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Abstract
Latent Markov models (LMMs) are commonly used to analyze longitudinal data from multiple

diagnostic tests. LMMs consist of a structural model for the latent infection state, defining prob-
abilities for the initial state and transmission between states, and a measurement model for the
observed test results, defining the item response probabilities and thus test sensitivities and speci-
ficities. LMMs typically assume that tests are independent conditional on the latent infection state.
This is likely to be violated for tests using similar technologies. We introduce random effects to re-
lax the conditional independence assumption and we derive a generalization of the basic LMM for
an application to Salmonella infection data. We analyze longitudinal data from four molecular PCR
tests and a stool culture test from patients in Blantyre, Malawi. To assess the tests’ performances,
we consider basic and mixed LMMs, both with time homogeneous and heterogeneous transition
probabilities. We compare the different models and discuss technical considerations. A PCR assay
using primers from the TTR gene achieves the best sensitivity / specificity trade-off.

Key Words: latent Markov model, latent variable model, mixed model, random effects, Bayesian
modelling, Salmonella

1. Introduction

Latent variable models represent a large class of statistical models. As the name suggests
they involve an unobserved (possibly unobservable) variable that the model tries to infer
from the observed data. Such models can be very useful in the context of medical diagnostic
tests. Latent Class Analysis (LCA; Lazarsfeld and Henry, 1968), a type of mixture model,
has been widely used to estimate sensitivities and specifities of multiple diagnostic tests in
situations where there is no perfect / gold standard reference test (Pan-ngum et al., 2013;
van Smeden et al., 2014). Latent Markov models (LMMs; Bartolucci et al., 2013) represent
an extension of LCA to longitudinal data. LMMs consist of a structural model, describing
the states of the unobserved variable and the transitions between them, and a measurement
model, describing the conditional distributions of the observed outcome variables. Figure 1
shows a representation of a basic LMM.

In addition to a first-order Markov assumption on the latent state (the distribution of the
state at time t is completely specified by knowing the state at time t− 1), a key assumption
made by LMMs, and shared with LCA, is that, conditional on the unobserved state, the
outcome variables are independent.

The models described later in this paper attempt to relax this conditional independence
assumption by introducing subject-level random effects.
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Figure 1: Graphical representation of the basic latent Markov model. Observed outcomes
Yk,t depend on latent states Lt. The model is completely specified by a set of initial state
probabilities π, a set of T − 1 transition probability matrices (M t, t = 1, . . . , T − 1) and
conditional response probabilities (Φ). Highlighted in orange are the components of the
structural model (π,M ) and in blue the components of the measurement model (Φ).

1.1 Notation

We will consider a dataset D to consist of observations {yt,i}i=1,...,n;t=1,...,T for n indi-
viduals observed at T . Each observation yt,i = (y1,t,i, . . . , yk,t,i)

T consists of responses
for K variables (k = 1, . . . ,K). We write lt,i for the latent state of the ith individual at
time t. For our application the outcome variables are binary, but they could be categorical
or continuous. Similarly, in our application the latent state variable is binary, but could
be categorical. We will use lower case letters for observed values, upper case letters for
random variables (i.e. Yk,t,i, Lt,i) and boldface for vectors or matrices.

2. Model

2.1 Basic latent Markov model

Figure 1 shows a graphical representation of the basic LMM. This model is completely
specified by the set of initial state π, state transition M t, t = 1, . . . , T and conditional
response probabilities Φk, k = 1, . . . ,K. For a binary latent state variable, the matrixM t

is the 2 × 2 matrix with transition probabilities from time t to time t + 1 between the two
states, t = 1, . . . , T − 1:

M t =

[
1− τ (t)0,1 τ

(t)
0,1

1− τ (t)1,1 τ
(t)
1,1

]
If M t = M1 = M , for all t = 1, . . . , T − 1, then the LMM is said to have time

homogeneous transition probabilities, otherwise the LMM is said to be time heterogenous.
For a time homogeneous LMM, we drop the superscript (t) on the τ (t)i,j . It also usually
makes sense, in the time homogeneous LMM, to set π to the stationary distribution implied
byM . In the binary case where π = (1− π1, π1)T , this is given by

π1 =
τ0,1

(1 + τ0,1 − τ1,1)

For binary outcome variables, the matrix Φ is the K × 2 matrix with the conditional
response probabilities (CRPs), i.e. the probabilities of the outcomes conditional on the
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latent state at time t:

Φ =

φT
1

. . .

φT
K

 =

φ1,0 φ1,1
. . .
φK,0 φK,1


Specifically, for a binary latent state and binary outcomes, the basic LMM is given by:

L1,i ∼ Bernoulli(π1)

Lt,i ∼ Bernoulli(τ (t−1)lt−1,i,1
), t = 2, . . . , T (1)

Yk,t,i ∼ Bernoulli(φk,lt,i), k = 1, . . . ,K, t = 1, . . . , T

where i = 1, . . . , n.
In the basic LMM, the K outcome variables Yk,t,i, for given t and i, are assumed

independent conditional on Lt,i, the latent state variable at time t. In other words:

P (Y t,i|Lt,i = lt,i) =
∏

k=1,...,K

P (Yk,t,i = 1|Lt,i = lt,i)

=
∏

k=1,...,K

φk,lt,i

This conditional independence assumption (CIA), is shared with LCA models and con-
siderably simplifies the expression for the likelihood of the LMM, see, e.g., Bartolucci et al.
(2013).

2.2 Mixed latent Markov model

There have been a number of extensions to the basic LMM. For instance, covariates can
be added to both the structural and measurement models (Bartolucci et al., 2013), and
mixed latent Markov models with random effects in the structural model have been de-
veloped (Altman, 2007; Bartolucci et al., 2013; de Haan-Rietdijk et al., 2017; Koukounari
et al., 2013b). There are a number of computational packages that can be used to fit LMMs,
e.g. the R package LMest(Bartolucci et al., 2017) or the general purpose latent variable
modelling software Mplus (Muthén and Muthén, 1998-2017). Overall LMMs remain quite
popular, in particular for medical diagnostic test applications (Koukounari et al., 2013a,b).

Here we take a slightly different approach to generalise the basic LMM - one which, al-
though described by some authors, has received less attention than the above extensions and
for which little model fitting software exists. Specifically, we are concerned with situations
where the CIA is unlikely to hold.

For example, the dataset we describe below has 5 outcome variables, each a different
diagnostic test for Salmonella. Four of these tests use the same molecular technology,
whereas the fifth is a stool culture based test (this is the reference diagnostic test, which,
while highly specific, is known to be of low sensitivity). Further, two pairs of the molecular
tests each share the same primers (DNA sequences that the tests detect). It seems unwise to
assume that the molecular tests are — even conditionally — as independent of each other
as they are compared to the stool culture test.

This example motivated us to introduce a subject-level random effect into the measure-
ment model to capture the extra dependencies between the outcome variables and thereby
relax the CIA. This is similar to Altman (2007), though the likelihood optimisation pro-
posed therein would be too cumbersome for the models discussed below. Instead, here we
adopt a Bayesian approach. Very similar models, also using a Bayesian approach, have
been described by de Haan-Rietdijk et al. (2017), but the authors in that paper did not
discuss the case where outcome variables share the same random effect to relax the CIA.
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In the basic LMM, the CRPs φk,lt,i are parameters that are directly estimated. To be
able to introduce a subject-specific random effect (or adjust for covariates, if available), we
follow Altman (2007) and model the logits of the CRPs instead through:

φk,lt,i,i =
exp(αk,lt,i + βk · Zi)

1 + exp(αk,lt,i + βk · Zi)
(2)

where Zi ∼ N (0, σ2) is a subject-specific random effect. To keep the model identifi-
able, σ2 is fixed to 1. From (2), it is clear that further random effects or covariates could
be trivially added into the measurement model by simply adding terms to the expression
αk,lt,i+βk ·Zi. Likewise, the structural model can be extended through a similar expression
for the transition probabilities (Altman, 2007; Bartolucci et al., 2013) and that extension is
commonly used (e.g. Koukounari et al., 2013b).

With the above random effect added into the measurement model, and the CIA relaxed,
we can now consider four models for the data described in the section 3. Table 1 lists the
four models and their characteristics. For most of this paper, we focus on the two time
homogeneous LMMs (models 1 and 3).

Table 1: Traditional and mixed latent Markov models for a binary latent state variable and
binary outcome variables. For the time homogeneous models, we assume the initial state
probabilities have been fixed to the stationary distribution.

model transition probabilities subject-level random effect # parameters
1 time homogeneous no 2 · (k + 1)
2 time heterogeneous no 2 · (k + T − 1) + 1
3 time homogeneous yes 3 · k + 2
4 time heterogeneous yes 3 · k + 2 · (T − 1) + 1

2.3 Implementation

Through the availability of R (R Core Team, 2018) and JAGS (Plummer, 2003, 2016),
implementing the above models is relatively straightforward and our implementation is
available from the first author’s website (Henrion, 2018a) and GitHub (Henrion, 2018b).

2.3.1 Prior distributions

We used non-informative priors for all parameters. Specifically, for all probability param-
eters we used a beta(0.5,0.5) prior distribution (i.e. the Jeffrey’s prior) and for the intercept
and slope coefficients from (2) we used a Cauchy(0,10000) distribution.

3. Data

We evaluated the LMMs on several simulated datasets as well as a Salmonella dataset from
Malawi. Table 2 summarises the different datasets we used and their characteristics.

3.1 Simulations

The simulations we ran are not meant to be a comprehensive evaluation of the LMMs
listed in Table 1, but rather a tool to identify any convergence or identifiability issues of the
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Table 2: Simulated and real datasets used in this paper.

dataset n T k CIA transition probabilities
Sim1 75 8 5 cond. independent time homogeneous
Sim2 75 8 5 cond. dependent time homogeneous

Salmonella data 60 13 5 likely cond. dependent likely time heterogeneous

models and to get a feel for how the basic and mixed LMMs compare in different scenarios.
We focus only on the time homogeneous case. We will perform a fuller set of simulations
in future work.

We generated two datasets, one (Sim1) for which the outcome variables are indepencent
conditionally on the underlying latent state and another (Sim2) for which this conditional
independence does not hold. Both datasets were simulated using the model desribed by (1)
with φk,lt,i raplaced with φk,lt,i,i for Sim2. Table 3 lists the parameter values used to gen-
erate the simulate data.

Table 3: Parameter values used to generate the simulated datasets. π1 was not chosen, but
computed to be the stationary distribution probability implied by τ0,1 and τ1,1.

Parameter Sim1 Sim2
π1 0.11 0.11
τ0,1 0.1 0.1
τ1,1 0.2 0.2

α1,0, α1,1, β1 ln 0.02
1−0.02 , ln 0.6

1−0.6 , 0 ln 0.02
1−0.02 , ln 0.6

1−0.6 , 0

α2,0, α2,1, β2 ln 0.05
1−0.05 , ln 0.95

1−0.95 , 0 ln 0.05
1−0.05 , ln 0.95

1−0.95 , 1.5

α3,0, α3,1, β3 ln 0.1
1−0.1 , ln 0.9

1−0.9 , 0 ln 0.1
1−0.1 , ln 0.9

1−0.9 , 0.65

α4,0, α4,1, β4 ln 0.2
1−0.2 , ln 0.95

1−0.95 , 0 ln 0.2
1−0.2 , ln 0.95

1−0.95 , 1.75

α5,0, α5,1, β5 ln 0.05
1−0.05 , ln 0.75

1−0.75 , 0 ln 0.05
1−0.05 , ln 0.75

1−0.75 , −1

3.2 Malawi Salmonella dataset

We have described this dataset in detail elsewhere (Chirambo et al., 2018; Nyirenda, 2015).
In order to detect brief episodes of asymptomatic Salmonella stool carriage, monthly stool
samples were collected from a cohort of 60 healthy children, recruited at 6 months of age,
and followed up to 18 months of age. For the purpose of model fitting, this yielded data
on 421 stool samples in total. The monthly visit times were recorded and these range from
December 2013 to December 2014. For each child, the final dataset used for fitting the
LMMs contains between 3 and 11 recorded stool samples.

Note that by study design, each child should have had up to 13 stool samples taken.
Due to study withdrawals, not all children had in fact the full 13 stool samples taken and for
some stool samples no data was available for analysis. This means that, unlike the simulated
datasets, the Salmonella dataset contains a high proportion of missing values compared to
the theoretical maximum number of participant-visit data points: n ·T = 60 · 13 = 780 but
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data was available for only 421 stool samples, which translates to 46% missing values. For
every recorded participant-visit sample, data from all 5 tests were available.

Five methods for Salmonella detection in stool samples were used: stool culture, real
time polymerase chain reaction (RT-PCR) using TTR and InvA primers tested as single
PCR assay (TTR and InvA) or as part of Taqman Array Card assay (TTR-TAC and InvA-
TAC). Stool culture was done on neat stool samples on the day of collection. All Salmonella
isolates were stored at −70◦C. DNA extraction was done on frozen neat samples for TTR-
TAC and InvA-TAC assay and on selenite sub cultured samples for TTR and InvA RT-PCR
test.

4. Results

We first use the simulated datasets to check model convergence, identifiability and perfor-
mance. We then fit the LMMs to the Malawi Salmonella data.

4.1 Simulations

We simulated 2 datasets, both using identical parameters with the only difference between
them being whether or not the CIA holds. We then fitted both the basic and mixed LMM
to each dataset, allowing us to evaluate how the mixed LMM compares to the basic LMM
when the CIA, in fact, holds and how the basic LMM fares when the CIA does not hold.

4.1.1 Convergence & identifiability

A first important check is that the mixed LMM is identifiable and that the MCMC chains
of our Bayesian implementations of both LMMs converge. While we were careful with the
parameterisation given above to insure that the model is theoretically identifiable (hence
the constraint σ2 = 1 for the random effect variance), it is still important to check this in
practice. Also, since LMMs are a type of mixture model, identifiability is only guaranteed
up to permutation of the latent states. This is a well-kown issue with mixture models and is
particularly relevant for Bayesian models where it leads to label switching in the MCMC
chains (Jasra et al., 2005). We observe such label switching also in our implementations of
both the basic and the mixed LMMs. This can, however, be trivially fixed (at least in the
binary case) after the MCMC algorithm has run as long as the probability parameters for
the different latent states are sufficiently distinct. For most diseases and infections, where
the proportion of infected is much less than the non-infected, this will be the case.

Figure 2 shows trace plots for the CRPs, transition and initial state probabilities of the
mixed LMM fitted to dataset Sim2 after re-labelling latent states in chains that exhibited
label switching. The chains show good mixing with no evidence of a lack of convergence.
We have obtained similar results for the other LMMs fitted to both simulated datasets.

Further, the Gelman-Rubin potential scale reduction factors (Gelman and Rubin, 1992)
converged to 1 for all parameters in all models after state re-labelling in chains with switched
states.

Taken together, this suggests the models are identifiable and converge.

4.1.2 Comparison of basic and mixed LMMs

Regarding model fit, we want to investigate primarily whether there is a benefit in fitting
the mixed LMM in situations where the CIA does not hold. However, we would also like
to find out whether, in situations where the CIA does, in fact, hold, there is an appreciable
disadvantage to fit the more complex mixed LMM to the simpler basic LMM.
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Figure 2: Trace plots and one-dimensional posterior distribution plots for the CRPs (a
through e) and transition and initial probability parameters (f) of the mixed LMM from
Figure 3b.
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While we do not present a full and thorough investigations of this, we will look at each
scenario for a specific simulated dataset: Sim1 (CIA holds) and Sim2 (CIA violated). We
estimate deviance information criteria (DIC; Spiegelhalter et al., 2002) as well as penalized
expected deviances (PED; Plummer, 2008) and compare posterior parameter densities and
maximum a posteriori (MAP) estimates from the models to the actual values used to gener-
ate the data. DICs are more commonly used but are generally not considered to be suitable
for mixture models where PEDs should be preferred.

Table 4: DIC / PED values for the basic and mixed LMMs fitted to the simulated datasets.

basic LMM mixed LMM
Sim1 1,575 / 1,732 1,576 / 1,784
Sim2 2,042 / 2,293 1,821 / 2,104

Table 4 shows the DIC and PED values for the basic and mixed LMM fitted to both
simulated datasets. When the CIA is not valid, the (correct) mixed LMM gives an appre-
ciably lower DIC (1,821) and PED (2,104) than the (wrong) basic LMM (DIC 2,042, PED
2,293). This is confirmed by Figure 3, which shows actual and estimated sensitivities and
specificities for the Sim2 dataset: for most of the 5 tests, the mixed LMM’s maximum
a posterior (MAP) estimates of test sensitivities and specificities are closer to the actual
values. In particular, for the mixed LMM the actual parameter values always lie within
the rectangle given by the 95% credible intervals for sensitivity and specificity of each test
whereas this is not the case for the basic LMM on this dataset.

When the CIA does hold (Sim1 dataset) however, then both models perform similarly
well, with the basic LMM achieving DIC and PED values only marginally lower than those
for the mixed LMM (DIC 1,575 compared to 1,576; PED 1,732 compared to 1,784). The
analogous figure to Figure 3 for this dataset shows no appreciable difference between the
posterior sensitivity and specificity distributions from both models.

These results suggest that the mixed LMM offers real benefits when the CIA does not
hold and that there is little harm in using the more complex mixed LMM when the CIA is
true and the basic LMM would have been sufficient. For real world datasets where it can
be difficult to know whether the CIA does really hold or not, this is an important result.

4.2 Malawi Salmonella data

Having reassured ourselves that our implementations of the basic and mixed LMMs con-
verge and give sensible results on simulated data, we can fit the LMMs from Table 1 to the
Malawi Salmonella data described in section 3.2.

Both the basic time heterogeneous (model 2 from Table 1 and mixed time homogeneous
(model 3) LMM show poor convergence. This is likely a result of the sparsity of the
data. As described above, no participant has been observed at all T = 13 timepoints,
and the overall missing data rate is 46%. Further, with infection being rare (78 of 421
observations have at least one positive test result [18.5%] and only 36 of 421 have two or
more positive test results [8.6%]), this means the dataset is quite sparse. With models 2 and
3 not converging, we did not attempt to fit model 4, the mixed time heterogeneous LMM.

This illustrates a practical point: Salmonella infections should exhibit seasonal varia-
tions, yet the time heterogeneous model does not yield a better fit and similarly, while the
Malawi Salmonella stool culture and PCR data motivated us to develop the mixed LMMs,

 
1992



we are not able to fit these models to the data. The biologically more plausible models
involve more parameters and hence unless there is enough data to fit these models well,
one may have to stick with the simpler, more parsimonious model.

Figure 4 shows the posterior density estimates from the basic time homogeneous LMM
for the sensitivities and specificities of the 5 diagnostic tests. These results agree with broad
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(b) Mixed LMM

Figure 3: Posterior distributions of the conditional response probabilities (shown as sen-
sitivities and specificities) for data simulated with subject-level random effects. The basic
LMM cannot capture the conditional dependencies present in the data and the posterior
distributions reflect the actual values (indicated by crosses) used to generate the data less
well. Contours indicate the posterior distributions, the segments indicate the 95% highest
posterior density credible intervals around the MAP estimates indicated by round dots.
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domain knowledge that stool culture is near 100% specific but lacks sensitivity, whereas the
molecular tests, designed to have much higher sensitivities, have lower specificity.

From the results obtained using the basic time homogeneous LMM, we conclude that
the TTR PCR test achieves the overall best sensitivity & specificity trade-off (MAP esti-
mates: sensitivity 99.5%, specificity 95.5%).
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Figure 4: Posterior distributions of the conditional response probabilities (shown as sensi-
tivities and specificities) for the Malawi Salmonella data using the basic LMM. Contours
indicate the posterior distributions and the segments indicate the 95% highest posterior
density credible intervals around the MAP estimates indicated by round dots.

5. Conclusion

Motivated by real Malawi Salmonella data we have developed mixed LMMs that relax the
CIA and thereby widen the applicability of LMMs. We have presented the mathematical
details of this extension, discussed our implementation thereof, evaluated and compared ba-
sic and mixed LMMs on both simulated data and the Malawi Salmonella dataset. While the
simulations show the benefit of the mixed LMMs that we have developed, the Malawi data
were too sparse to fit models of higher complexity (mixed LMMs and / or time heteroge-
neous LMMs) than the basic, time homogeneous LMM. We hope to apply the methodology
we have developed here to future, similar — and hopefully less sparse — datasets.
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