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Abstract
The cause-specific cumulative incidence function (CIF) quantifies the subject-specific disease risk

with competing risks. With longitudinally collected biomarker data, it is of interest to dynamically
update the predicted CIF by incorporating the most recent biomarker as well as the cumulating
longitudinal history. Motivated by a longitudinal cohort study of chronic kidney disease, we pro-
pose a framework for dynamic prediction of end stage renal disease using multivariate longitudinal
biomarkers, accounting for the competing risk of death. The proposed framework extends the land-
mark survival modeling to the competing risks data, and implies a distinct sub-distribution hazard
regression model defined at each landmark time. The model parameters, prediction horizon, lon-
gitudinal history and at-risk population are allowed to vary over the landmark time. When the
measurement times of biomarkers are irregularly spaced, the predictor may not be observed at the
time of prediction. Local polynomial is used to accommodate this situation and estimate the model
parameters without explicitly imputing the predictor or modeling its longitudinal trajectory. The
proposed model leads to simple interpretation of the regression coefficients and closed-form cal-
culation of the predicted CIF. The estimation and prediction can be implemented through standard
statistical software, with tractable computation. We conducted simulations to evaluate the perfor-
mance of the estimation procedure and predictive accuracy. The methodology is illustrated with
data from the African American Study of Kidney Disease and Hypertension.

Key Words: Competing risks; Dynamic prediction; Fine-Gray model; Landmark analysis; Longi-
tudinal biomarkers; Prediction model.

1. Introduction

Patients with chronic kidney disease (CKD) are at increased risk of kidney failure. Ac-
curate prediction of the timing of such an adverse clinical event is of great importance in
clinical research and practice to facilitate preparation for renal replacement therapy and in-
dividualize clinical decisions [26], and its use has been recommended by clinical practice
guidelines [14]. The typical kidney failure risk equations are “static” prediction models in
the sense that they are developed from survival regression models that relate the predictors
at an earlier time point, such as baseline, to the time of kidney failure [6, 27, 11]. For
example, in the development of a widely used prediction model [28], a Cox proportional
hazard model with time-independent covariates was used; the predictor variables include
biomarkers, clinical and demographical variables, measured at baseline, and the outcome
is the time from baseline to kidney failure. Since that model was developed from electronic
health records, the baseline was the initial nephrology referral or lab test recorded in the
database. Longitudinal data of those biomarkers, measured over many years between base-
line and kidney failure, are available and potentially informative to the disease progression,
but they are not used in prediction model development.
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In statistical literature, the prediction of the risk of clinical events using longitudinal
data is often referred to as dynamic prediction in the sense that the prediction can be up-
dated with accumulating longitudinal data. Important fundamental work has been pub-
lished in the last decade [29, 30, 31, 34, 24, 23]. There are a number of challenges when
this methodology is applied to the prediction of kidney failure among CKD population.
First, CKD patients have increased chance of mortality before reaching kidney failure. In
our motivating data application (Section 6), death accounts for about one third of the overall
terminal events (both kidney failure and death). Treating death as independent censoring
or combining death and kidney failure into a composite endpoint does not lead to optimal
intepretation of the model, and proper adjustment for competing risk is often needed in
CKD studies [22]. Therefore, the dynamic prediction model must be able to accommodate
competing risks. Second, previous literature has identified a large number of risk factors for
kidney failure, including multiple biomarkers that are known to be causally associated with
the disease progression. For example, the static prediction model of Tangri et al includes six
biomarkers: estimated glomerular filtration rate (GFR), albuminuria, serum calcium, serum
phosphate, serum bicarbonate, and serum albumin [28]. Put in the longitudinal context, it
requires that the dynamic prediction model for kidney failure should be able to accom-
modate multiple biomarkers, and use their longitudinal trajectories to generate and update
the risk prediction. In addition, previous literature demonstrated that some biomarkers,
such as the estimated GFR, have nonlinear longitudinal trajectories with diverse progres-
sion patterns [15, 16]. This feature could add to the complexity of the statistical analysis if
the dynamic prediction model involves modeling subject-specific longitudinal trajectories.
Third, as a chronic disease, the CKD often lasts many years before the patient reaches the
terminal clinical events such as kidney failure or death, during which time the patient may
go through multiple stages of the disease. The strength of association between the biomark-
ers and the disease outcome could vary over time, leading to time-varying parameters in
the model. Fourth, in our motivating data application as well as many other practical situ-
ations, such as in the electronic health records of CKD, patients do not follow a common
pre-specified clinical visits schedule. Instead, the observed times of clinical visits, at which
the biomarker data were obtained, appear to be irregularly spaced over time. Even if these
observational times are random and non-informative in the sense that they are not related to
the underlying health condition of the patients, this phenomenon still presents a challenge
to the development of dynamic prediction model, as will be elucidated below.

In the statistical literature on dynamic prediction with competing risks data, Rué et al.
[25] and Andrinopoulou et al. [2] modeled the joint distribution of longitudinal data and
the competing risks outcomes with shared random effect models, and estimated the pa-
rameters with Markov chain Monte Carlo. When a large number of random effects are
needed to accommodate multiple nonlinear longitudinal trajectories per subject, as in our
motivating data application, the joint models are computationally difficult to estimate [12].
Cortese and Andersen [5], Nicolaie et al. [20] and Nicolaie et al. [21] studied the dynamic
prediction with competing risks data using an alternative approach called landmark mod-
eling [29], which is computationally simpler. Motivated by the specific needs of CKD
research, our proposed methodology in this paper is innovative and different from the sta-
tistical literature above in some important aspects. First, the typical landmark approach, as
adopted by the literature above, involves pre-specifying a number of landmark time points
distributed over the follow-up period, creating a landmark dataset at each landmark time
point that consists of at-risk subjects and their predictor variables and residual time to event
at the landmark times, and fitting a time-to-event model to a “super” dataset with all the
landmark datasets stacked on top of each other [29]. In our data application, the obser-
vational times of the clinical visits are irregularly spaced over time without a common
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schedule for all the subjects. The gap times range widely, from a few months to a few
years. If the predictor variable is “current value of the biomarker”, as commonly used in
this kind of prediction problems, then the predictor values are unknown for majority of the
landmark times. Imputing the unknown value by the last or closest measurement is also
problematic because that measurement could be years apart and because the progression of
CKD includes both chronic process, where biomarkers change slowly, and acute episodes,
where biomarkers change more quickly. The proposed method assumes that there is a
sub-distribution hazard model specified any at landmark time during the follow-up, and
all the model parameters, including the baseline sub-distribution hazard function, vary as
a smooth function of the landmark time. A local polynomial method is used to estimate
these parameters. This method does not require pre-specification of the landmark times,
which is important given that there is currently no guideline in the literature on how to set
the number and locations of the landmark times. It can also accommodate the randomly
spaced observational times without ad hoc imputation. In addition, the proposed method
estimates the regression coefficients and baseline hazard functions nonparametrically, and
hence is more flexible compared with many implementations of the landmark approach,
which involves parametric assumptions on the regression coefficient functions or baseline
hazard [20, 29]. This feature is particularly attractive for our motivating data application,
the African American Study of Kidney Disease and Hypertension (AASK), because it is
among the longest prospective cohort studies of CKD, with up to 12 years of follow-up.
It is very likely that the association between risk factors and outcomes change consider-
ably over long follow-up time. Finally, our approach is embedded within the framework
of Fine-Gray sub-distributional hazard model [9], while the previous works were based on
cause-specific hazard model [20], pseudo-observations [21] and multi-state model [5]. The
Fine-Gray model imposes a parsimonious relationship between predictors and the cumula-
tive incidence function (CIF) of the event of interest, kidney failure in our application. It is
convenient to use when the predictive target is the CIF because it does not involve a model
for the competing event. In our application, the cause of death is not recorded. Hence, the
model linking the biomarkers and all-cause death may not fit well in light of the underlying
heterogeneous among patients who died during follow-up.

This paper is organized as follows. In section 2, we introduce the dynamic prediction
model for competing risk data. In section 3, we provide model estimation procedures for the
quantities of interest. In section 4 we propose estimators of predictive accuracy measures
within the dynamic competing risk context. In section 5, we conduct numerical studies to
evaluate the performance of the proposed methodology. The application to the AASK data
is presented in section 6. Discussion and future work are presented in section 7.

2. The landmark dynamic prediction model for competing risks data

2.1 The notation and data structure

Let Ti and Ci be the time to the event-of-interest and censoring for subject i, and εi ∈
(1, . . . ,K) be the K causes of event. We observe T̃i = min(Ti, Ci), the time to the event
or censoring, whichever comes first, and ∆i = 1(Ti ≤ Ci), the event indicator. We ob-
serve ∆iεi ∈ (0, . . . ,K), where zero indicates censoring and non-zero indicates the type
of the observed event. Without loss of generality, we assume K = 2 throughout this pa-
per. In the context of the data application, event 1 denotes end stage renal disease (ESRD),
the clinical event of interest, and event 2 denotes death, the competing event. Let Y i =
{Y i1,Y i2, . . . ,Y iq} denote the ni×q matrix for subject i, with ni repeated measurements
for the multiple longitudinal covariates 1, 2, . . . , q. Each Y i is measured at subject-specific
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time points ti = {ti1, ti2, . . . tini} (tij < T̃i), and Y i can include both time-dependent
variables such as the biomarkers, and time-independent variables such as the baseline char-
acteristics. In our modeling framework, tij are different across subjects, but for the same
subject, we assume the multiple biomarkers are measured at the same visit time. We as-
sume that the distribution of ti is non-informative of Y i and Ti. As in conventional sur-
vival analysis, we assume independent censoring. At any follow-up time u (u < T̃i), we
denote by Hi(u) the observed covariate process within a history window [u−τ2, u], where
Hi(u) = {Y i(tij), tij | u−τ2 ≤ tij ≤ u; j = 1, . . . , ni}. We observe an independent and
identically distributed training data set Dn = {T̃i,∆iεi,Y i, ti, i = 1, . . . , n}, from which
the dynamic prediction model is to be developed. Our interest is to estimate, for a future
individual in the same population as the training data, denoted by subscript o, the probabil-
ity of ESRD in the next τ1 years given survival up to time s and the covariate information
in the history window: π(τ1|s,Ho(s)) = P (To ∈ (s, s+ τ1], εo = 1|T̃o > s,Ho(s)).

We call τ1 the prediction horizon, which quantifies how far into the future we want
to predict the individual’s risk of the event. The range of τ1 is (0,∞). A small τ1 indicates
the prediction for the immediate future and a large τ1 indicates the prediction for the distant
future. The choice of τ1 depends on the clinical context. In our data application, we use
τ1 = 1 or 3 years. Patients with high risk of ESRD within the next year may be placed on
the waiting list for renal replacement therapy, and patients with high risk of ESRD within
the next 3 years should be monitored for diet, vital signs, and other complications.

In the following, we describe the construction of landmark dataset. To be specific, we
are interested in predicting the residual lifetime T (s) = T − s at a common landmark
time s using the covariate history H(s) among subjects with s < T̃ . For subject i, we
define Tij = Ti − tij and Cij = Ci − tij as the subject-specific residual time to the event
and time to censoring since tij . For predictions up to the horizon τ1, we artificially censor
the residual times at τ1, i.e., we observe T̃ij = min(Tij , Cij , τ1) and the event indicator
δ̃ij = 1

(
Tij ≤ min(Cij , τ1)

)
× εi, where 1(·) is the indicator function. The artificial

censoring may reduce the chance of misspecifying certain model assumptions [29], such
as the proportional hazards assumption when a Cox model is used, or the proportional
sub-distributional hazards assumption when a Fine-Gray model is used. The predictors are
extracted from the data in the history window. For prediction at a clinical visit time s, the
predictors may include the biomarker value at that clinical visit, or the rate of biomarker
change, variation, or maximum/minimum value during the history window period (i.e.,
within the past τ2 years of the prediction time). When τ2 = s, it is equivalent to use
the entire history since baseline. The landmark dataset Lm = {T̃ij , δ̃ij ,Hi(tij); i =
1, . . . , n, j = 1, . . . , ni} will consist of m =

∑n
i=1 ni pieces of information from each

subject. As will be shown in the following sections, the landmark competing risks model
is specified on the derived time scale starting from tij : t∗ = min

(
u − tij , τ1

)
, where u is

the time since baseline and t∗ ∈ (0, τ1].

2.2 Sub-distribution hazard model with baseline covariates

We first briefly review Fine -Gray’s sub-distribution hazard (SDH) model for competing
risks [9] with a p×1 baseline covariate vectorX . The quantity of interest is the cumulative
incidence function (CIF) π1(u;X) = P (T ≤ u, ε = 1|X). The SDH function for event
1 is defined as the instantaneous hazard of experiencing event 1 given survival and no

previous event 1 occurrence at this moment: λ1(u;X) = lim∆u→0
1

∆u
P (u ≤ T ≤ u +

∆u, ε = 1|{T ≥ u} ∪ {T ≤ u ∩ ε 6= 1},X) = −dlog(1− π1(u;X))

du
. Such a definition

can be viewed as the hazard function for an improper random variable 1(ε = 1)×T+1(ε 6=
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1)×∞. The SDH model takes the following form:

λ1(u;X) = λ10(u)exp(αTX),

where the baseline SDH function λ10(u) is an unspecified non-negative function, and the
log-SDH ratio α (p × 1) has a direct connection to the CIF. The CIF can be estimated as
π̂1(u;X) = 1 − exp

{
− exp

(
α̂TPLX

)
· Λ̂10(u)

}
, where α̂PL is the estimator for α from

the partial likelihood, and Λ̂10(u) is a modified Breslow estimator obtained by plugging in
α̂PL.

2.3 Landmark proportional sub-distribution hazard model

The proposed landmark model resets the follow-up time scale at each landmark time tij and
treats the time-dependent covariate as if it is measured at the new baseline tij . Extending
the SDH function for the baseline model in last section, the landmark SDH model at tij
using the derived follow-up time scale t∗ is denoted as:

λ1(t∗|Hi(tij), tij) =lim∆t∗→0
1

∆t∗
P
(
t∗ ≤ Tij ≤ t∗ + ∆t∗, εi = 1|

{Tij > t∗} ∪ {0 < Tij ≤ t∗ ∩ εi 6= 1},Hi(tij)
)
. (1)

The landmark CIF can be expressed as:

π1(t∗|Hi(tij), tij) = P
(
Ti − tij ≤ t∗, εi = 1|Ti > tij ,Hi(tij)

)
= 1−

P
(

(Tij > t∗) ∪ (0 < Tij < t∗ ∩ εi 6= 1)|Hi(tij)
)

P
(
Ti > tij |Hi(tij)

)
= 1− exp

(
− {Λ1(t∗|tij ,Hi(tij))− Λ1(0− |tij ,Hi(tij))}

)
= 1− exp

(
−
∫ t∗

0
λ1(t|Hi(tij), tij)dt

)
. (2)

To estimate this CIF, we fit the following landmark SDH working model to the land-
mark data set Lm = {T̃ij , δ̃ij ,Hi(tij), tij ; i = 1, . . . , n, j = 1, . . . , ni},

λ1(t∗|Hi(tij), tij) = λ10(t∗, tij)exp
(
βT (tij)Ỹ i(tij)

)
, t∗ ∈ (0, τ1], (3)

where λ10(t∗, tij) is a bivariate baseline SDH function defined on the derived follow-up
time scale t∗ ∈ (0, τ1] and at subject-specific landmark times tij . We use Ỹ i(tij) to denote
the vector of predictors at visit time tij , which are functions of Hi(tij). The vector of
time-varying coefficients β(tij) is assumed to be smooth functions to allow the effect of
the predictors to vary with the landmark time tij . Different from Zheng and Heagerty [34],
the time-varying effects are functions of the landmark time tij instead of the derived follow-
up time t∗. Therefore it differs from the usual time-varying coefficient model in survival
analysis that is commonly used to deal with non-proportional hazards [3]. With the artificial
censoring at τ1, the covariate effect is more likely to be constant over t∗ ∈ (0, τ1) (but still
vary with tij) and the proportional sub-distribution assumption is more likely to hold. [18].

3. Model estimation and dynamic prediction of the CIF

For estimation, we extend the kernel approach in Li et al. [17] to the competing risk context
and formalize the idea of borrowing information from lagging covariates [1, 4]. Assume
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that β(.) has a continuous second derivative in a neighborhood of s, by local linear approx-
imation, β(tij) ≈ β(s) + β′(s)(tij − s) for subject-specific time points tij around s. Our
smoothing method occurs at the individual level, which is different from that of Cai and
Sun [3], where smoothing occurs at the population level and the same weights are applied
to all individuals.

The landmark dataset Lm are clustered multivariate time-to-event data with competing
events, where the ni records from the same subject are correlated. For clustered competing
risk data [35], we define the counting process for event 1 as Nij(t

∗) = 1(tij ≤ Ti ≤
tij+t

∗, δ̃ij = 1) and the at-risk processRij(t∗) = 1−Nij(t
∗−) = 1(Ti > tij+t

∗)+1(tij ≤
Ti ≤ tij + t∗, δ̃ij 6= 1). Based on a local “working independence” partial likelihood
function [35], for any given landmark point s, we can estimate the parameters β(s) using
a kernel-weighted estimation equation, by borrowing biomarker measurements from the
neighboring time points, {tij ∈ (s− h, s+ h)} :

n∑
i=1

ni∑
j=1

Kh(tij − s)
∫ t∗

0
wij(t) ·

{
Z̃ij(1, tij − s)− Z̄(β(s), t)

}
· dNij(t). (4)

K(·) is a kernel function with bounded support on [−1, 1], Kh(x) = h−1K(x/h) and h
is the bandwidth; Z̃ij(1, tij − s) = Ỹ (tij) ⊗ (1, tij − s), with ⊗ denoting the Kronecker

product. We have the notations Z̄(β(s), t) =
Ŝ

(1)
(β(s), t)

Ŝ
(0)

(β(s), t)
, and

Ŝ
(r)

(β(s), t) =n−1
n∑
l=1

ni∑
m=1

Kh(tlm − s)wlm(t)Rlm(t)× Z̃ lm(1, tlm − s)⊗r

× exp
(
bT (s)Z̃ lm(1, tlm − s)

)
, (5)

where b(s) = {b0(s), b1(s)} = {β(s),β′(s)}, Z̃⊗0
= 1 and Z̃

⊗0
= Z̃. The coefficient

β(s) is estimated at each landmark s using β̂(s) = b̂0(s). The variance of β̂(s) can
be estimated by bootstrapping, and wij(·) in (4) denotes the inverse probability censoring
weight for competing events, modified from Fine and Gray [9]:

wij(t
∗) = 1

(
Cij ≥ Tij ∧ t∗

) G(t∗|s)
G
(
Tij ∧ t∗|s

) ,
whereG(t∗|s) = P (Cij ≥ t∗|s) is the censoring distribution of the residual censoring time
at landmark s, and ∧ denotes the minimum of the two values. We use a kernel-weighted
Kaplan-Meier estimator for the residual censoring distribution, estimated from the residual
time to censoring around s:

Ĝ(t∗|s) =
∏

ζ∈Ω,ζ≤t

{
1−

∑
lKh(tlm − s) · 1(C̃lm = ζ, δ̃lm = 0)∑

lKh(tlm − s) · 1(C̃lm ≥ ζ)

}
.

Once we obtain the estimates of β(s), the baseline cumulative SDH function at time s
can be estimated by plugging in β̂(s):

Λ̂10(t∗, s) =
1

n

n∑
i=1

ni∑
j=1

Kh(tij − s)
∫ t∗

0

1

Ŝ
(0)

(β̂(s), t)
ŵij(t)dNij(t).

The conditional CIF for any future subject o can be estimated as

π̂1(t∗|s,Ho(s)) = P̂ (s < To ≤ s+ t∗, εo = 1|T̃o > s,Ho(s))

= 1− exp
(
− Λ̂10(t∗, s)× exp

(
β̂
T

(s)Ỹ o(s)
))
. (6)
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4. Quantifying the dynamic predictive accuracy

In this section, we propose an adaptation of two well-established predictive accuracy mea-
sures, the time-dependent receiver operating characteristic (ROC) curve, in particular the
area under the ROC curve (AUC); and the Brier score (BS). In the dynamic prediction
framework, the time-dependent predictive accuracy measures are functions of two time
scales, the landmark time s and the prediction horizon τ1. The procedure for estimating
sensitivity, specificity, and BS follows the non-parametric kernel-weighted approach of Wu
and Li [33] in the competing risk context.

4.1 The dynamic time-dependent ROC curve and AUC

At any given landmark time s, we want to evaluate how well the risk score, i.e., the
estimated CIF, discriminates between subjects with event of interest within the window
(s, s + τ1] versus those without. For any at-risk subject at time s who experiences the
main event within the time interval (s, s + τ1], that occurrence epsilon is defined as a
case: D+(s, τ1) = {i : s < Ti ≤ s + τ1, εi = 1}. When a subject is event-free at
s + τ1, that occurrence is defined as a control: D−(s, τ1) = {i : Ti > s + τ1}. An al-
ternative definition for a control is to use the complementary set D̄+(s, τ1) = {i : (s <
Ti ≤ s + τ1, εi 6= 1) ∪ (Ti > s + τ1)}, including subjects who experience a competing
event within the time interval (s, s + τ1] or remain event-free at s + τ1. We present the
estimators for the former one. A similar extension can be achieved for the latter. For sim-
plicity, we use the notation U(τ1|s) as the risk score to denote the predicted CIF. Given
a threshold value c ∈ (0, 1) , the time-dependent sensitivity and specificity functions are
defined as Se(c, s, τ1) = P

(
U(τ1|s) > c|D+(s, τ1)

)
and Sp(c, s, τ1) = P

(
U(τ1|s) ≤

c|D−(s, τ1)
)
. The estimators of sensitivity and specificity are

Ŝe(c, s, τ1) =

∑
i∈<s

Ŵ dyn
1i · 1(Ui(τ1|s) > c)∑
i∈<s

Ŵ dyn
1i

Ŝp(c, s, τ1) =

∑
i∈<s

(1−
∑K

k=1 Ŵ
dyn
ki ) · 1(Ui(τ1|s) ≤ c)∑

i∈<s
(1−

∑K
k=1 Ŵ

dyn
ki )

,

whereW dyn
1i = P

(
Ti(s) ∈ (0, τ1], εi = 1|T̃i(s), εi, Ui

)
= 1(δ̃ij = 0)·F1(τ1|Ui,s)−F1(T̃i(s)|Ui,s)

S(T̃i(s)|Ui,s)
+

1(δ̃ij = 1), Ti(s) = Ti − s, T̃i(s) = T̃i − s and Ui is short for Ui(τ1|s). <s is risk
set within the neighborhood of s which includes the most recent record at tij for each
subject i {i : T̃i ≥ s, |tij − s| ≤ |tij′ − s|,∀j′ = 1, 2, . . . , ni, tij ∈ (s − h, s + h)}.
F1(·|Ui, s) = P (Ti(s) ≤ ·, εi = 1|Ui, s) and S(·|Ui, s) = P (Ti(s) ≥ ·|Ui, s)

For estimating the conditional probability weight W dyn
1i , we treat the at-risk data set at

landmark s as the new baseline data set. The time-dependent ROC curve is a plot of sensi-
tivity Se(c, s, τ1) over 1-specificity 1 − Sp(c, s, τ1), i.e., for x ∈ [0, 1], RÔC(x, s, τ1) =

Ŝe(Ŝp
−1

(1−x, s, τ1), s, τ1). The AUC is estimated as ÂUC(s, τ1) =
∫ 1

0 R̂OC(x, s, τ1)dx.

4.2 The dynamic time-dependent Brier score

The time-dependent BS under the dynamic competing risk framework is defined asBS(τ1, s) =

E
(

1(s < T ≤ s + τ1, ε = 1) − U(τ1|s)
∣∣T > s

)2
, where 1(·) is the indicator function.

Applying the weight W dyn
1i , the BS can be estimated as
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B̂S(τ1, s) =
1

ns

ns∑
i=1

(
Ŵ dyn

1i × (1− U(τ1|s))2 + (1− Ŵ dyn
1i )× (0− U(τ1|s))2

)
,

where ns is the number of subjects at risk at landmark time s.
The AUC and BS assess different aspects of the predictive model. AUC evaluates

the discrimination between a case and a control, and BS quantifies the deviance of the
predicted probability from the observed data. A model with perfect discrimination will
have AUC = 1, while AUC close to 0.5 indicates poor discrimination that resembles
a random guess. BS is a prediction error metric, with smaller values indicating better
prediction.

5. Simulation

Our simulation addresses two goals: 1) at a single landmark time s, to evaluate the finite
sample performance of the kernel-weighted estimation for the landmark competing risks
model parameters at time s; and 2) to evaluate the accuracy of dynamic prediction in a
longitudinal context.

Simulation at a given landmark time s It is challenging to generate data from the joint
distribution of the longitudinal biomarker data and competing risks outcomes so that the
SDH model holds at all the landmark times {tij}. This is a well known difficulty in the
study of landmark dynamic prediction models [29, 17], though limited progress has been
made in problems without competing risks [34]. It remains unclear whether a joint distribu-
tion of the longitudinal and competing risks data exists and satisfies the modeling assump-
tion of the landmark dynamic prediction model in Section 2.3. For this reason, researchers
often view the landmark dynamic model as a working model, as long as it provides ade-
quate approximation to the data at all the landmark times of interest. This difficulty also led
researchers to evaluate the numerical performance of the landmark models using data sim-
ulated from the shared random effects model [19, 13]. Since the landmark model always
works under misspecification in such situations, the bias and efficiency of the estimators
are difficult to interpret. In light of the similar difficulty in our competing risks problem,
we resort to a simple albeit approximate approach to evaluating the quality of the proposed
local linear estimation, at a single landmark time s, as described below.

We simulated a cross-sectional time-to-event data set at a given landmark s, e.g., s = 3,
which was treated as the baseline for the purpose of this simulation. Scattered individ-
ual measurement times {tij} and the associated biomarker values Y i(tij) were simulated
within a small neighborhood of s. The landmark competing risks model in Section 2.3
was used to generate independent times to competing risks data starting from each tij ,
following the simulation algorithm in Fine -Gray [9]. The log-SDH β(s) is assumed to
be a quadratic function of s (Web Appendix B Figure 1). Note that this is not a really
a landmark dataset because each subject only has one tij . Nonetheless, this dataset ex-
actly satisfies the working model (3) so that we can use it to study the numerical perfor-
mance of the proposed local linear estimation in a small neighborhood of s. Specifically,
we evaluate the bias of estimating β(s) and the baseline CIF (Web Appendix Figure 2),
π0(t∗; s) = 1− exp

(
−
∫ t∗

0 λ10(t, s)dt
)

, as well as the selection of the kernel bandwidth.
The results are presented in Figure 1. The three columns from left to right are the plots

of the estimated log-SDH ratio, absolute bias percentage and mean squared error (MSE)
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against different bandwidths. The rows from top to bottom correspond to the three in-
creasing sample sizes. For the plot of the log-SDH ratio (column 1), the mean estimated
β(s) at s = 3 over 1, 000 Monte Carlo repetitions is close to the true value (red horizontal
line) at small bandwidth (e.g. 0.3 and 0.5). With increased bandwidth, the mean estimator
shows increasing downward bias. This is because the true β(s) function is concave (Web
Appendix B Figure 1), and the local linear fit underestimates it at the peak as the band-
width increases. The empirical standard errors (ESDs), shown in Figure 1 as the vertical
whiskers, shrink with the increased bandwidth since more data points are included in the
kernel estimation. From top to bottom, the ESDs decrease when the sample size increases.
Column 2 shows that the absolute bias percentage generally increases with the bandwidth,
except when the bandwidth is very small, in which case larger finite-sample bias may result
due to very few data points available in the neighborhood defined by the bandwidth. In col-
umn 3, the U-shaped MSE curve is a demonstration of the typical bias-variance trade-off
in kernel estimation. Overall, the percentage of absolute bias for the log-SDH ratio is very
small, within 2% for middle ranged bandwidths (the horizontal dashed line in column 2).
When β(s) is a linear function of s, the absolute bias percentage is always within 1% and
is robust to bandwidth increase (Web Appendix B Figure 3). The results from this simula-
tion suggests that the proposed local linear estimation works as expected from typical local
polynomial estimators [8].

Simulation on the accuracy of dynamic prediction in the longitudinal context In this
simulation, we simulated both longitudinal and competing risks data, fit a landmark SDH
model, and evaluate its prediction accuracy at various landmark times. As discuss above,
the landmark SDH model is a working model in this simulation. To minimize the impact
of model misspecification, we considered two scenarios: the biomarker is non-informative
(S1) and the biomarker is informative (S2). For S1, the longitudinal biomarker is not as-
sociated with the SDH function, and we expect to demonstrate that its contribution to the
prediction accuracy in the landmark SDH model is zero. For S2, we introduce various
levels of association between the longitudinal biomarker and competing risks event, and
expect to demonstrate that the prediction accuracy of landmark SDH model improves with
increasing association between biomarker and competing risk event. Details of the data
generation process are described in the Web Appendix A.

Under S1, we consider non-informative biomarkers that have zero effect on the survival
outcome, i.e., β(s) ≡ β = {βkq} = 0 for event type k = 1, 2. The event times are
generated from the model of Fine & Gray [9]. The model is a special case for our dynamic
model at β(s) ≡ β = 0 and λ10(t, s) ≡ λ10(t). We expect to see that the effect of
baseline covariateX is constant and unbiased from the true value, the effects of biomarkers
{Y ·q} are constantly zero, and the baseline CIF at different landmark times s is close to the
true conditional CIF. Under S1, we do not impose artificial censoring when estimating the
baseline SDH since there is no violation of the proportional sub-distribution assumption
here. In Web Appendix B Figure 4, we plot the log-SDH ratios for the three longitudinal
biomarkers and the baseline covariate over the landmark time grids s. The estimated log-
SDHs for the longitudinal biomarkers are consistent along the zero horizontal line where
the true effect lies. The estimated log-SDH for the baseline covariate is consistent with
its true value at -1.5 except for some deviation at the end of follow up, due to limited
sample size. The estimated baseline CIF from 500 Monte Carlo repetitions is close to
the conditional CIF at selected landmark times. The estimated baseline CIF π0(t∗; s) is a
bivariate surface of s and t∗, as shown in the contour plot. The contour plot of the mean
π̂0(t∗; s) is almost identical to that of the true CIF except at the borders where the sample
size is small.

 
1407



Under S2, we simulate time-to-event data from the joint frailty model of the longitu-
dinal biomarkers and the competing risk event times [7]. Although the covariate effect is
misspecified under S2, we expect to see the biomarkers having an informative effect that
is significantly different from zero. In Web Appendix Figure 5, the effects of the three
biomarkers are all significantly different from zero and are in the right direction.

Under both S1 and S2, we compare the predictive performance of models with and
without longitudinal biomarkers using measures of discrimination and calibration. For
discrimination, we consider the true positive (TP) fraction, false positive (FP) fraction at
a given threshold value, and AUC as a global summary. For calibration, we use the BS.
We evaluate all the predictive accuracy measurements at three landmark points s = 3, 5, 7
with the prediction horizon τ1 = 1, 3. For each simulation, the proposed model is fit
to a training data set and the predictive accuracy measures are calculated based on i.i.d.
samples of a validation data set. The results are calculated as the mean of 1000 Monte Carlo
repetitions. Table 1 presents the dynamic predictive accuracy measures for S1 and S2. The
full model includes longitudinal biomarkers with time-varying effects, and the null model
only includes the baseline covariate. For S1, when all biomarkers are non-informative,
the predictive accuracy measures for the full model (M1) and the null model (M0) are all
very similar. In contrast, when the three longitudinal biomarkers are informative, including
them in the prediction model greatly increases the AUC and TP and decreases the FP and
prediction error.

6. Application to the AASK data

In this section, the proposed method will be illustrated using the AASK dataset. The AASK
study includes 1,094 African Americans of age 18 to 70 years who were diagnosed with
hypertensive renal disease and had baseline eGFRs between 20−65mL/min/1.73m2[32].
Subjects were followed up every 6 months, with up to 12 years of longitudinal data col-
lected at each visit. Each subject was closely monitored for their clinical events, such as
non-terminal events of acute kidney injury, hospitalization and cardiovascular comorbidi-
ties; and more importantly the terminal event of ESRD and death. By the end of the study,
318 (29%) individuals developed ESRD and 176 (16%) died before developing ESRD. The
outcome of interest is the time to ESRD, defined as the time to dialysis or transplantation;
and the time to death is treated as a competing event. The median time to ESRD is 4.3 years
and the median time to death is 5.2 years. We chose clinically relevant prediction horizons
of τ1 = 1 or 3 years and illustrated the dynamic prediction at years 3, 5, and 7. The key
longitudinal biomarker is eGFR. The number of repeated measurements for eGFR ranged
from 3 to 30, with over 50% of individuals providing 17 or more measurements. In addition
to the current value of eGFR at a clinical visit, we derive the rate of change in eGFR during
the history window of τ2 = 3 years. The estimation of eGFR rate of change followed the
approach in Li et al. [17]. Additional biomarkers included longitudinal measurements of
serum albumin (Alb), urine protein to creatinine ratio (UP/Cr), serum phosphorus (Phos)
and urine potassium (Upot). The predictors in our landmark SDH model include: the pa-
tient’s current age, eGFR, Alb, UP/Cr, Phos and Upot at the clinical visit, the eGFR rate of
change in the past τ2 = 3 years (eGFR.slope), and a binary indicator of any hospitalization
within the past year.

For the competing events of ESRD and death, we fit landmark SDH models separately
using the same set of candidate predictors (Web Appendix Figure 6). The eGFR, its rate
of change, and log UP/Cr are significantly associated with time to ESRD but not with time
to death. In contrast, age, Alb and hospitalization are risk factors related to death. This
indicates that the progression to ESRD and death may be related to different pathological
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processes, which justifies the proposal of modeling the competing events separately rather
than as a composite outcome. After removal of the non-significant covariates, the final
model for ESRD includes eGFR, eGFR.slope, log UP/Cr and Phos, and the final model
for death included age, Alb, log-Upot and hospitalization (Web Appendix Figure 7). We
conduct bandwidth selection using 5-fold cross-validation. Predictive accuracy metrics are
evaluated in the cross-validation dataset, and the results are robust to different bandwidths
(up to 3 digits after the decimal point). Therefore, we used the bandwidth of h = 1.5 in
the final model, which provides a relatively smooth curve for the log-SDH ratio curve. The
surface plots of the CIF for ESRD and death are presented in Figure 2.

Figure 3 presents the longitudinal profiles and individual dynamic predictions from
three AASK subjects: subject 1 was event-free by the end of the study, subject 2 expe-
rienced ESRD after 7.5 years, and subject 3 died after 9.7 years. We demonstrated the
biomarker values with real-time predicted risk probabilities for ESRD and death within the
next 3 years. The risk prediction is dynamically updated using the most current biomarker
values and short-term medical history (episodes of hospitalization in grey vertical bar).
Subject 1 demonstrates the case of a patient with stable disease, indicated by the stable
biomarkers and a result of minimum predicted risk probability. A typical progression to
ESRD (subject 2) is associated with a decline in eGFR over time, and increased protein-
uria, quantified by log-UP/Cr. As expected, the predicted risk for ESRD for subject 2
increases after year 5 in response to the drastically decreased eGFR and a surge of log-
UP/Cr. In contrast, the risk of death for subject 2 vaguely increases, mostly explained by
the Alb level and hospitalization around year 7. For subject 3, the relatively stable eGFR
and log-Up/Cr decreases the subject’s susceptibility to ESRD, but the frequent hospitaliza-
tion and decreasing Alb level are associated with increased risk of death, possibly due to
other comorbidities. We did not estimate the model parameters or calculate the predictive
probabilities after year 8 because the number of observed clinical events are relatively small
near the end of the follow-up period, which would result in relatively low efficiency of the
estimated prediction.

Figure 4 presents the same profiles and their dynamic CIF up to 3 years given biomark-
ers available at landmark years s = 3, 5, 7. For the censored subject 1, the predicted CIF
for both ESRD and death are very flat over the three landmark times. In contrast, predicted
CIF for ESRD for subject 2 emerged at landmark year 5. The predicted CIF of ESRD for
this subject is further elevated by year 7, followed by an event of ESRD shortly afterwards.
The predicted CIF of ESRD for subject 3 remains flat overtime. In contrast, the subject is
predicted to have an elevated risk of death at year 7, after frequently being hospitalized.
The subject eventually died at year 9.6 without experiencing renal failure.

In Table 2, we summarize the predictive accuracy of landmark SDH models for two sets
of prediction horizons τ1 = 1, 3 at three landmark years s = 3, 5, 7. The model for the time
to ESRD achieved good discrimination in between subjects who experience ESRD in the
next τ1 years and those who are event-free, with AUCs ranged between 0.93-0.96. Using a
threshold value of 0.05, the sensitivity (TP) and specificity (1-FP) can be well controlled to
be 0.80-0.90 for all scenarios. Both discrimination and calibration measures are very simi-
lar in predicting outcomes 1 year and 3 years ahead. In contrast, the landmark SDH model
for time to death discriminates no better than a random guess, resulting in AUCs around or
lower than 0.5. The prediction errors are also at least twice as large as those from predict-
ing ESRD. This indicates that even if we found potential prognostic factors associated with
time to death, they are not necessarily good predictors. More importantly, the AUCs from
the proposed model are improved from the previous studies where AUCs are around 0.8
and always less than 0.9 [17, 19]. One possible explanation is that previous studies treat
ESRD and death as a composite outcome. This introduces noise and diminishes the pre-
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dictive capability of predicting ESRD, since the outcome of death is difficult to predict in
such a context. The ROC curves for predicting ESRD are plotted in Web Appendix Figure
8.

7. Discussion

For CKD patients, estimating the time to ESRD is crucial for the timely treatment manage-
ment. Dynamic prediction is an attractive tool for this purpose because it is adaptive to the
changing health condition and prognostic history of the patient. It enables real-time moni-
toring of the risk of the patient. In this paper, we develop novel methodology for dynamic
prediction of ESRD among the CKD patients and overcome a number of analytical hur-
dles, including competing events of death, irregularly spaced clinical visit times, multiple
biomarkers with complicated longitudinal trajectories, and time-varying at-risk population,
and time-changing covariate-outcome association. Our proposed methodology is flexible
because the model parameters are estimated non-parametrically. Hence, it can effectively
mitigate the risk of model misspecification. This feature is very important for dynamic pre-
diction models because, as explained in Section 5, the landmark dynamic prediction model
is a working model and needs to provide adequate approximation to the data at all land-
mark times. Another advantage of the proposed methodology is that it is computationally
simple and can be implemented through standard statistical software for competing risks
analysis, regardless of how many longitudinal biomarkers are included as predictors. In
this paper, the estimation process was accomplished with the available R function coxph()
after translating the competing events into a counting process [10]. We believe that the
simplicity in computation makes the proposed methodology attractive for various practical
situations, including applications with large dataset, large number of biomarkers with com-
plicated longitudinal trajectories, and other longitudinal prognostic information that cannot
be easily modeled at individual-level (e.g., hospitalization and medication history).

Our kernel-based estimation approach relies on the assumption that the clinical visit
times are non-informative. Future work is needed to study dynamic prediction when the
frequency of clinical visits is related to the health condition of the patients. The predictors
in our proposed model framework include pre-specified features extracted from the data
history. Automatic extraction of predictive features from the longitudinal history is another
topic that will pursued in our future research.

Supplementary Materials

Web Appendices and Figures referenced in this paper are available with this paper at the
Biometrics website on Wiley Online Library.
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Figure 1: Simulation results for finite sample performance of kernel-weighted estimation
at a single landmark time s = 3. The log-SDH ratio, absolute bias percentage and mean
squared error (MSE) are plotted against the bandwidth on the horizontal axis under differ-
ent sample sizes. The true time-varying log-SDH ratio is non-linear over time (see Web
Appendix B).
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Figure 2: Estimated surface of the cumulative incidence function over the landmark years
and prediction horizons. This shows an example population with age =55, eGFR =45
(ml/min/1.73m2), eGFR.slope = 0, UP/Cr = 0.3, albumin = 4 (g/dL), and hospitalized
within the past year.
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Subject 3 ; baseline age = 64
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Figure 3: Individual risk predictions for three selected subjects: subject 1 censored (dashed
vertical gray line), subject 2 with ESRD (dashed vertical red line) and subject 3 dead
(dashed vertical black line). The three biomarkers are plotted up 8 years from baseline:
“G” is eGFR (ml/min/1.73m2), “R” is log-urine protein-to-creatinine ratio (g/g), and
“A” is albumin(g/dL). The connected red dots are predicted probabilities of ESRD within
a horizon of τ1 = 3 years. The gray vertical bars represent episodes of hospitalization, with
the two vertical borders being admission and discharge dates. The connected blue dots are
the predicted probability of death within τ1 = 3 years. The left y-axis is the scale for eGFR,
and the right y-axis is the scale for predicted probabilities (0 to 1). The other two biomark-
ers, log-UP/CR and albumin, are re-scaled to be displayed properly in the same plot with
eGFR but the actual scales are not shown. The dynamic predicted probabilities of ESRD
are calculated using the dynamic SDH model with four predictors: eGFR, eGFR slope in
the past three years, most recent log-UP/CR and phosphorus. The dynamic predicted prob-
abilities of death are calculated using the dynamic SDH model with four predictors: current
age, serum albumin, any hospitalization within the past year, and log urine potassium.

 
1417



S
ub

je
ct

 1
 ; 

ba
se

lin
e 

ag
e 

= 
58

 ; 
s 

= 
3

F
ol

lo
w

−
up

 y
ea

rs

G GG
G

G
G

G
G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RR
R

R
R

R
R

R

AA
A

A
A

A
A

A

S
ub

je
ct

 1
 ; 

ba
se

lin
e 

ag
e 

= 
58

 ; 
s 

= 
5

F
ol

lo
w

−
up

 y
ea

rs

G GG
G

G
G

G
G

G G G
G G

G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RR
R

R
R

R
R

R
RR

R
RR

R

AA
A

A
A

A
A

A
AA

A
AA

A

S
ub

je
ct

 1
 ; 

ba
se

lin
e 

ag
e 

= 
58

 ; 
s 

= 
7

F
ol

lo
w

−
up

 y
ea

rs

G GG
G

G
G

G
G

G G G
G G

G
G

G
G

G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RR
R

R
R

R
R

R
RR

R
RR

R
RR

R
R

AA
A

A
A

A
A

A
AA

A
AA

A
AA

A

A

S
ub

je
ct

 2
 ; 

ba
se

lin
e 

ag
e 

= 
56

 ; 
s 

= 
3

F
ol

lo
w

−
up

 y
ea

rs

GG G

G

G

G
G

G
G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RRR
R

R
R

R

R
R

A AA
A

A
A

A
A

A

S
ub

je
ct

 2
 ; 

ba
se

lin
e 

ag
e 

= 
56

 ; 
s 

= 
5

F
ol

lo
w

−
up

 y
ea

rs

GG G

G

G

G
G

G
G

G
G

G
G

G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RRR
R

R
R

R

R
R

R
R

R
R

R

A AA
A

A
A

A
A

A

A
A

A
A

A

S
ub

je
ct

 2
 ; 

ba
se

lin
e 

ag
e 

= 
56

 ; 
s 

= 
7

F
ol

lo
w

−
up

 y
ea

rs

GG G

G

G

G
G

G
G

G
G

G
G

G
G

G

G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RRR
R

R
R

R

R
R

R
R

R
R

R
RR

R

A AA
A

A
A

A
A

A

A
A

A
A

A
AA

A

S
ub

je
ct

 3
 ; 

ba
se

lin
e 

ag
e 

= 
64

 ; 
s 

= 
3

F
ol

lo
w

−
up

 y
ea

rs

GG G

G
G

G
G

G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RRR
R

R
R

R
R

A AA
A

A
A

A
A

S
ub

je
ct

 3
 ; 

ba
se

lin
e 

ag
e 

= 
64

 ; 
s 

= 
5

F
ol

lo
w

−
up

 y
ea

rs

GG G

G
G

G
G

G
G

G
G

G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RRR
R

R
R

R
R

R
R

R
R

A AA
A

A
A

A
A

A
A

A
A

S
ub

je
ct

 3
 ; 

ba
se

lin
e 

ag
e 

= 
64

 ; 
s 

= 
7

F
ol

lo
w

−
up

 y
ea

rs

GG G

G
G

G
G

G
G

G
G

G
G

G
G

G G

0
1

2
3

4
5

6
7

8
9

10

020406080

00.
2

0.
4

0.
6

0.
8

1

RRR
R

R
R

R
R

R
R

R
R

R
R

R
RR

A AA
A

A
A

A
A

A
A

A
A

A

A
A

AA

G
R

A
eG

F
R

lo
g 

U
P

/C
r

A
lb

um
in

H
os

pi
ta

liz
at

io
n

P
ro

b 
E

S
R

D
P

ro
b 

D
ea

th

Fi
gu

re
4:

In
di

vi
du

al
dy

na
m

ic
pr

ed
ic

te
d

C
IF

fo
r

th
e

th
re

e
se

le
ct

ed
su

bj
ec

ts
in

Fi
gu

re
3.

E
ac

h
ro

w
in

th
e

pa
ne

lr
ep

re
se

nt
s

on
e

su
bj

ec
t,

th
e

th
re

e
co

lu
m

ns
ar

e
th

e
pr

ed
ic

tio
ns

m
ad

e
at

la
nd

m
ar

k
ye

ar
s
s

=
3,

5,
7

w
ith

th
ei

rm
os

tc
ur

re
nt

bi
om

ar
ke

rd
at

a
up

to
th

e
bl

ue
da

sh
ed

ve
rt

ic
al

lin
es

.T
he

pr
ed

ic
tio

n
C

IF
s

in
τ 1

=
3

ye
ar

s
ar

e
pl

ot
te

d
fo

rt
he

ev
en

to
fE

SR
D

(r
ed

cu
rv

e)
an

d
de

at
h

(b
la

ck
cu

rv
e)

.S
ym

bo
ls

in
th

e
fig

ur
e

ar
e

se
ts

im
ila

rl
y

to
Fi

gu
re

3.

 
1418



Ta
bl

e
2:

M
ea

su
re

s
of

pr
ed

ic
tiv

e
ac

cu
ra

cy
su

m
m

ar
iz

in
g

pr
ed

ic
tio

ns
fr

om
th

e
la

nd
m

ar
k

SD
H

m
od

el
fo

rE
SR

D
an

d
de

at
h.

T
he

es
tim

at
es

w
er

e
ob

ta
in

ed
at

th
re

e
la

nd
m

ar
k

ye
ar

s,
s

=
3,

5,
7,

w
ith

pr
ed

ic
tio

n
ho

ri
zo

n
τ 1

=
1,

3
ye

ar
s.

A
U

C
:a

re
a

un
de

rt
he

R
O

C
cu

rv
e

th
at

di
sc

ri
m

in
at

es
th

e
su

bj
ec

ts
w

ith
E

SR
D

fr
om

th
os

e
w

ho
ar

e
ev

en
t-

fr
ee

.T
P

(c
):

tr
ue

po
si

tiv
e

ra
te

at
th

re
sh

ol
d
c;
F
P

(c
):

fa
ls

e
po

si
tiv

e
ra

te
at

th
re

sh
ol

d
c

;t
hr

es
ho

ld
s
c

ar
e

se
le

ct
ed

to
be

0.
1

an
d

0.
05

fo
rE

SR
D

;
an

d
0.

05
an

d
0.

01
fo

rd
ea

th
.B

S:
B

ri
er

sc
or

e,
th

e
m

ea
n

sq
ua

re
d

er
ro

rf
or

th
e

pr
ed

ic
te

d
ri

sk
pr

ob
ab

ili
ty

.
A
U
C

T
P

(c
)

F
P

(c
)

B
S

E
SR

D
D

ea
th

E
SR

D
D

ea
th

E
SR

D
D

ea
th

E
SR

D
D

ea
th

τ 1
=

1
s

=
3

0.
95

7
0.

54
5

0.
92

5
0.

56
8

0.
07

5
0.

53
9

0.
02

4
0.

19
1

s
=

5
0.

92
5

0.
54

7
0.

88
5

0.
58

5
0.

10
0

0.
59

6
0.

02
6

0.
04

3
s

=
7

0.
96

5
0.

58
4

0.
83

2
0.

69
2

0.
09

9
0.

67
5

0.
02

1
0.

03
5

τ 1
=

3
s

=
3

0.
94

4
0.

55
8

0.
87

6
0.

46
8

0.
11

9
0.

37
8

0.
05

4
0.

11
9

s
=

5
0.

94
3

0.
52

0
0.

85
2

0.
49

8
0.

14
0

0.
54

9
0.

05
2

0.
09

3
s

=
7

0.
95

7
0.

49
2

0.
86

3
0.

34
3

0.
13

1
0.

40
5

0.
04

8
0.

11
0

 
1419




