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Abstract
A commonly used model for unsupervised machine learning, or cluster analysis, relies on the fitting
of finite mixture distributions to data, and the most common method for estimating these models is
the expectation-maximization (EM) algorithm. Unfortunately, this algorithm tends to experience
issues related to overfitting, as well as the more commonly known problem of converging to a local
maxima. Mixtures of factor analyzers allow for a factor analysis structure, thus implicitly reducing
the dimensionality in the model. Unfortunately, these factor analyzers do not solve the problems
with the EM stated above. In order to tackle said issues, we use an algorithm that combines the
regular EM with the non-parametric bootstrap, and show its promise for addressing the problems
discussed above on both real and simulated data.

1. Introduction

Finite mixture models (McLachlan and Peel, 2004) have become a prominent feature within
the area of cluster analysis in statistics. A random vector X arises from a parametric
finite mixture model if it follows a probability density function in the form of f(x) =∑G

g=1 πgfg(x | ϑg) where πg are the mixing proportions such that
∑G

g=1 πg = 1 and fg(x |
ϑg) is the density function of group g with ϑg parameters. One very common approach
for parameter estimation in mixture modelling is the use of the expectation maximization
(EM) algorithm (McLachlan and Krishnan, 2008), which unfortunately suffers from issues
to do with degeneracy (Ingrassia and Rocci, 2007, 2011), convergence to local maxima
(Titterington et al., 1985; McLachlan and Krishnan, 2008) and overfitting (Andrews, 2018).

2. Background

2.1 Mixture Models and the EM Algorithm

Herein we focus on multivariate Gaussian distributions, taking the form

f(x) =
G∑

g=1

πgφ(x | µg,Σg)

where µg and Σg represent the mean and covariance matrix of the respective group g. To
facilitate using mixture models for clustering, we introduce the missing cluster membership
indicator variables. Specifically, these matrices are represented in the form of a Zig matrix,
where given the ith observation and the gth group, we can find the conditional expectation
of observation i belonging to group g:

E[Zig | xi, ϑ] =
πgφg(xi | µg,Σg)∑G
j=1 πjφj(xi | µj ,Σj)

,

where ϑ = (π1, ..., πg, µ1, ..., µg,Σ1, ...,Σg) is the entire parameter space.
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The expectation maximization (EM) algorithm carries out parameter estimation through
two specific steps: the expectation (E) step and the maximization (M) step. The E-step is
used to calculate the conditional expectation of the missing data, given the observed data,
with the assumption that the estimated parameters are valid. The M-step updates param-
eters by computing the maximum likelihood estimates (MLEs) from the complete-data
log-likelihood’s expected value. This algorithm then cycles through these two steps until
a stable solution is met. Convergence is determined via “lack of progress” which occurs
when the difference of the last two calculated log likelihoods is smaller than some small,
non-negative ε value.

2.2 Mixtures of Factor Analyzers

When performing the EM algorithm with respect to Gaussian mixture models, calcula-
tion of the covariance matrices becomes increasingly difficult when larger datasets are
introduced. The general Gaussian mixture model EM has a total of Gp(p+ 1)/2 free pa-
rameters requiring estimation for the group covariance matrices. When p (the number of
variables in the dataset) begins to become rather large, the number of parameters needed
to estimate these matrices start to increase rather quickly. To reduce dimensionality, these
group covariance matrices can be decomposed by assuming a mixtures of factor analyzers
model (McLachlan and Peel, 2001) to give a structure of the form

Σg ≈ ΛgΛ
′
g + Ψg (1)

where Λg is a p×q loading matrix (where q is the number of factors) with p << q and Ψg is
a diagonal noise matrix. These covariance structures can have as few as pq− q(q−1)/2+p
parameters and as many as G[pq−q(q−1)/2+p] parameters; either way providing a much
smaller growth in the number of parameters with respect to the dimensionality p.

The factor analyzer structure requires several changes from the standard estimation
scheme for mixtures of multivariate Gaussians via the EM. In particular, the factor analysis
model introduces a new latent variable u, providing two sources of missing data. A variant
of the EM algorithm, the alternating expectation conditional maximization (AECM) al-
gorithm is thus used for parameter estimation. In the interest of keeping this proceedings
short, the reader is encouraged to review McLachlan and Peel (2001) and McLachlan and
Krishnan (2008) for further insights on these matters.

2.3 Bootstrapping and the BootEM Algorithm

The process of bootstrapping (Efron, 1981, 1982) is a resampling-with-replacement scheme
that is primarily used to facilitate finding standard errors for estimators. It has also
been used to improve the predictive power of models through the process of bootstrap
aggregation, or ‘bagging’ (Breiman, 1996). Importantly, some researchers have investigated
the usage of the bootstrap within optimization procedures (Tibshirani and Knight, 1999;
Wood, 2001).

In related and recent work, Andrews (2018) introduced a bootstrap-augmented EM-
style (BootEM) algorithm specifically for performing model-based clustering with mixtures
of multivariate Gaussians. Therein, Andrews shows that BootEM can address issues related
to overfitting, as well as convergence to local maxima. However, among some of the
drawbacks of the BootEM is that the resampling technique results in a requirement of
larger sample sizes with respect to the dimensionality of the data. In other words, even
data sets of moderate dimensionality need to be reduced prior to performing clustering.
This fact severely reduces the practicality of the BootEM algorithm for most real data
sets. We consider the research in this manuscript to primarily address this drawback.
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3. The BootAECM Algorithm

With x being the observed data, z being the missing component indicators, u being the
missing latent variables, and the parameter space ϑ = (π1, ..., πg,µ1, ...,µg,Λ1, ...,Λg,Ψ1, ...,Ψg):

1. Initial cluster membership ẑ0 and initial latent factor scores û0, set j = 1 for the
bootstrap index.

2. Find bootstrap sample x(j) of size n, with corresponding cluster memberships ẑ(j)

and û(j)found from ẑ(j−1) and û(j−1), respectively.

3. Enter EM algorithm for bootstrap sample j, set k = 0 for the within-EM index and
set ẑ

(j)
jk = ẑ(j) and û

(j)
jk = û(j) .

(a) CM-step 1: Find MLEs for µg and πg ∀ g = 1, . . . , G which maximize lc(ϑ|x(j), ẑ
(j)
k ).

Set k = k + 1.

(b) E-step: Find conditional expectations ẑjk and ûjk for all observed data x and
ϑ
(j)
k . Find ẑ

(j)
jk and û

(j)
jk for bootstrap sample j from ẑjk and ûjk respectively.

(c) CM-step 2: Find MLEs for Λg and Ψg ∀ g = 1, . . . , G which maximize
lc(ϑ|x(j), ẑ

(j)
k , û

(j)
k ). Set k = k + 1.

(d) E-step: Find conditional expectations ẑjk and ûjk for all observed data x and
ϑ
(j)
k . Find ẑ

(j)
jk and û

(j)
jk for bootstrap sample j from ẑjk and ûjk respectively.

(e) Calculate l(ϑ(j)k |x
(j)), check for within bootstrap convergence, if not converged

return to Step 3a, else set ẑj = ẑ
(j)
jk and ûj = û

(j)
jk continue.

4. Calculate l(ϑ(j)k |x), check for total algorithm stopping criterion, if not converged set
j = j + 1 and return to Step 2.

Note that Step 3 of the BootAECM still constitutes a standard AECM algorithm, allow-
ing us to use standard convergence criteria such as lack of progress. The log-likelihood
calculated during Step 4 will not be monotonically increasing. We utilize the same stop-
ping criteria as Andrews (2018), checking for a null result of the Durbin-Watson test for
autocorrelation (Durbin and Watson, 1951) across the 500 most recent bootstrap samples.

3.1 Averaged Parameter Space

With the application of the bootstrap to the mixture model, this allows one to consider
examining the model in a different way. A suggested application is the use of the averaged
parameter space, in which one takes the last 500 parameters, averages them, and then
reports the averaged model as the algorithm’s output. In Figure 3.1, the black circles
provide caution on naively averaging the parameter space from the BootAECM algorithm
for mixtures of factory analyzers.

The reason we see a precipitous drop for the log-likelihood of the naively averaged
parameter space for this has to do with one of the main features of the factor analysis
model: namely, the non-uniqueness of the solutions for Λg. Thus, while the BootAECM
progresses, we may see arbitrary orthogonal rotation of the Λg occur. When this happens,
any averaging across Λg resulting from different bootstrap samples will provide factor
loadings without any particular relation to the data being fit — hence a drop in the
model-fitting measure.
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Figure 1: Consider the following plots of log likelihoods taken from a run on the body
data set. In red are the log-likelihoods specified in Step 4 of the BootAECM algorithm,
while in green and black are differing approaches to the averaged parameter spaces. Black
represents a naive averaging of all the parameters in ϑ, where the green represents the
averaged space where Λg and Ψg are combined to provide an estimate of Σg.

A simple fix is to instead consider the estimates of Σg, that is ΛgΛ
′
g + Ψg, resulting

from each bootstrap sample and average those instead. We see the loglikelihood arising
from that process in green in Figure 3.1, showing a much more expected result — that is,
generally increasing while the algorithm progresses.

4. Application to a Benchmark Data Set

The new BootAECM algorithm was applied to a real data set as a preliminary investigation
of its performance compared to the standard AECM algorithm. We chose the ‘body’ data
set available in the gclus library (Hurley, 2012) as a commonly used benchmark data set
for clustering that also happens to have moderate dimensionality. It contains contains 23
measurements on 507 people, in addition to the recording of their age and sex. Known
groups are based on the sex variable (260 females and 247 males). A classification table
resulting from 50 random runs of each algorithm is shown in Table 1. We find a substantial
decrease on the aggregate misclassification rate (0.26 vs 0.41) when using the proposed
BootAECM algorithm instead of the standard AECM approach to model fitting.

Table 1: Results from 50 random initializations of the AECM and BootAECM algorithms
for mixtures of factor analyzers

Method Group Gender
Male Female

AECM 1 5908 3957
2 6442 9043

BootAECM 1 8628 2759
2 3722 10241

5. Summary

A bootstrap-augmented alternating expectation conditional-maximization algorithm with
application to mixtures of factor analyzers was implemented in an attempt to address issues
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of overfitting and convergence to local maxima while simultaneously performing implicit
dimensionality reduction. Our proposed algorithm has herein been shown to address at
least the underfitting aspect by improving on the clustering results of a benchmark data
set. Future work will develop a simulation framework to investigate its actual performance
vis a vis overfitting. Additional work is expected to address issues such as model selection,
alternative convergence criteria, and application to more real benchmark and/or novel
clustering data sets.
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