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Abstract
In the clinical development of cancer immunotherapies and targeted therapies, the proportional

hazard (PH) assumption used in the power calculation for time-to-event endpoints often does not
hold. For example, due to the delayed and (for some patients) durable antitumor effect on can-
cer cells induced by immunotherapies, the survival curves of a randomized controlled study may
take a while to separate and the curve for the immunotherapy agent may have a long and flat tail.
Therefore, the log-rank test may lose power, and the interpretation of the hazard ratio (HR) from the
standard Cox regression model is not straightforward. Kaplan-meier (KM) based methods such as
the restricted mean survival time (RMST) and weighted KM-based tests are interesting alternative
methods for statistical inference that do not rely on the PH assumption. The RMST is an appealing
statistical measure to quantify treatment benefit in a clinically meaningful and interpretable manner.
In this paper, we give an overview of these methods and present a simulation study to compare the
performance of the KM-based methods with the HR/log-rank test under various non-PH patterns.
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1. Introduction

In many disease areas, a time-to-event (TTE) endpoint is used as the primary endpoint in
randomized clinical trials. The most common method for the analysis of TTE data is the
log-rank test and the Cox proportional-hazard (PH) model under the PH assumption, and
the hazard ratio (HR) derived from the Cox-model is used to quantify the relative effect
between treatment groups. Under the PH assumption, the log-rank test is the most power
test, and the HR can be interpreted approximately as a constant relative measure of risk over
time, for instance S1(t) = S0(t)

HR, where S1(t) and S0(t) are the the survival function at
time t for two randomized treatment groups.

With the emergence of novel therapies such as targeted therapies and immunothera-
pies in cancer, the PH assumption often does not hold. Depending on the mechanism of
the drug, non-PH can demonstrate different patterns. For example, unlike chemotherapies
that attach tumor cells directly, immunotherapies target the immune system to elicit effec-
t on cancer cells. The indirect effect could lead to delayed effect as manifested by late
separation on the Kaplan-Meier (KM) curves. The delayed treatment effect can also be
maintained thanks to its durability on some patients resulting in flat survival tails and long-
term benefit. In contrast, a small molecule targeted therapy may manifest fast and dramatic
tumor regression early on, however, the effect may not last and could diminish over time,
with the survival curves demonstrating a diminishing or “belly-shape” pattern (Figure 1).
In both cases, the PH assumption is violated.

The log-rank test is still statistically valid under non-PH, but it may suffer significant
power loss owing to its relationship with the score test in the Cox-PH model. The loss in
power increases the failure rate of clinical trials for promising novel therapies. Furthermore,
the HR is not interpretable under non-PH despite the fact that it can be approximated as the
weighted HR over time on the log-scale (Huang and Kuan, 2018).

In the literature, a number of methods have been proposed to tackle the non-PH issue,
such as, notably, weighted log-rank test (e.g. Fleming and Harrington, 1981), or a lin-
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ear combination or the maximum of several test statistics (Tarone, 1981; Gastwirth, 1985;
Zucker and Lakatos, 1990; Self, 1991; Lee, 1996). The test proposed by Yang and Pren-
tice (2010) is a weighted logrank test whose weights are obtained by fitting the data to a
proposed model.

Since we conventionally present the KM curves to show the temporal profile of survival
data, it is natural to perform a test that directly compares two survival function, rather than
their hazard functions. Such interesting class of methods is the KM-based method that
measures the relative between-group difference by the difference or ratio between the KM
curves (Pepe and Fleming, 1989; Royston and Parmar, 2011; Uno et al., 2014), which
is different from the rank-based methods (such as the log-rank test or weighted log-rank
test) that essentially assess effect by (weighted) difference of hazard functions. Without
parametric extrapolation, the KM curves contain all the information of the survival data.
Therefore, the KM-based method is an appealing robust approach to summarize between-
group difference that does not rely on the PH assumption.

In this paper, we give an overview of three KM methods proposed in the literature and
discuss their benefits and limitations. Section 2 describes the concepts of each method. In
Section 3, we conduct a simulation study to compare these methods under various non-PH
scenarios. Section 4 concludes with a discussion.

2. Kaplan-Meier Based Methods

2.1 Restricted Mean Survival Time (RMST)

The most widely used KM-based method is the restricted mean survival time (RMST),
which is a robust and clinically interpretable summary measure of the survival time dis-
tribution that does not rely on the PH assumption. Unlike the median survival time, it is
estimable even under heavy censoring. There has been considerable methodological re-
search (e.g., Zucker, 1998; Royston and Parmar, 2011; Royston and Parmar, 2013; Uno
et al., 2014) on the use of RMST to estimate treatment effects as an alternative to the HR
approach. The RMST methodology is applicable independent of the PH assumption, and
a test of the difference or ratio between the RMST for the experimental arm and the con-
trol arm may be more appropriate to determine superiority with respect to the time-to-event
endpoint. The RMST depends on the selection of cutoff (truncation) time τ , which needs to
be pre-specified to avoid selection bias (after seeing the data). Common selections include
fixed landmark times of clinical relevance (e.g. x-year), minimum of the largest observed
event time in each of the two groups, or minimum of the largest observed time (event or
censoring) in each of the two groups.

The RMST µ of a random time-to-event variable T is the mean of the survival time
X = min(T, τ) truncated at a cutoff time τ > 0. It can be derived as the area under the
survival curve S(t) = P (T > t) from t = 0 to t = τ :

µ(τ) = E(X) =

∫ τ

0
S(t)dt (1)

The variance term σ2(τ) of X can also be derived accordingly using integration by
part:

σ2(τ) = Var(X) = 2

∫ τ

0
tS(t)dt−

[∫ τ

0
S(t)dt

]2
(2)

A natural estimator for µ is

µ̂(τ) =

∫ τ

0
Ŝ(t)dt (3)
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where Ŝ(t) is the KM estimator for the survival function of T , a step function with mass
at the time points t1, t2, . . . , tD. µ̂(τ) approximately follows a normal distribution with its
variance term estimated below:

V [µ̂(τ)] =
D∑
i=1

[∫ τ

ti

Ŝ(t)dt

]2 di
Yi(Yi − di)

(4)

where di and Yi are the number of events and number of patients at risk at ti, respectively.
In a randomized two-arm trial with survival function ST (t) and SC(t) for the treatment

arm and control arm, respectively, the difference in RMST between arms can be estimated
as ∫ τ

0
[ŜT (t)− ŜC(t)]dt (5)

with estimated variance term V [µ̂T (τ)] + V [µ̂C(τ)].
Alternatively, analogous to the hazard ratio as a measurement of the relative risk of

event hazard, a similar measurement for RMST is the ratio of RMST between arms (control
versus treatment), with ratio < 1 indicating survival improvement in the treatment arm.
Unlike the HR, the RMST ratio does not rely on any model assumption, which can be
estimated as ∫ τ

0 ŜC(t)dt∫ τ
0 ŜT (t)dt

(6)

with variance term estimated using the delta method.

2.2 Weighted Kaplan-Meier test (Pepe and Fleming, 1989)

Pepe and Fleming (1989) proposed a class of tests based on the weighted KM (WKM)
statistic. The test is based on a linear combination of weighted differences of 2 KM curves
over time and when the weight function is a constant 1, the WKM statistic is equivalent to
the RMST difference. However, this method did not get much attention in practice.

Specifically, let ŜT (·) and ŜC(·) be the KM estimators for the treatment and control
groups to be compared. A WKM test statistic is(

nTnC

nT + nC

)1/2 ∫ τ

0
Ŵ (t)D̂(t)dt (7)

where D̂(t) = ŜT (t)− ŜC(t), τ = sup
[
t : min

{
K̂T (t), K̂C(t)

}
> 0

]
, K̂i(·) denotes the

left-continuous version of the KM estimator for the censoring survival function for Group
i, ni is the sample size in Group i (i = T,C), and Ŵ (·) is the weight function.

For the test statistics in (7), Pepe and Fleming (1989) proposed two weighting schemes:

K̂T (t)K̂C(t)

q̂T K̂T (t) + q̂CK̂C(t)
(8)

and {
K̂T (t)K̂C(t)

q̂T K̂T (t) + q̂CK̂C(t)

}1/2

(9)

where q̂i is the percentage of patients assigned to Group i. The weighting schemes are
essentially functions of inverse probability of censoring and put more weight on early time
points and less weight on late time points. The objective of such weighting schemes is
to increase the stability of the test statistics by assigning less weight to the tails of the KM
curves, analogous to the Wilconxon test or Fleming-Harrington test FH(p, 0) where p > 0.
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2.3 Weighted Kaplan-Meier test (Uno et al., 2014)

Uno et al. (2014) proposed a data-dependent weight function that automatically makes
weighting adjustment, with the weight at study time t proportional to D̂(t) = ŜT (t) −
ŜC(t). Let σ̂(·) be the standard error estimate of D̂(t), and Z(·) = D̂(·)/σ̂(·), which is
distributed approximately N(0, 1) under the null hypothesis.

Instead of utilizing Z(t) as a test statistic, Uno et al. (2014) consider a test statistic
which is a weighted integration of standardized differences between two survival curves
over [0, τ ]

V =

∫ τ

0
Ŵ (t)Z(t)dt (10)

where Ŵ (·) is a data-dependent weight function. One proposed weighting scheme is
Ŵc(t) = max{Z(t), c} and

V1(c) =

∫ τ

0
Ŵc(t)Z(t)dt (11)

and c is selected adaptively to construct a test statistic based on {V1(c), 0 ≤ c ≤ η}, where
η is a constant.

The test automatically makes weighting adjustments empirically by putting more weight
when “difference” is large. The proposed test is data-driven and agnostic to various non-PH
patterns. Similar to the method by Yang and Prentice (2010), Uno and colleagues warned
that the Type I error rate might be slightly inflated when the sample size or the number of
observed events is small.

One disadvantage of this method is that it is computationally very intensive because
it employs the perturbation resampling approach to approximate the distribution under the
null hypothesis.

3. Simulation Study

In this simulation study, survival time is assumed to follow a piecewise exponential dis-
tribution with piecewise constant hazard in each time interval defined by a sequence of
change-points. Patients are 1 : 1 randomized to the treatment arm and the control arm.
We further assume that the drop-out censoring variable follows an exponential distribution
with hazard rate of 0.004 in both arms.

Scenario 1 assigns hazard rates of 0.104 and 0.103 to the treatment and control arms
respectively for the first 3 months, and hazard rates of 0.161 and 0.077 afterwards. In other
words, a HR of approximately 1 in the first 3 months and HR of 0.48 afterwards (3-month
delayed effect with PH afterwards). The analysis time for all methods to be evaluates is
when 70% of a total of 300 patients have events. Scenario 2 assumes the control arm has
a constant hazard rate of 0.069 (median survival time of 10 months), while the treatment
arm hazard function is piecewise constant with values of 0.069, 0.052 and 0.001 in the
first 5 months, 5 to 15 months and after 15 months respectively (corresponding to a HR
of 1, 0.75 and 0.02 in each interval), indicating a 5-month delayed effect with long-term
survival pattern. The analysis time for all methods to be evaluates is when 70% of a total of
300 patients have events. Under Scenario 3, treatment effect is diminishing over time, with
a constant hazard rate of 0.069 in the control arm, and piecewise constant hazards of 0.045
and 0.083 for the treatment arm in the first 15 months and after 15 months. The analysis
time for all methods to be evaluates is when 70% of a total of 300 patients have events.
Scenario 4 assumes a 3-month delay with long-term survival and crossing hazard pattern,
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with control arm hazard rates equal to 0.347, 0.116, 0.046, and treatment arm hazard rates
equal to 0.520, 0.116, 0.007 in the first month, 1 month to 3 months and after 3 months
respectively. The analysis time for all methods to be evaluates is when 75% of a total of
300 patients have events.

Accrual is assumed to follow a ramp-up pattern with slow enrollment in the first 6
months and faster and constant accrual rate afterwards.

For each scenario, 5000 simulations are performed to evaluate the performance of each
method. The results are summarized in Table 1).

Table 1: Simulation results under Scenarios 1-4 for the comparison of the log-rank test,
RMST test, WKM test (Pepe and Fleming, 1989) and WKM test (Uno et al., 2014). HR
and RMST difference are summarized under each scenario. The log-rank test and the HR
use data up to the minimum of (maximum of the largest observed event time in either arm,
minimum of the largest event/censoring time in either arm). The KM-based methods use
data up to the minimum of the largest event/censoring time in either arm.

Log-rank RMST WKM (PF) WKM (Uno)
HR Power Diff.(m) Power Power Power

Sc1 (3m delay then PH) 0,64 89.7% 2.52 90.3% 78.3% 90.9%
Sc2 (5m delay with 0.78 46.9% 3.01 53.3% 28.8% 68.4%
long-term survival)
Sc3 (diminishing, 0.75 57.1% 2.65 56.0% 68.5% 60.7%
crossing hazards)
Sc4 (3m delay with long-term 0.78 48.9% 5.36 68.6% 44.1% 92.1%
survival, crossing hazards)

The log-rank test performs well in Scenario 1 when there is a 3-month delayed effect
and PH afterwards. Since the majority of events occur after 3 months, the loss in power due
to non-PH is controlled to a less extent, with an overall estimated HR of 0.64 from the Cox-
PH model. RMST test and WKM test (Uno) perform similarly, with the WKM test (Uno)
having the highest power. The WKM test (PF) does not perform well due to assigning less
weight to longer follow-up. In Scenario2 and Scenarios 3 when there is a delayed effect
(3-5 months) and the delayed effect is maintained with the treatment arm KM curve flat
in the tails, indicating a long-term survival or remission pattern (sometime referred to as
mixture cure-rate survival model), the log-rank test has substantial power loss, while the
RMST test and the WKM (Uno) test have much higher power. The WKM (PF) test does
not perform well. In Scenario 3 with a diminishing and crossing-hazard pattern, the WKM
(PF) test has the best performance, followed by the WKM (Uno) test. The log-rank test and
the RMST test have similar power. Overall, the WKM (Uno) test has the highest power
across all 4 different scenarios, followed by the RMST test.

4. Discussion

The KM-based method is an appealing approach to address the issue of non-PH for the
analysis of survival data, in particular for a drug that may demonstrate long-term benefit.

Table 2 summarizes the pros and cons of the KM-based method in comparison with the
HR and log-rank test. The WKM test (Uno) utilizes a data-driven weighting scheme and
can handle all types of non-PH scenarios. Simulations show that it has the highest power
of compared to the log-rank test and other KM-based tests. However, it is computationally
intensive and relies on a resampling approach to control the Type I error rate. The WLM
test (PF) has poor performance except for the diminishing effect scenario. The test based
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Table 2: Pros and Cons of KM-based methods versus the HR/log-rank test in the presence
of non-PH.

HR and log-rank test RMST WKM test (PF) WKM test (Uno)
Power may have substantial higher power than poor performance robust and high

power loss the log-rank in except for performance in
some scenarios diminishing effect all scenarios

Sensitive to long no yes no yes
term survival
or remission
Robust to all no no no yes
non-PH types
Estimation HR RMST difference no estimation no estimation

RMST ratio measure measure
Clinical clinically not simple and weighted test weighted test
interpretation interpretable meaningful difficult to difficult to
under non-PH interpretation interpret interpret
Asymptotics yes yes yes no (resampling)
Computing speed fast fast fast slow

on RMST can have higher power than the log-rank test in some non-PH scenarios. Both
the RMST test and the WKM test (Uno) are sensitive to long-term survival or long-term
remission. The log-rank test can have substantial power loss in the presence of non-PH.

Other than hypothesis testing, another important aspect of statistical inference is the
estimation. When the PH assumption is violated, the HR derived from the Cox-PH model
is not clinically interpretable and the difference in median may under-estimate or over-
estimate the treatment effect. The WKM tests are testing approaches without associated
estimation measures. The RMST is a clinically and statistically meaningful global sum-
mary measure no matter if the PH assumption holds. Figure 2 illustrates the advantage of
using RMST difference to measure treatment benefit in comparing inotuzumab with stan-
dard chemotherapy in a Phase 3 randomized study for patients with relapsed or refractory
acute lymphoblastic leukemia (Kantarjian et al., 2016). We recommend that the RMST
estimation and testing should be included as a regular analytic procedure in the toolkit of
survival analysis.
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Figure 1: Examples of patterns of non-proportional hazards based on mechanisms of ac-
tions.

Figure 2: Overall survival Kaplan-Meier curves of the phase 3 randomized study in pa-
tients with relapsed or refractory, CD22-positive, Philadelphia chromosome (Ph)-positive
or Ph-negative acute lymphoblastic leukemia. A total of 326 patients were 1:1 random-
ized to receive either inotuzumab ozogamicin (inotuzumab ozogamicin group) or standard
intensive chemotherapy (standard-therapy group) (Source: Kantarjian et al., 2016).
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Figure 3: Non-PH simulation scenarios of event-free probability by time for a randomized
(1 : 1) clinical trial comparing the treatment arm (green) with the control arm (red).
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