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Abstract
We focus on the modeling of the survival function based on some covariates under the assumption

of dependent censoring. In a lot of survival analysis, failure time is assumed to be independent with
censoring time, because its dependency is not identifiable without additional information. There-
fore, a sensitivity analysis for assessing the changes of estimates by the dependency is important
but the operation is slightly annoying and there is the difficulty to construct the stable model finally.
To address this problem, we propose a construction method of a survival tree under the dependency
between failure and censoring. To construct the model, we assume that the subjects included in
some node have the constant risks of the event and censoring. In addition to this, we assume that
the joint distribution of the failure and censoring which are given by a copula with an unknown
parameter. Then, we can estimate the parameters in the model by maximum likelihood method.
Using the estimated parameters, the node is splitting by the likelihood-based measure. We study the
performance of this method by simulation studies.
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1. Introduction

In this research, we treat the problem to how to construct the model for time-to-event data
considering the dependent censoring. Our goal is constructing the set of subgroups of co-
variate space where each element has the same failure model considering the dependency
of failure and censoring times. Since we need to construct a such model based on the para-
metric form from the identifiability problem of censoring, we use the copula to represent
the dependency between failure and censoring times. Under the assumption of the para-
metric models for failure and censoring times and copula function, which have unknown
parameters, we propose the method to construct the tree-structured model by using the test
statistics in CART algorithm. The performance for splitting rule by proposed method is
evaluated with the general method which assume the independent censoring through simu-
lation studies.

2. Method

2.1 Data and notations

Let U and C be the true failure and censoring time, respectively. Then, we can observe the
time X = min(U,C). Let δ = I(X = U) be the event indicator, which is 1 if the obser-
vation experiences an event and 0 if the observation is censored. Let Z = (Z1, · · · , Zq)
denote a q-dimentional covariate vector, and let the covariate space correspond to it be Z .
An observed data is represented by L = {(xi, δi, zi); i = 1, · · · , n}.

Let Si(u) = Pr(U > u|Z = zi) be the survival probability of the interest event for a
subject i with covariate values zi. Based on the tree-structured modeling, we consider to
construct the model

Si(u) = S(u;µk,ηk), zi ∈ tk,
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where tk ⊆ Z is an element of the partitions of covariate space (k = 1, 2, · · · ,K). µk

represents the p-dimensional interesting parameter vector such as the odds ratio or scale.
ηk represents the nuisance parameters. Our purpose is constructing the model that can
classify the interesting parameters effectively. That is, we construct the model that satisfies
µ1 ̸= µ2 ̸= · · · ̸= µK .

One way to achieve this goal is to consider the likelihood. That is, for a limited value
of K, we search a model that maximizes the likelihood

L =
∏
k

∏
i∈tk

{Pr(U = xi, C > xi|Z = zi)}δi {Pr(U > xi, C = xi|Z = zi)}1−δi , (1)

where the subscript i ∈ tk represents the set of indicators of subjects that covariate values
are included in tk. Then, we search an optimal value of K based on some measure because
the value of this likelihood increases monotonically as the value of K increases.

In the case of non-informative censoring, that is independence between U and C given
Z = z are holds, the equation (1) becomes

L =
∏
k

∏
i∈tk

fi(xi)
δiSi(xi)

1−δigi(xi)
δiRi(xi)

1−δi ,

where fi(u) = − d
duSi(u), and Ri(c) = Pr(C > c|Z = zi) and gi(u) = − d

dcRi(c) are
functions which are not including µ1,µ2, · · · ,µK . Therefore, we need not to consider
the mechanism of the occurrence of censoring, which are not affect to the interesting pa-
rameters. On the other hand, if the censoring and failure times are dependent, we need to
construct a model with consideration for it. To do this, we assume the two-dimensional
copula between the distribution functions of U and C.

2.2 Copula assumption

We assume a one-parameter family of two-dimensional copula to represent the dependency
between failure and censoring times. A two-dimensional copula is a bivariate distribu-
tion function on [0, 1] × [0, 1] with one-dimensional marginal distributions. Let Fi(u) =
1 − Si(u) and Gi(c) = 1 − Ri(c) be the cumulative distribution functions of U and C
for a subject with covariate value zi, respectively. Then, we assume the joint cumulative
distribution function of U and C with covariate values zi is given by

Pr(U ≤ u,C ≤ c|Z = zi) = Hi{Fi(u), Gi(c);αi}, (2)

where Hi{·, ·;αi} is a two-dimensional copula function with a parameter αi which repre-
sents the degree of dependency.

There are a lot of copula is proposed by several authors. Here we introduce the two
copulas which are used in our simulation studies by referencing Huang and Zhang (2008).
The Clayton copula is given by

H{p1, p2;α} = p1 + p2 − 1 +
{
(1− p1)

− 1
α + (1− p2)

− 1
α
−1

}−α
, α > 0.

For this copula, the Kendall’s τ between p1 and p2 is given by τ = 1/(1 + 2α). The Frank
copula is given by

H{p1, p2;α} = − 1

α
log

{
1 +

(e−αp1 − 1)(e−αp2 − 1)

e−α − 1

}
, α ̸= 0.

The Kendall’s τ of this copula is given by τ = 1 + 4α−1{D1(α) − 1}, where D1(α) =
1
α

∫ α
0

t
et−1dt is the first order Debye function.

 
390



When the dependency between U and C is given by the equation (2), the contribution
of a subject who experience the event to the likelihood becomes

Pr(U = xi, C > xi|Z = zi) = − ∂

∂u
Pr(U > u,C > xi|Z = zi)

∣∣∣∣
u=xi

= − ∂

∂u
[1− Fi(u)−Gi(xi) +Hi{Fi(u), Gi(xi);αi}]

∣∣∣∣
u=xi

= fi(xi)−
∂

∂u
Hi{Fi(u), Gi(xi);αi}

∣∣∣∣
u=xi

. (3)

By the same calculation, the contribution of a censored subject to the likelihood becomes

Pr(U > xi, C = xi|Z = zi) = gi(xi)−
∂

∂c
Hi{Fi(xi), Gi(c);αi}

∣∣∣∣
c=xi

. (4)

To restrict the number of parameters included in the model, we add the several as-
sumptions. For the copula, we assume the common function form for all individuals with
dependency parameters that can be differ between t1, t2, · · · , tK . That is,

Hi{p1, p2;αi} = H{p1, p2;αk}, zi ∈ tk.

In addition to this, we restrict the model of censoring in tk has the same parameter values:

Ri(c) = R(c;θk), zi ∈ tk.

Therefore, the failure and censoring models and these dependency of subjects included in
a same subgroup becomes have the same model. Under this assumption, we will consider
to construct a model based on the CART algorithm.

2.3 Construction of a survival tree

We define a tree-structured model as T . The tree-structured model is consisted by the
splitting rules of the covariate space and the nodes which are subsets of the resulting spaces.
We denote a node in tree T as t.

In this research, since we want to construct the model which has the different interesting
parameters µ1,µ2, · · · ,µK in each subset of the covariate space, it is natural to use a
measure representing the effectiveness of µ in the model fitted by the splitting t as the
degree of improvement. From the equation (1), (3) and (4), the likelihood of the T is given
by

L =
∏
t∈T̃

∏
i∈t

[
f(xi|µt,ηt)−

∂

∂u
H{F (u|µt,ηt), G(xi|θt);αt}

∣∣∣∣
u=xi

]δi

×

[
g(xi|θt)−

∂

∂c
H{F (xi|µt,ηt), G(c|θt);αt}

∣∣∣∣
c=xi

]1−δi

,

where T̃ represents the set of terminal nodes that are exist in the bottom layer of the tree
T . Therefore, the contribution of the data included in a terminal node t to the likelihood is
represented as

Lt =
∏
i∈t

[
f(xi|µt,ηt)−

∂

∂u
H{F (u|µt,ηt), G(xi|θt);αt}

∣∣∣∣
u=xi

]δi

×

[
g(xi|θt)−

∂

∂c
H{F (xi|µt,ηt), G(c|θt);αt}

∣∣∣∣
c=xi

]1−δi

. (5)
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From this, the MLE (µ̂t, η̂t, θ̂t, α̂t) are obtained as the values that maximizes the equation
(5). When the node t is devided by a splitting rule, the Lt is represented as

Lt = LtL(µtL ,ηtL ,θtL , αtL)× LtR(µtR ,ηtR ,θtR , αtR) (6)

Therefore, the MLE (µ̂tL , η̂tL , θ̂tL , α̂tL) and (µ̂tR , η̂tR , θ̂tR , α̂tR) are given as the values
that maximizes the equation LtL and LtR , respectively.

Then, we can calculate the test statistics of the composite null hypothesis H0 : µtL =
µtR as the improvement measure of splitting based on the MLE and equation (6). For
example, we can construct the likelihood ratio test statistics as

G(t) = −2
[{

logLtL(µ̂t0, η̂tL0, θ̂tL0, α̂tL0) + logLtR(µ̂t0, η̂tR0, θ̂tR0, α̂tR0)
}

−
{
logLtL(µ̂tL , η̂tL , θ̂tL , α̂tL) + logLtR(µ̂tR , η̂tR , θ̂tR , α̂tR)

}]
,

where the subscript 0 means the MLE obtained under the H0. As the same, we can consider
the Wald or Score test statistics as the measure. Under the null hypothesis, these statistics
approximately χ2

p distributed.
After obtaining the maximum-size tree T0 by recursively splitting in the splitting step,

an optimal-size tree is constructed from the T0 in the pruning and selection steps. The
detail of the pruning and selection steps can be found in Leblanc and Crowley (1993) and
Breiman et al. (1984).

3. Simulation Studies

We present simple simulation studies to examine the properties of the proposed approach in
several situations. The purpose of these simulations is to compare the performances of two
splitting criteria Gs(t) and Gc(t) proposed in this research and a criterion which assume the
independent censoring. If the marginal density of the failure time of the subjects included
in a node t is assumed to be followed a exponential distribution with parameter mut, and it
assumed to be independent with censoring time, then the contiribution of the data included
in the node to the likelihood is given by

L∗
t (µt) =

∏
i∈t

µδi
t exp(−µtxi).

Then, the likelihood ratio test statistics of the hypothesis H0 : µtL = µtR is ginven by

G∗(t) = −2 [logLt(µ̂t)− {logLtL(µ̂tL) + logLtR(µ̂tR)}] ,

where µ̂t =
∑

i∈t δi/
∑

i∈t xi. The splitting rules construct by this criterion are equivalent
to those using the exponential log-likelihood loss function which was used by Davis and
Anderson (1989) for building the survival trees.

To compare the performance of a tree obtained by using each criterion in terms of es-
timated parameter values of µ, we used the following model to generate data. There were
five categorical covariates zi1, zi2, · · · , zi5 are generated from a discrete uniform distribu-
tion with {1, 2, 3, 4}. The model has four splitting points and five terminal nodes (t1 − t5)
which are given by

T̃ =


t1 (Z1 ∈ {1, 2} ∩ Z2 ∈ {1, 2})
t2 (Z1 ∈ {1, 2} ∩ Z2 ∈ {3, 4} ∩ Z3 ∈ {1, 2})
t3 (Z1 ∈ {1, 2} ∩ Z2 ∈ {3, 4} ∩ Z3 ∈ {3, 4})
t4 (Z1 ∈ {3, 4} ∩ Z3 ∈ {1, 2})
t5 (Z1 ∈ {3, 4} ∩ Z3 ∈ {3, 4})

.
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Table 1: The average and standard deviation of the absolute predection error of µ, tree size
and depth by 500 iterations for the tree simulation.

n criterion PE(µ̂) (std.) tree size (std.) tree depth (std.)
1,000 Gs(t) 0.26 (0.09) 1.9 (0.8) 0.8 (0.7)

Gc(t) 0.17 (0.04) 3.1 (0.5) 1.9 (0.4)
G∗(t) 0.36 (0.03) 11.7 (1.8) 3.9 (0.4)

2,000 Gs(t) 0.20 (0.05) 2.1 (0.6) 1.1 (0.5)
Gc(t) 0.13 (0.03) 3.5 (0.6) 2.1 (0.3)
G∗(t) 0.35 (0.02) 23.3 (1.5) 5.0 (0.1)

The Z4 and Z5 are nuisance. Then in the each child node, the exponential models with
parameter µt and θt = 1 are specified as the marginal distribution of failure and censoring
times, respectively. The true values of µt in each terminal nodes are follows: µt1 = 0.5,
µt2 = 0.8, µt3 = 1, µt4 = 1.2, and µt5 = 1.5. The dependency between U and C is given
by Clayton copula with parameter αt = 0.5 (Kendall’s τ = 0.5). The sample size n was set
to 1000 and 2000. Simulation are repeated 500 times in every setting. On average, about
50% of the data experience the event.

The number of bootstra sample in pruning step is set to B = 50 because there was little
difference in size of the trees selected for B ≥ 25 in the simulation of split-complexity
measure (Leblanc and Crowley (1993)). The value of γc is set to 4 for G∗(t) and Gs(t),
and 8 (χ2

3,0.05 ≈ 8) for Gc(t). The absolute prediction error of µ was used to compare the
splitting criteria:

PE(µ̂) =
1

n

√∑
i

(µ̂i − µi)2,

where µ̂i is the estimated constant hazard of the marginal survival function for the subject
i by the obtained tree-stractured model, and µi is the true value for i.

The results are presented in Table 1. In the table, tree size represents the number of
terminal nodes in the tree. Tree depth is the number of nodes along the path from root node
down to the farthest terminal node.

As expected from the results of splitting simulation, the trees obtained by Gc(t) have
high performance for PE(µ̂) although it tend to return slightly conservative trees. Al-
though the Gs(t) has higher performance than G∗(t), almost all nodes in the tree obtained
by Gs(t) tend to be pruned. The reason is considered that because a lot of splitting rules
obtained by splitting step are not near the true rule and have large variety, the penalty es-
timated by bootstrap becomes high, and as the result more simple tree is prefered in the
selection step. On the other hand, the trees obtained by G∗(t) are tend to become so huge.
As the reason of this, although the selected splitting rules are consideredrd to be near the
truly points from the splitting simulation, the selection step may not efficiently work if there
is dependency between failure and censoring. In addition to this, since the estimates of mu
has bias PE(µ̂) became large as the result.

For the purpose to check the effect of the setting of value of γc, we also simulated the
setting of γ = 2 for Gs(t) and G∗(t), and γc = 4 for Gc(t). The results are almost all same
as Table 1. Although the tree size and depth became slightly larger than the result of Table
1, there was no change within 2 decimal places for PE(µ̂).
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