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Abstract
A functional time series approach is proposed for investigating spatial correlation in daily maximum
temperature forecast errors for 111 cities spread across the U.S. The modelling of spatial correla-
tion is most fruitful for longer forecast horizons, and becomes less relevant as the forecast horizon
shrinks towards zero. For 6-day-ahead forecasts, the functional approach uncovers interpretable re-
gional spatial effects, and captures the higher variance observed in inland cities vs. coastal cities, as
well as the higher variance observed in mountain and midwest states. The functional approach also
naturally handles missing data through modelling a continuum, and can be implemented efficiently
by exploiting the sparsity induced by a B-spline basis.

The temporal dependence in the data is well-characterized by AR(1)-GARCH(1,1) processes with
Student-t innovations, which capture the persistence of basis coefficients over time and the seasonal
heteroskedasticity reflecting higher variance in winter. Through exploiting autocorrelation in the
basis coefficients, the functional time series approach also suggests a method for improving weather
forecasts and uncertainty quantification.
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1. Introduction

A functional time series is a time-indexed sequence of stochastic processes {ft(τ)}∞t=1

where each ft(·) is a random function on the domain U . By unifying functional data anal-
ysis with time series analysis, it presents an approach to modelling randomness on curves,
surfaces, and other phenomena varying over a spatial continuum where these functional
data are observed regularly over time and exhibit serial dependence. Ramsay & Silverman
(2005) and Tsay (2010) provide background for functional data analysis and time series
analysis respectively, while Hörmann & Kokoszka (2012) provides background for func-
tional time series. Aue et al. (2017) develops the theory for functional GARCH models.

In this application, the spatial domain U is a rectangle in R2 containing the range of lon-
gitudes and latitudes covering the lower 48 states. The data set is taken from the 2018
American Statistical Association Data Expo1, consisting of daily maximum temperature
forecasts from the National Weather Service for 111 cities spread across the US (excluding
Alaska and Hawaii) over the period from July 2014 to September 2017. The locations of
the cities are illustrated in Figure 1. Forecasts range from same-day to six-days-ahead and
are compared to actual temperature recorded at city airports.
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Figure 1: Locations of cities included in weather forecast data

A functional time series approach is applied to investigate and extract the structure of the
spatial correlation in forecast errors. Through modelling the entire continuum instead of
individual points, the proposed functional data approach also naturally handles missing
data. This is a vital benefit, as data records are frequently incomplete and forecasts are not
always available at every location.

2. Methodology

We first fix a forecast horizon h of interest, in this case between 0 to 6 days ahead. For the
given forecast horizon, let Yt(τ) be the forecast error of maximum temperature on day t
for the city located at spatial coordinates τ ≡ (longitude, latitude). Spatial correlation is
captured through the following spatio-temporal random effect model:

Yt(τ) = µ(τ) +
K∑
k=1

βktφk(τ) + εt(τ)

Here, µ(τ) represents the mean forecast error and is assumed fixed over time. Estimation of
the mean function is described in Section 2.1. The spatial basis functionsφ1(τ), . . . , φK(τ)
describe the main modes of variation in the forecast errors, capturing spatial dependence
across different regions of the US. The construction of the basis functions is described
in Section 2.1. The random coefficients βkt capture temporal correlation. They are mod-
elled using independent AR(1)-GARCH(1,1) processes, as described in Section 2.2. Lastly,
εt(τ) is a white noise process independent of the random coefficients, and is assumed i.i.d.
N(0, σ2) for all t and τ . It is used to capture, including any measurement errors, the re-
maining variation not explained by the spatio-temporal random effect.

Writing Φ(τ) = [φ1(τ) · · ·φK(τ)]T and βt = [β1t · · ·βKt]
T , this model implies the fol-

lowing spatio-temporal covariance function:

Cov(Yt(τ), Yt′(τ
′)) = Φ(τ)TE[βtβ

T
t′ ]Φ(τ

′) + σ21{t=t′,τ=τ ′}
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2.1 Constructing Spatial Basis Functions

The following procedure is employed for constructing the fixed spatial basis functions φk.
For simplicity, we consider the spatial domain as a subset of R2. Specifically, we define a 2-
D cubic B-spline basis over the rectangle [−124,−66]× [24, 49], which contains the range
of longitudes and latitudes covering the lower 48 states. The 2-D splines are built from
the tensor product of 1-D cubic B-splines on longitude and latitude individually. Refer to
Bartels et al. (1995) for further background.

For this particular dataset, knot sequences with 13 equally space interior knots captured
salient features without over- or under-smoothing. This results in 17 cubic B-splines in each
dimension, and 289 2-D splines in the resulting tensor product, denoted by S1(τ), . . . , S289(τ).

KLon = [−124,−124,−124,−124,−119.86,−115.71, . . . ,−66,−66,−66,−66],

KLat = [24, 24, 24, 24, 25.79, 27.57, . . . , 49, 49, 49, 49], and S1(lon, lat)
...

S289(lon, lat)

 =

B1,KLon(lon)
...

B17,KLon(lon)

⊗

B1,KLat(lat)
...

B17,KLat(lat)

 .
For each day t, we fit splines such that the coefficients ĉt,1, . . . , ĉt,289 solve the following
optimization problem:

min
ct,1,...,ct,289

nt∑
i=1

Yt(τt,i)− 289∑
j=1

ct,jSj(τt,i)

2

,

where τt,1, . . . , τt,nt are the observation locations available on day t. This handles (moder-
ate amounts of) missing data naturally since missing observations Yt(τ) are simply omitted
from the objective function. Also, since B-splines have compact support, the resulting
system is sparse and can be solved efficiently.

We denote the resulting coefficient matrix by C = [ĉt,j ]. We use the column means C̄ =[
c̄1, . . . , c̄289

]
to estimate the mean function µ(τ) as:

µ̂(τ) = ¯̄Y +

289∑
j=1

c̄jSj(τ)

where ¯̄Y = 1∑T
t=1 nt

∑T
t=1

∑nt
i=1 Yt(τt,i) is the sample mean of all observed forecast errors.

After mean-centering the columns ofC, the singular value decompositionC−C̄ = UΣV T

provides principal component loadings as the columns of V , allowing for dimension reduc-
tion that is mean-square optimal in the coefficient space Col(C − C̄). Assuming the SVD
is written in descending order of singular values, the spatial basis functions φk(τ) are built
using the first K columns of V , representing the K most important principal components.

φk(τ) =

289∑
j=1

VjkSj(τ) for k = 1, . . . ,K ≪ 289.
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Figure 2: First 4 basis functions for 6-day-ahead maximum temperature forecasts

The first four basis functions are shown in Figure 2 for the 6-day-ahead forecast horizon.
The first basis function represents an inland vs. coastal effect, as cities further inland had
greater variance in their forecast errors compared to coastal cities. The second basis func-
tion represents an east vs. west effect, with the opposing signs of the regions allowing for a
differentiation between the regions. The third and fourth basis functions represent mountain
state and midwest state effects respectively, as these regions have the most unpredictable
weather.

This structure of spatial correlation is most prevalent in 6-day-ahead forecasts, but van-
ishes as the forecast horizon shrinks to zero. For example, Figure 3 shows the first four
basis functions for same-day forecasts, and these basis functions lack any coherent spatial
structure.
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Figure 3: First 4 basis functions for same-day (0-day-ahead) maximum tempera-
ture forecasts

2.2 Modelling Random Coefficients

Once the spatial basis functions are defined as above, coefficients β1t, . . . , βKt for each
day t are estimated on this reduced K-dimensional basis as solutions to the following opti-
mization problem:

min
β1t,...,βKt

nt∑
i=1

[
Yt(τt,i)− µ̂(τt,i)−

K∑
k=1

βktφk(τt,i)

]2

.

Temporal dependence in forecast errors is then modelled through these coefficients. Em-
pirically, an AR(1)-GARCH(1,1) model with Student-t innovations was found to provide a
good description of the observed coefficients. Specifically,

βkt = ψkβk,t−1 + ukt, ukt|Ft−1 ∼ tνk(0, η
2
kt)

η2kt = ωk + αku
2
k,t−1 + γkη

2
k,t−1

where Ft−1 is the information set up to time t−1 (the σ-field generated by uk,t−1, uk,t−2, . . .
for all k). u1t, . . . , uKt are assumed conditionally independent given Ft−1.

The resulting innovations for the first basis function u1t are shown in Figure 4 on the top
left. Notably, the innovations exhibit a seasonal heteroskedasticity with winter weather
being the most unpredictable. The GARCH process characterizes the heteroskedasticity
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well, as the standardized innovations u1t/η1t exhibit approximately constant variance, and
the squared standardized innovations show no significant autocorrelation.

Figure 4: Estimated innovations u1t (top left) and standardized innovations u1t/η1t
(top right) for basis function 1 at forecast horizon 6-days-ahead, and their respective
sample autocorrelation functions (bottom, left and right respectively). Approximate
95% pointwise confidence intervals are drawn as horizontal lines in the autocorre-
lation plots.

For the 6-day-ahead weather forecasts, the AR-GARCH parameter estimates for the first
four basis functions are shown in Table 1 below. All fitted models were stationary with
similar amounts of autocorrelation based on the similar values of ψk. Furthermore, all
exhibit a high persistence in variance, indicated by the large values of γk. The earlier basis
functions had conditional distributions with heavier tails, indicated by lower values of νk.
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Table 1: AR(1)-GARCH(1,1) parameter estimates for first four basis functions for
6-day-ahead forecasts

Basis Function 1 ψ1 ω1 α1 γ1 ν1
Estimate 0.65 13.50 0.09 0.89 8.33
Approx. Std. Error 0.02 6.91 0.02 0.02 2.05
t-ratio 26.91 1.95 4.25 37.14 4.06
p-value <0.0001 0.0507 <0.0001 <0.0001 <0.0001

Basis Function 2 ψ2 ω2 α2 γ2 ν2
Estimate 0.57 18.67 0.05 0.92 10.90
Approx. Std. Error 0.03 11.43 0.02 0.03 3.95
t-ratio 21.08 1.63 3.00 34.18 2.76
p-value <0.0001 0.1024 0.0027 <0.0001 0.0057

Basis Function 3 ψ3 ω3 α3 γ3 ν3
Estimate 0.53 7.11 0.03 0.96 13.31
Approx. Std. Error 0.03 6.46 0.01 0.02 4.87
t-ratio 19.95 1.10 2.32 47.14 2.73
p-value <0.0001 0.2709 0.0203 <0.0001 0.0063

Basis Function 4 ψ4 ω4 α4 γ4 ν4
Estimate 0.57 13.01 0.06 0.91 14.75
Approx. Std. Error 0.03 7.56 0.02 0.03 6.97
t-ratio 21.21 1.72 3.50 31.04 2.11
p-value <0.0001 0.0853 0.0005 <0.0001 0.0344

3. Empirical Performance

For each pair of cities (i, j), sample correlations for the 6-day-ahead forecasts is computed
before and after accounting for the spatial basis functions. More specifically, given a pair
of cities located at τi and τj , the top of Figure 5 shows

ρbefore
i,j =

∑
t[Yt(τi)− Ȳ·(τi)][Yt(τj)− Ȳ·(τj)]√∑

t[Yt(τi)− Ȳ·(τi)]2
∑

t[Yt(τj)− Ȳ·(τj)]2
,

and the bottom of Figure 5 shows

ρafter
i,j =

∑
t[ε̂t(τi)− ¯̂ε·(τi)][ε̂t(τj)− ¯̂ε·(τj)]√∑

t[ε̂t(τi)− ¯̂ε·(τi)]2
∑

t[ε̂t(τj)− ¯̂ε·(τj)]2
,

for the residuals ε̂t(τ) = Yt(τ) − µ̂(τ) −
∑K

k=1 βktφk(τ). Above, the sums are over the
days t with no missing observations, and Ȳ·(τi) and ¯̂ε·(τi) are sample averages of Yt(τi)
and ε̂t(τ) respectively over such t.

The cities are numbered from 1 to 111 (shown on the x- and y-axes), and cities are ordered
from east to west, resulting in a concentration of high correlation along the main diagonal
in the first figure. After accounting for K = 20 spatial basis functions, the second fig-
ure indicates the lack of spatial correlation in the residuals and provides evidence that the
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proposed model provides an adequate approximation of the observed spatial correlation in
forecast errors.

Figure 5: Spatial correlation in 6-day-ahead forecast errors for before (top) and
after (bottom) accounting for basis functions

3.1 Predicting Forecast Errors to Improve Forecast Accuracy

The AR-GARCH parameter estimates can be used to predict the next day’s basis coeffi-
cients, as

βk,T+1|FT ∼ tνk(ψkβkT , η
2
k,T+1), and

η2k,T+1 = ωk + αku
2
kT + γkη

2
kT .

Substituting the parameter estimates ψ̂k, ω̂k, α̂k, γ̂k, and ν̂k in place of the true parame-
ters yields an approximate distribution which can be used for prediction and uncertainty
quantification.
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Setting the predicted coefficient to β̂k,T+1 = ψ̂kβkT , this can then be used to predict next
day’s weather forecast errors by setting

ŶT+1(τ) = µ̂(τ) +
K∑
k=1

β̂k,T+1φk(τ)

These predicted errors can then be used to adjust the next day’s weather forecast (of the
same horizon) accordingly.

4. Conclusions

We have introduced a functional time series approach to investigating spatial correlation
in weather forecast accuracy. The modelling of spatial correlation is most fruitful for the
longer forecast horizons, and becomes less relevant as the forecast horizon shrinks towards
zero. For 6-day-ahead weather forecasts, the functional approach uncovers interpretable re-
gional spatial effects, and captures the higher variance observed in inland cities vs. coastal
cities, as well as the higher variance observed in mountain and midwest states. The func-
tional approach also naturally handles missing data and can be implemented efficiently by
exploiting the sparsity induced by using a B-spline basis.

The observed temporal dependence in the data is well-characterized by an AR(1)-GARCH(1,1)
process with Student-t innovations, as the model captures the persistence of coefficients
over time and the seasonal heteroskedasticity reflecting higher variance in winter. Auto-
correlation in the basis coefficients can further be exploited to improve weather forecasts,
especially at longer horizons.
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