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Abstract 

Ng and Hshieh (2016) proposed graphical approaches using scatter plot, Bland-Altman 
plot and Q-Q plot to assess (i) individual bioequivalence of a generic drug and (ii) 
interchangeability of a proposed biosimilar product to a reference product. In this paper, 
concordance correlation coefficient (Lin, 1989) is used instead of the plots. Simulated 
and real data are used to illustrate the new method. 
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Introduction 
 
Traditionally, the assessment of agreement between two methods of measurement had 
been done by several statistical methods such as correlation, regression and paired t-test. 
Altman and Bland (1983) criticized the use of these statistical methods and proposed to 
plot the difference between the two methods against the average (Bland-Altman plot). 
Two other useful tools are scatter plot and Q-Q plot. 
 
Hshieh and Ng (2015) proposed a new “procedure” in assessing the agreement of a new 
method to an old method using three graphical approaches: scatter plot, Bland-Altman 
plot and Q-Q plot. In this procedure, subjects are measured twice using the Old method 
(Old1, Old2) and once using the New method (New). In each graphical approach, the plot 
of Old1 vs. Old2 is used as a norm in which the plots of New vs. Old1 and New vs. Old2 
can be compared with. If the new method is just like the old method, then the plots of 
New vs. Old1 and New vs. Old2 should each appear similar to the plots of Old1 vs. Old2.  
 

Is the New method/product as good as the Old? 
 
Figure 1 shows the use of this graphical approach using two simulated data sets to answer 
the following question: Is the New method/product as good as the Old? For the first data 
set (see the upper panel), the answer is yes. For the second data set (see the lower panel), 
the answer is no because there is a higher variability of the Old than the New, although 
there is no systematic bias. 
 
 
 
 
* The views expressed in this paper are those of the author and do not necessarily reflect the perspective of 
the U.S. Food and Drug Administration. 
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Figure 1. Example: Scatter plot (simulated data) 

 
 

Can we switch from Reference to Test? 
 
Ng and Hshieh (2016) used similar approaches to assess (i) individual bioequivalence of 
a generic drug and (ii) interchangeability of a proposed biosimilar product to a Reference. 
Here, the Reference corresponds to the Old method and the generic drug (or the proposed 
biosimilar product) corresponds to the New method. They proposed the 2-sequence 3-
period crossover design to assess switching from Reference (R) to Test (T) (see Table 1). 
The plots of R2 vs. R1 (or Old2 vs. Old1) is used as a norm. The plots of T vs. R1 (or New 
vs. Old1) is to compare with the norm.  
 
For illustration purposes, Ng and Hshieh (2016) extracted the data (Log-transformed 
AUC and Cmax) from a bioequivalence study with 2-sequence 4-period crossover design 
(see Table 2) and the plots are shown in Figure 2. Visually, the two plots for each of the 
three types of plots look similar for Log(AUC) (see Figure 2a) but not for Cmax (see 
Figure 2b). 
 

Table 1. Study Design 

 
R1, R2: Reference; T: Test 
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Table 2. Data Extraction 

 
R1, R2: Reference; T: Test 

 

Figure 2. Switching from Reference to Test  

(a) Log-transformed AUC 

 
(b) Cmax 

 
 
 

A New Look 
 

Although the graphic is a useful tool, it is very subjective. To overcome this deficiency, 
use Concordance Correlation Coefficient (CCC, Lin, 1989) instead of the plots. To do so, 
let  

CCC(R2R1) denotes the CCC between R2 and R1, and  
CCC(TR1) denotes the CCC between T and R1.  

If T is just “like” R (or R2), then CCC(TR1) should be close to CCC(R2R1), where 
CCC(R2R1) is used as a norm. A test statistic 

S = log10[CCC(TR1)/CCC(R2R1)]  

may be used to test the null hypothesis that 
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H0: T is just “like” R,  

against the alternative hypothesis that 

H1: T is different from R. 

Derivation of the null distribution may be very complicated. Therefore, a permutation test 
is proposed instead. To do so, we determine the distribution of S under 2n permutations of 
each pair of (R2, T), where n is the sample size. The p-value is then calculated as  

p-value = (number of permutations such that S is as extreme as s, the observed 
value of S)/2n. 

The null hypothesis will be rejected if p-value is less than 0.05. A simulated data and real 
data are used to illustrate this method. 
 
Note that one cannot conclude agreement (or equivalence) when we fail to reject H0. It is 
being discussed here as a work in progress toward developing the equivalence testing that 
would be appropriate (see the last section). 
 

Simulated Data 
 
The data is simulated using a simple measurement error model with k raters or methods 
of measurement:   

Yij = Xi + ij, i = 1, …, n; j = 1, …, k, 
where  

n: the sample size 
k: the number of raters or methods of measurement 
Xi: unknown characteristic of ith subject randomly selected from a population. 
Yij: Measurement of the ith subject by jth rater, 
ij: Measurement error of the ith subject by jth rater, 
 

For each i, Xi is assumed to be normally distributed with mean µ and variance 2. For 
each i and j, the measurement error ij is assumed to be normally distributed with mean µj 
and variance j

2, where µj where is the systematic bias for the jth rater. Finally, Xi and ij 
are assumed to be mutually independent. 
 
With k = 3 and a different notation for Y, a data set is simulated as follows: 

X: x1, …, xn ~ N(µ, 2); n = 20, µ = 13,  =1.5, 
R1: r1i = xi + 1i, 1i ~ N(0,1), i = 1,…, n, 
R2: r2i = xi + 2i, 2i ~ N(0,1), i = 1,…, n, 
T: ti = xi + ti, ti ~ N(µt, t

2), i = 1,…, n, 

where x’s and ’s are mutually independent. There are two scenarios for T: 

(a) Under H0: µt = 0, t
2 = 1 

(b) Under H1: µt = 1, t
2 = 4 

Scenario (a) is under the null hypothesis that T is just “like” R and Scenario (b) is under 
the alternative hypothesis that T is different from R with a systematic bias and higher 
variability. The permutation distributions (220 = 1,048,576 permutations) of S, together 
with the observed s and p-value, under scenarios (a) and (b) are given in Figures 3a and 
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3b, respectively. So, we fail to reject the null hypothesis under scenario (a) (p = 0.89), 
while the null hypothesis is rejected under scenario (b) (p = 0.0094). 
  

Figure 3. Permutation Distribution of S 

(a) Under the Null Hypothesis: s = -0.002237, p = 0.89  
 

 
 
 
(b)  Under the Alternative Hypothesis: s = 0.1097, p = 0.0094 
 

 
 

 

An application to a Bioequivalence Study  

The new method is applied to a data set extracted from a bioequivalence study (see Table 
2). The sample size is 47. The number of all possible permutations is huge (over 140 
trillion). So, in this application, 100,000 permutations are randomly selected.  The 
simulated permutation distributions (100,000 permutations) of S, together with the 
observed s and p-value, based on log10(AUC) and Cmax are given in Figures 4a and 5b, 
respectively. We fail to reject the null hypothesis for both variables (p > 0.05). 
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Figure 4a. Permutation Distribution of S: Log10(AUC) 

s = 0.017; p = 0.33                   

 

Figure 4b. Permutation Distribution of S: Cmax 

s = 0.071; p = 0.39 

 

Discussion and Further Research 
 

Since failing to reject H0 does not mean ‘T is just “like” R’, the hypotheses are 
formulated as follows: 
 

H0*: T is different from R by a “lot”  
H1*: T is not too much different from R  

 
One needs to define “not too much different” in terms of mean difference and the ratio of 
the two standard deviations. To test H0*, construct the confidence region for these two 
parameters as 

 
{(m, v) | H0 is not rejected when T is transformed to v(T – m)}. 

 
We then reject H0* if the confidence region is within “not too much different”. 
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