(1) (µ) Σg∗(1) (µ)T β(1) (x,λ∗)T

)
,

(25)
where β(1) (x,λ∗) = ∂β(x,λ∗)

∂λ∗T
is the first derivative of β (x,λ∗) with respect to λ∗.

Also, we note that the convergence rates of m
(
x, λ̂∗

)
and β

(
x, λ̂∗

)
are each

√
n.
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5. Conclusions

In this paper, we estimate regression and response through Shannon’s entropy. The ad-
vantages of using IT method over parametric specifications and nonparametric kernel ap-
proaches have been explained by the simulation example. It can be a useful tool for practi-
tioners due to its simplicity and efficiency. Asymptotic properties are established. The IT
based estimators are shown to be

√
n consistent and normal. Thus, it has a faster rate of

convergence compared to the nonparametric kernel procedures. We feel the IT approach
for specifying regression and response functions considered here may open a new path to
address specification and other related issues in econometrics with many applications.
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