
Density Estimation Via Hierarchies of Nonparametric Priors

Federico Camerlenghi ∗ Antonio Lijoi † Igor Prünster ‡

Abstract
In Bayesian Nonparametrics partial exchangeability is a useful assumption tailored for heteroge-
neous, though related, groups of observations. Recent contributions in Bayesian literature have
focused on the construction of dependent nonparametric priors to accommodate for partially ex-
changeable sequences of observations. In the present paper we concentrate on vectors of hierarchi-
cal Pitman-Yor processes, in which the dependence is created by choosing a common random base
measure for each group of observations. These hierarchical processes are then used to define depen-
dent hierarchical mixtures. We finally apply the model to estimate densities arising from multiple
groups of observations by performing a suitable Gibbs sampling algorithm.

Key Words: Bayesian nonparametrics, partial exchangeability, hierarchical process, Pitman-Yor
process, density estimation, mixture model.

1. Introduction

Bayesian inference, as well as statistical inference in general, can be carried out if a certain
number of analogous observations are available. Exchangeability reflects this idea of anal-
ogy or symmetry of the data in some applications of interest. We remind that a sequence
of observations (θi)i≥1 is exchangeable iff, for any n ≥ 1, the distribution of the vector
(θ1, . . . , θn) is invariant under a permutation of its components. By virtue of de Finetti’s
representation theorem, such an assumption can be conveniently rephrased as conditional
independence and identical distribution of the θ′is, more precisely

θi|p̃
iid∼ p̃, i ∈ N

p̃ ∼ Q

where p̃ is a random probability measure with distribution Q, called the de Finetti mea-
sure of the sequence and working as a prior distribution to carry out posterior inference.
The most famous Bayesian nonparametric prior is certainly the distribution of the Dirichlet
process introduced by Ferguson (1973). The Pitman-Yor process has been the first general-
ization of the Dirichlet process (see Pitman and Yor (1997)); other important contributions
for the construction of random probability measures have been proposed by Regazzini, Li-
joi and Prünster (2003) and De Blasi et al. (2015).
However, as pointed out by de Finetti (1938) himself, exchangeability could be a quite re-
strictive assumption when data are affected by some sort of heterogeneity, e.g. in multiple
related studies. In these situations exchangeability can be considered only a limiting case
and one should resort to more general dependence structures, which are still analytically
tractable. Some dependent nonparametric priors have been recently proposed in Bayesian
literature, and many of these rely on the notion of partial exchangeability. To provide a for-
mal definition of such a fundamental assumption, suppose that Θ is a Polish space equipped
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with its Borel σ-algebra T . Consider d sequences of observations θ(i) := (θi,j)j≥1, for
i = 1, . . . , d, defined on some probability space (Ω,F ,P) and taking values in (Θ,T ).
They are partially exchangeable if and only if the distribution of (θ(1), . . . , θ(d)) coincides
with the one of (π1θ

(1), . . . , πdθ
(d)), where πiθ(i) = (θi,πi(j))j≥1, for all the d-tuples

(π1, . . . , πd) of finite permutations on Nd. The de Finetti representation theorem provides
with an equivalent formulation of such a notion, more precisely (θi,j)j≥1, for i = 1, . . . , d,
are partially exchangeable if and only if there exists a vector of random probability mea-
sures (p̃1, . . . , p̃d), such that

(θ1,j1 , . . . , θd,jd) | (p̃1, . . . , p̃d)
iid∼ p̃1 × · · · × p̃d (j1, . . . , jd) ∈ Nd

(p̃1, . . . , p̃d) ∼ Qd.
(1)

Denoted by PΘ the space of all probability measures on Θ, which is assumed to be en-
dowed with the corresponding Borel σ-field PΘ, then Qd is a probability law on the space
(PdΘ,P

d
Θ). The definition of Qd, or equivalently of the dependence across p̃1, . . . , p̃d,

has been recently addressed in the Bayesian nonparametric literature, starting from the
contribution of MacEachern (1999, 2000). In the present paper we focus on hierarchical
random probability measures, developing a suitable model to face Bayesian density esti-
mation when data come from different, though related, sources of randomness. The idea
of hierarchical priors has been first introduced in Teh et al. (2006) for the Dirichlet process
case. Other contributions in this direction include Gasthaus and Teh (2010); Teh and Jordan
(2010); Wood et al. (2011); Nguyen (2016), a complete distribution theory for hierarchical
processes has been developed in Camerlenghi et al. (2018a), see also Camerlenghi, Lijoi
and Prünster (2018b) for the exchangeable case. The structure of the present paper is as
follows. In Section 2 we recall the definition of hierarchical Pitman-Yor processes, which
will be used to define a vector of random dependent densities. The MCMC algorithm for
density estimation will be presented in Section 3, then we conclude the paper with some
numerical illustrations.

2. Hierarchies of Pitman-Yor processes

In the sequel we focus on hierarchies of the Pitman-Yor (PY) process (see Pitman and
Yor (1997)). It is worth to remind that a Pitman-Yor random probability measure p̃ is
characterized by two parameters (c, σ) and a base measure P0. The admissible parameter
values are c > −σ and σ ∈ (0, 1) or c = m|σ| and σ < 0 for some m ∈ N. For our
purposes, we assume σ ∈ (0, 1) and c > 0. There are many ways to construct p̃, and the
simplest one is based on a stick-breaking procedure. More precisely p̃ is a discrete random
probability measure p̃ =

∑
j≥1 π̃jδZj such that

π̃1 = V1, π̃j = Vj

j−1∏
i=1

(1− Vi) for j ≥ 2,

where the (Zj)j≥1’s are i.i.d. random variables taking values in (Θ,T ), with common
distribution P0, and the Vi’s are independent Beta random variables with parameters (c +
iσ, 1 − σ). In addition the sequences (Vi)i≥1 and (Zi)i≥1 are assumed to be independent.
To fix the notation, we will write p̃ ∼ PY(σ, c;P0).

We are now ready to define a vector of hierarchical Pitman-Yor processes, randomizing
the base measure referring to each p̃i of the vector (p̃1, . . . , p̃d) in (1). More precisely we
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say that Qd in (1) is the distribution of a Hierarchical Pitman-Yor Process (HPYP) if

p̃i|p̃0
ind∼ PY(σi, ci; p̃0) i = 1, . . . , d

p̃0 ∼ PY(σ0, c0;P0)
(2)

being σi, σ0 ∈ (0, 1), ci, c0 > 0, for any i = 1, . . . , d, and P0 is a non-atomic probability
measure on (Θ,T ). Note that the use of the same base measure p̃0 for each group of obser-
vations generates dependence across the diverse random probability measures. It is worth
to underline that the random probability measures p̃1, . . . , p̃d in (2) are almost surely dis-
crete, since they are PY processes conditionally on p̃0. For the definition of a broader class
of hierarchial priors, having almost surely discrete realizations, we refer to Camerlenghi et
al. (2018a).

2.1 Hierarchical mixture models

It is now easy to employ the vector (p̃1, . . . , p̃d) in (2), to define a corresponding vector
of random dependent densities (f̃1, . . . , f̃d), by putting f̃i(x) :=

∫
Θ h(x; θ)p̃i(dθ), where

h( · ; · ) is a kernel function. More precisely we assume to be provided with a sample
Xi := (Xi,1, · · · , Xi,ni) for population i, where i = 1, . . . , d, and that the variables Xi,j’s
take values in a Polish space X, equipped with the Borel σ-field X . The vector Xi is
associated with the corresponding vector of latent variables θi := (θi,1, · · · , θi,ni), for any
i = 1, . . . , d. We can summarize the hierarchical structure as follows:

(X1,j1 , . . . , Xd,jd)|(θ1,j1 , . . . , θd,jd)
ind∼ h( · ; θ1,j1)× · · · × h( · ; θd,jd)

(θ1,j1 , . . . , θd,jd)|(p̃1, . . . , p̃d)
ind∼ p̃1 × · · · × p̃d

(3)

for any ji ∈ {1, . . . , ni}, i = 1, . . . , d, and (p̃1, . . . , p̃d) is supposed to be a vector of hier-
archical Pitman-Yor processes. In order to fix the notation we define X := (X1, . . . ,Xd)
and besides θ := (θ1, . . . ,θd).
The discreteness of the different random probability measures in (3) allows for latent ties
across the different vectors of latent variables θi, for i = 1, . . . , d. Such ties induce a latent
random partition within each group and across the diverse groups of observations, whose
distributional properties has been carefully investigated in Camerlenghi et al. (2018a). In
the following we make use of these results to determine the joint distribution of the vari-
ables in the model (3). We will assume that the latent variables θ may display k distinct
values, denoted here as θ∗1, . . . , θ

∗
k. Moreover, ni := (ni,1, . . . , ni,k), for i = 1, . . . , d,

is the vector of frequency counts in the i-th vector θi, namely ni,j ≥ 0 is the number of
elements of the i-th vector θi that coincide with the j-th distinct values; we further set
n̄•j :=

∑d
i=1 ni,j the total number of observations coinciding with the j-th distinct value.

We obviously have that
∑k

j=1 ni,j = ni for any i = 1, . . . , d, and ni,j = 0 means that
the j-th distinct has not been recorded in θi. The induced partition structure, known as
partially Exchangeable Partition Probability Function (pEPPF), may be easily interpreted
in terms of the Chinese Restaurant Franchise (CRF) representation (see Teh et al. (2006)).
According to this metaphor, θi identifies the i-th Chinese restaurant in a franchise of d
restaurants, all sharing the same menu. θi are the dishes’ labels that have been selected
by the ni customers seated in the i-th restaurant. People seating at the same table eat the
same dish, and the same dish can be served at different tables within the same restaurant or
across different restaurants. Accordingly, ni,j ≥ 0 is the number of customers in restaurant
i eating dish j, for i = 1, . . . , d and j = 1, . . . , k.
As discussed in Camerlenghi et al. (2018a) the evaluation of the partition structure in full
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generality is a difficult task, hence, in order to obtain a more tractable expression of the
pEPPF, one needs to introduce suitable latent variables Ti = (Ti,1, . . . , Ti,ni), for each
restaurant i, which represent the tables’ labels where the people are seated at and are col-
lected in the vector T := (T1, . . . ,Td). The latent tables determine a refinement of the
partition induced by data, whereby the ni,j customers eating dish j in restaurant i may be
partitioned into `i,j ∈ {1, . . . , ni,j} distinct tables, the t-th of which has qi,j,t customers,
for t = 1, . . . , `i,j . Hence we have that ni,j =

∑`i,j
t=1 qi,j,t. We further introduce the com-

pact notation for the vectors of counts `i := (`i,1, . . . , `i,k) and qi,j := (qi,j,1, . . . , qi,j,`i,j ),
while ` = (`1, . . . , `d) denotes the overall tables frequencies, whereas ¯̀•j =

∑d
i=1 `i,j ,

¯̀
i• =

∑k
j=1 `i,j denote the number of tables serving dish j and the overall number of tables,

respectively, in restaurant i. We introduce the set Ci,j := {r ∈ {1, . . . , ni} : θi,r = θ∗j}
collecting the indexes of observations from population i which coincides with the j-th
distinct value θ∗j ; we finally denote by T ∗i,j,1, . . . , T

∗
i,j,`i,j

the `i,j distinct tables’ labels in
restaurant i serving dish j. Using the representation of the partition structure of θ derived
in Camerlenghi et al. (2018a), one can determine the joint distribution of (X,T ,θ), when
(p̃1, . . . , p̃d) is a vector of hierarchical Pitman-Yor processes:

L (X,T ,θ) =

d∏
i=1

k∏
j=1

∏
r∈Ci,j

h(xi,r; θ
∗
j )dxi,r

∏k−1
r=1(c0 + rσ0)

(c0 + 1)|`|−1

k∏
t=1

(1− σ0)¯̀•t−1

×
d∏
i=1

∏¯̀
i•−1
r=1 (ci + rσi)

(ci + 1)ni−1

k∏
v=1

`i,v∏
t=1

(1− σi)qi,v,t−1Q0(dti,v,t)

 k∏
j=1

P0(dθ∗j ).

(4)

where (a)n := Γ(a+n)/Γ(a) denotes the ascending factorial, with the proviso (a)−1 ≡ 1,
and Q0 is a non-atomic probability measure on the space of tables’ labels.

3. Algorithm

On the basis of the joint distribution (4), in this section we are able to devise a Gibbs
sampler algorithm to estimate the posterior expected values of the random dependent den-
sities f̃i, for i = 1, . . . , d. In particular we propose a suitable extension of the algorithm
in Escobar and West (1995), which is valid for an arbitrary number d of populations. As
in Escobar and West (1995), we assume that P0 is a normal/Inverse-Gamma distribution,
i.e. P0(dM,dV ) = P0,1(dV )P0,2(dM |V ), where P0,1 is an Inverse-Gamma with param-
eters (s0, S0), and P0,2 is Gaussian with mean m and variance τV . The hyperpriors are
chosen of the type τ−1 ∼ Gam(w/2,W/2) and m ∼ N(a,A), for some real parameters
w,W,A > 0 and a ∈ R. In the simulation studies we will set (w,W ) = (1, 100), (a,A) =
(X̄, 2). The parameters (ci, σi), for i = 0, . . . , d, are assumed to be independent random
variables, in particular we suppose that ci ∼ Gam(1, 1) and σi ∼ U(0, 1) a priori for any
i = 0, . . . , d. For the sake of notational simplicity we further set c := (c0, c1, . . . , cd),
σ := (σ0, σ1, . . . , σd) and ∆ := (X,T ,θ, τ,m, c,σ); we finally write ∆−v to denote all
the variables but v. The basic steps of the algorithm are described below in details.

Update the couples of dishes and tables

Fix, i = 1, . . . , d, we use the notation v−r to indicate the value of a random variable v
after the removal of the couple (θi,r, Ti,r). The full conditional distribution of the couple
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(θi,r, Ti,r), for r = 1, . . . , ni and i = 1, . . . , d, boils down to

P(θi,r ∈ dθ, Ti,r ∈ dt|∆−(θi,r,Ti,r)) = wi,0P
∗
i,r(dθ)Q0(dt) +

k−r∑
h=1

wi,hδ{θ∗,−rh }(dθ)Q0(dt)

+
k−r∑
h=1

`−ri,h∑
κ=1

wi,h,κδ{θ∗,−rh }(dθ)δ{T ∗,−ri,h,κ}(dt)

where T ∗,−ri,h,1 , . . . , T
∗,−r
i,h,`−ri,h

are the distinct tables’ labels at the first restaurant where the h-th

dish is served, after the removal of Ti,r, withP ∗i,r(dθ) = h(xi,r; θ)P0(dθ)/
∫

Θ h(xi,r; θ)P0(dθ),
while

wi,0 ∝
(c0 + k−rσ0)(ci + ¯̀−r

i• σi)

(ci + ni − 1)(c0 + |`−r|)

∫
Θ
h(xi,r; θ)P0(dθ)

and, for any h = 1, . . . , k−r and κ = 1, . . . , `−ri,h

wi,h ∝
(¯̀−r
•h − σ0)(ci + ¯̀−r

i• σi)

(ci + ni − 1)(c0 + |`−r|)
h(xi,r; θ

∗,−r
h ),

wi,h,κ ∝
(qi,h,κ − σi)
(ci + ni − 1)

h(xi,r; θ
∗,−r
i,h )11{n−ri,h>0}.

Update the parameters

The updating of τ,m, σi and ci, for i = 0, 1, . . . , d, is based on their full conditional
distributions, that we report here. It is easy to see that

L (c0|∆−c0) ∝
∏k−1
r=1(c0 + rσ0)

(c0 + 1)|`|−1
κc0(dc0)

L (ci|∆−ci) ∝
∏¯̀

i•−1
r=1 (ci + rσi)

(ci + 1)ni−1
κci(dci) for i = 1, . . . , d

L (σ0|∆−σ0) ∝
k−1∏
r=1

(c0 + rσ0)
k∏
t=1

(1− σ0)¯̀•t−1κσ0(dσ0)

L (σi|∆−σi) ∝
¯̀
i•−1∏
r=1

(ci + rσi)
k∏
v=1

`i,v∏
t=1

(1− σi)qi,v,t−1κσi(dσi) for i = 1, . . . , d

where κci( · ) and κσi( · ) are the prior distributions for ci and σi, i = 0, 1, . . . , d, re-
spectively. It is apparent that these parameters have to be updated through a Metropolis-
Hastings algorithm.
As for τ and m we get

L (τ |∆−τ ) ∼ IG
(w

2
+
k

2
,
W

2
+

k∑
j=1

(M∗j −m)2

2V ∗j

)
,

L (m|∆−m) ∼ N
(R
D
,

1

D

)
,

where

R =
a

A
+

k∑
j=1

M∗j
τV ∗j

, D =
1

A
+

k∑
j=1

1

τV ∗j
.
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Acceleration step

It is well known that the Pólya urn sampler tends to mix slowly, since the probability of
sampling a new value is lower than the probability of sampling an already observed one. In
order to avoid this problem one can speed up the algorithm resampling the distinct values
at the end of every iteration. Observe that the full conditional distribution for θ∗j is given by

L (θ∗j |∆−θ∗j ) ∝
d∏
i=1

∏
r∈Ci,j

h(xi,r; θ
∗
j )P0(dθ∗j ),

hence, putting

S′ = S0+

∑d
i=1

∑
r∈Ci,j x

2
i,r

2
+
m2n̄•j −

∑d
i=1

∑
r∈Ci,j xi,r(2m+ τ

∑d
i=1

∑
r∈Ci,j xi,r)

2(τ n̄•j + 1)
,

we get

V ∗j ∼ IG
(
s0 +

n̄•j
2
, S′
)
,

M∗j |V ∗j ∼ N
(m+ τ

∑d
i=1

∑
r∈Ci,j xi,r

τ n̄•j + 1
,

τV ∗j
τ n̄•j + 1

)
.

4. Illustrations: multiple populations

For the sake of illustration, we apply the algorithm described in the previous section and
collect the MCMC outputs to estimate the posterior expected values of the random depen-
dent densities in d = 6 populations. The simulation study is based on 20.000 iterations
after a burn-in period of 20.000 iterations. We have considered six simulated datasets of
observations Xi,1, . . . , Xi,ni

iid∼ Xi, being ni = 200 for any i = 1, . . . , 6, where the Xi’s
are specified as follows

X1 ∼ 0.5N(6, 0.6) + 0.25N(10, 0.6) + 0.25N(15, 0.6)

X2 ∼ 0.25N(10, 0.6) + 0.5N(15, 0.6) + 0.25N(20, 0.6)

X3 ∼ 0.5N(6, 0.6) + 0.5N(10, 0.6)

X4 ∼ 0.2N(0, 0.6) + 0.4N(3, 0.6) + 0.2N(15, 0.6) + 0.2N(20, 0.6)

X5 ∼ 0.5N(0, 0.6) + 0.5N(15, 0.6)

X6 ∼ 0.25N(0, 0.6) + 0.25N(6, 0.6) + 0.25N(10, 0.6) + 0.25N(15, 0.6).

We define the symmetric matrix A, which is a 6 × 6 matrix whose generic element ai,j
counts the number of components shared by the two mixtures generating population i and
j:

A =



3 2 2 1 1 3
2 3 1 2 1 2
2 1 2 0 0 2
1 2 0 4 2 2
1 1 0 2 2 2
3 2 2 2 2 4

 .

The matrix A has a lot of non-zero entries, it is then apparent that a lot of components
are shared across the different mixtures, hence the partially exchangeable framework is the
most appropriate one to model these data.
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The estimated densities are quite accurate and are reported in Figure 1. Besides Figure 2
shows the estimated posterior distribution of the number of components for each mixture:
the distributions are highly concentrated around the true value in all the cases. Finally, we
study the estimated number of shared components for the different couples of mixtures,
to this end let us denote by Ki,j the random number of components shared by the two
samples from population i and j, with the convention Ki,i = Ki. On the basis of the
MCMC output, we can approximate the matrix P , whose generic element is defined as
pi,j = P(Ki,j = ai,j |X), i.e. the posterior probability that Ki,j equals the true value ai,j .
The MCMC output allows us to estimate P , indeed we have

P =



0.48 0.86 0.89 0.93 0.94 0.82
0.86 0.56 0.91 0.92 0.95 0.86
0.89 0.91 0.78 0.97 0.99 0.90
0.93 0.92 0.97 0.45 0.87 0.83
0.94 0.95 0.99 0.87 0.73 0.89
0.82 0.86 0.90 0.83 0.89 0.32

 .

One can easily realize that the model recognizes the right number of shared components
for every couple of populations, indeed the off-diagonal elements of P are very close to 1.
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Figure 1: Estimated densities (blue) and true densities (red) for the six populations; the
estimated credible intervals are shaded.
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Figure 2: Posterior distribution of the number of mixture components for each population.
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