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Abstract
Over the years data has become increasingly higher dimensional, which has prompted an increased
need for dimension reduction techniques. This is perhaps especially true for clustering (unsuper-
vised classification) as well as semi-supervised and supervised classification. Although dimension
reduction in the area of clustering for multivariate data has been quite thoroughly discussed within
the literature, there is relatively little work in the area of three-way, or matrix variate, data. Herein,
we develop a mixture of matrix variate bilinear factor analyzers (MMVBFA) model for use in
clustering high-dimensional matrix variate data. This work can be considered both the first matrix
variate bilinear factor analysis model as well as the first MMVBFA model. Parameter estimation is
discussed, and the MMVBFA model is illustrated using simulated and real data.
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1. Introduction

Dimensionality is an ever present concern with data becoming increasingly higher dimen-
sional over the last few years. To combat this issue, dimension reduction techniques have
become very important tools, especially in the area of clustering (unsupervised classifi-
cation) as well as semi-supervised and supervised classification. For multivariate data,
the mixture of factor analyzers model has proved to be very useful in this regard as the
model performs clustering and dimension reduction simultaneously, details in Section 2.
However, there is relative paucity in the area of dimension reduction for use in model-based
clustering for matrix variate data. Matrix variate distributions have been shown to be useful
for modelling three-way data such as images and multivariate longitudinal data; however,
the methods presented in the literature suffer from dimensionality concerns. In this paper,
we present a mixture of matrix variate bilinear factor analyzers (MMVBFA) model for use
in clustering higher dimensional matrix variate data. The matrix variate bilinear factor
analyzers model can be viewed as a generalization of bilinear principal component analysis
(BPCA; Zhao et al., 2012), and contains BPCA as a special case. An alternating expecta-
tion conditional maximization (AECM) algorithm (Meng and van Dyk, 1997) is used for
parameter estimation. The proposed method is illustrated using both simulated and real
datasets.

2. Background

2.1 Model-Based Clustering

Model-based clustering makes use of a finite mixture model. AG-component finite mixture
model assumes a random variate X has density

f(x | ϑ) =
G∑

g=1

πgfg(x | θg),
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where ϑ = (π1, π2, . . . , πG,θ1,θ2, . . . ,θG), fg(·) is the gth component density, and
πg > 0 is the gth mixing proportion such that

∑G
i=1 πg = 1. The association between

clustering and mixture models, as discussed in McNicholas (2016a), can be traced all the
way back to Tiedeman (1955). The earliest use of a mixture model, specifically a Gaussian
mixture model, for model-based clustering can be found in Wolfe (1965). Other early work
in this area can be found in Baum et al. (1970) and Scott and Symons (1971) with a recent
review given by McNicholas (2016b).

The Gaussianmixture model is well-established for clustering bothmultivariate andma-
trix variate data because of its mathematical tractability; however, there are many examples
of non-Gaussian distributions used for clustering. In the multivariate case, work has been
done using symmetric component densities that parameterize concentration (tail weight),
e.g., the t distribution (Peel and McLachlan, 2000; Andrews and McNicholas, 2011, 2012;
Steane et al., 2012; Morris and McNicholas, 2013a; Lin et al., 2014) and the power expo-
nential distribution (Dang et al., 2015). Furthermore, there has been some work in the area
of multivariate skewed-distributions, for example the normal-inverse Gaussian distribution
(Karlis and Santourian, 2009; Subedi and McNicholas, 2014; O’Hagan et al., 2016), the
skew-t distribution (Lin, 2010; Vrbik and McNicholas, 2012, 2014; Murray, Browne and
McNicholas, 2014; Murray, McNicholas and Browne, 2014; Lee and McLachlan, 2014,
2016; Murray et al., 2017), the shifted asymmetric Laplace distribution (Morris and McNi-
cholas, 2013b; Franczak et al., 2014), the generalized hyperbolic distribution (Browne and
McNicholas, 2015; Wei et al., 2019), the variance-gamma distribution (McNicholas et al.,
2017), and the joint generalized hyperbolic distribution (Tang et al., 2018).

In the area ofmatrix variate data, Viroli (2011) considers amixture ofmatrix variate nor-
mal distributions for clustering, and Doğru et al. (2016) consider a mixture of matrix variate
t distributions. More recently, Gallaugher and McNicholas (2018a) consider mixtures of
four skewed matrix variate distributions, specifically the matrix variate skew-t distribution
(Gallaugher and McNicholas, 2017) as well as generalized hyperbolic, variance-gamma
and normal-inverse Gaussian distributions (Gallaugher and McNicholas, 2018b), with an
application in handwritten digit recognition. As pointed out by Gallaugher and McNi-
cholas (2018a), these approaches are limited by the dimensionality of the data and the work
described herein aims to help address that limitation.

2.2 Matrix Variate Normal Distribution

An n × p random matrix X follows a matrix variate normal distribution with location
parameter M and scale matrices ∆ and Ω of dimensions n × n and p × p, respectively,
denoted by Nn×p(M,∆,Ω), if the density of X can be written

ϕn×p(X|M,∆,Ω) =
1

(2π)
np
2 |∆|

p
2 |Ω|

n
2

exp

{
−1

2
tr
(
∆−1(X−M)Ω−1(X−M)′

)}
.

One notable property of the matrix variate normal distribution (Harrar and Gupta, 2008) is

X ∼ Nn×p(M,∆,Ω) ⇐⇒ vec(X ) ∼ Nnp(vec(M),Ω⊗∆), (1)

whereNnp(·) is the multivariate normal density with dimension np, vec(·) is the vectoriza-
tion operator, and ⊗ is the Kronecker product.

2.3 Mixture of Factor Analyzers Model

For the purpose of this subsection, we temporarily revert back to the notation where Xi

represents a p-dimensional random vector, with xi as its realization. The factor analysis
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model for X1, . . . ,Xn is given by

Xi = µ+ ΛUi + εi,

whereµ is a location vector,Λ is a p×qmatrix of factor loadingswith q < p,Ui ∼ Nq(0, I)
denotes the latent factors, εi ∼ Nq(0,Ψ), where Ψ = diag(ψ1, ψ2, . . . , ψp), and the Ui

and the εi are each independently distributed and are independent of one another. Under
this model, the marginal distribution of Xi is Np(µ,ΛΛ′ + Ψ). Probabilistic principal
component analysis (PPCA) arises as a special case with the isotropic constraint Ψ = ψI,
ψ ∈ R+ (Tipping and Bishop, 1999b).

Ghahramani and Hinton (1997) develop the mixture of factor analyzers model, which is
a Gaussian mixture model with covariance structureΣg = ΛgΛ

′
g+Ψ. McLachlan and Peel

(2000) utilize the more general structure Σg = ΛgΛ
′
g + Ψg. Tipping and Bishop (1999a)

introduce the closely-related mixture of PPCAs with Σg = ΛgΛ
′
g + ψgI. McNicholas and

Murphy (2008) construct a family of eight parsimonious Gaussian models by considering
the constraint Λg = Λ in addition to Ψg = Ψ and Ψg = ψgI. There has also been
work on extending the mixture of factor analyzers to other distributions, such as the skew-t
distribution (Murray, Browne and McNicholas, 2014; Murray et al., 2017), the generalized
hyperbolic distribution (Tortora et al., 2016), the skew-normal distribution (Lin et al., 2016),
the variance-gamma distribution (McNicholas et al., 2017), and others (e.g., Murray et al.,
2017).

2.4 Previous Work on Matrix Variate Factor Analysis

Xie et al. (2008) and Yu et al. (2008) consider a matrix variate extension of PPCA in a linear
fashion. For N independent n× p random matrices X1, . . . ,XN , the model assumes

Xi = M + AUiB
′ + Ei, (2)

where M is an n× p location matrix, A is an n× q matrix of column factor loadings, B is
a p× r matrix of row factor loadings, Ui ∼ Nq×r(0, Iq, Ir), and Ei ∼ Nn×p(0, σIn, σIp),
with σ ∈ R+. Note that the Ui and the Ei are each independently distributed and are
independent of one another. The main disadvantage of this model is that, in general, Xi

does not follow a matrix variate normal distribution.
Zhao et al. (2012) present bilinear probabilistic principal component analysis (BPPCA)

which extends (2) by adding two projected error terms. The resulting model assumes

Xi = M + AUiB
′ + AE B

i + E A
i B′ + Ei, (3)

where E B
i ∼ Nq×p(0, Iq, σBIp), E A

i ∼ Nn×r(0, σAIn, Ir), Ei ∼ Nn×p(0, σAIn, σBIp),
with σA ∈ R+ and σB ∈ R+, and the other terms are as defined for (2). In this model,
each of the Ui, E B

i , E A
i and Ei are independently distributed and all are independent of

each other. It is important to note that the term “column factors” refers to reduction in the
dimension of the columns, which is equivalent to the number of rows, and not a reduction
in the number of columns. Likewise, the term “row factors” refers to the reduction in
the dimension of the rows (i.e., in the number of columns). As discussed by Zhao et al.
(2012), the interpretation of the E B

i and E A
i are the row and column noise, respectively,

whereas Ei is the common noise. It can be shown using property (1) that under this model
Xi ∼ Nn×p(M,AA′ + σAIn,BB′ + σBIp). Note that the covariance structure for the
two covariance matrices of this matrix variate normal distribution are analogous to the
covariance structure for the (multivariate) factor analysis model.
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3. Methodology

3.1 MMVBFA Model

AMMVBFA model is derived here by extending (3). Specifically, we remove the isotropic
constraint and assume that

Xi = Mg + AgUigB
′
g + AgE

B
ig + E A

ig B′g + Eig (4)

with probability πg, for g = 1, . . . , G, where Mg is an n × p location matrix, Ag is an
n × q column factor loading matrix, with q < n, Bg is a p × r row factor loading matrix,
with r < p, and

Uig ∼ Nq×r(0, Iq, Ir),

E B
ig ∼ Nq×p(0, Iq,Ψg),

E A
ig ∼ Nn×r(0,Σg, Ir),

Eig ∼ Nn×p(0,Σg,Ψg),

each independently distributed and independent of each other, Σg = diag{σ1g, . . . , σng},
with σig ∈ R+, and Ψg = diag{ψ1g, . . . , ψpg}, with ψig ∈ R+.

Let zi = (zi1, . . . , ziG)
′ denote the component membership for Xi, where

zig =

{
1 if Xi belongs to component g,
0 otherwise,

for i = 1, . . . , N and g = 1, . . . , G. Using the vectorization of Xi, and property (1), it can
be shown that

Xi|zig = 1 ∼ Nn×p(Mg,Σg + AgA
′
g,Ψg + BgB

′
g).

Therefore, the density of Xi can be written

f(Xi|ϑ) =
G∑

g=1

πgϕn×p(Xi|Mg,Σg + AgA
′
g,Ψg + BgB

′
g),

where ϕn×p(·) denotes the n×pmatrix variate normal density (see Section 2.2). Following
a similar procedure to that described by Zhao et al. (2012), by introducing latent matrix
variables Y B

ig and V B
ig , (4) can be written

Xi = Mg + AgY
B
ig + V B

ig ,

Y B
ig = UigB

′
g + E B

ig ,

V B
ig = E A

ig B′g + Eig.

The two-stage interpretation of this formulation of the model is the same as that given by
Zhao et al. (2012), where this can viewed as first projecting Xi in the column direction
onto the latent matrix Y B

ig , and then Y B
ig and V B

ig are further projected in the row direction.
Likewise, introducing Y A

ig and V A
ig , (4) can be written

Xi = Mg + Y A
ig B′g + V A

ig ,

Y A
ig = AgUig + E A

ig ,

V A
ig = AgE

B
ig + Eig.
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The interpretation is the same as before only we project in the row direction first followed
by the column direction. It can be shown that

Y B
ig |Xi, zig = 1 ∼ Nq×p(W

A
g
−1

A′gΣ
−1
g (Xi −Mg),W

A
g
−1
,ΛBg)

and
Y A
ig |Xi, zig = 1 ∼ Nn×r((Xi −Mg)Ψ

−1
g BgW

B
g
−1
,ΛAg ,W

B
g
−1

),

where WA
g = Iq + A′gΣ

−1
g Ag, WB

g = Ir + B′gΨ
−1
g Bg, ΛAg = Σg + AgA

′
g, and

ΛBg = Ψg + BgB
′
g

3.2 Parameter Estimation

Suppose we observe N observations X1,X2, . . . ,XN then the log-likelihood is given by

L(ϑ) =
N∑
i=1

log

G∑
g=1

πgϕn×p(Xi|Mg,Σg + AgA
′
g,Ψg + BgB

′
g). (5)

To maximize (5), the observed data is viewed as incomplete and an AECM is then to maxi-
mize (5). There are three different sources of missingingness: the component memberships
z1, . . . , zn as well as the latent matrix variables Y B

ig and Y A
ig . A three-stage AECM algo-

rithm is now described for parameter estimation.

AECM Stage 1: In the first stage, the complete-data is taken to be the observed matrices
X1, . . . ,XN and the component memberships z1, . . . , zN , and the updates for πg and Mg

are calculated. The complete-data log-likelihood in the first stage is

`1 = C1 +
G∑

g=1

N∑
i=1

zig

{
log πg −

1

2
tr[Λ−1Ag

(Xi −Mg)Λ
−1
Bg

(Xi −Mg)
′]

}
,

where C1 is a constant with respect to πg and Mg. In the E-Step, the updates for the
component memberships zig are given by

ẑig =
πgϕn×p(Xi |Mg,ΛAg ,ΛBg)∑G

h=1 πgϕn×p(Xi |Mh,ΛAh
,ΛBh

)
,

whereϕn×p(·) denotes the n×pmatrix variate normal density. As usual, these expectations
ẑig are calculated using the current estimates of the parameters. In the CM-step, the updates
for πg and Mg are calculated using

π̂g =
Ng

N
and M̂g =

1

Ng

N∑
i=1

ẑigXi,

respectively, where Ng =
∑N

i=1 ẑig.

AECM Stage 2: In the second stage, the complete-data is taken to be the observed
X1, . . . ,XN , the component memberships z1, . . . , zN and the n × q latent matrices Y B

ig .
The complete-data log-likelihood is then

`2 =C2 −
Ngp

2
log |Σg| −

1

2

G∑
g=1

N∑
i=1

zigtr
[
Σ−1g (Xi −Mg)Λ

−1
Bg

(Xi −Mg)
′

−Σ−1g AgY
B
ig Λ−1Bg

(Xi −Mg)
′ −Σ−1g (Xi −Mg)Λ

−1
Bg

Y B
ig
′
A′g

+ Σ−1g AgY
B
ig Λ−1Bg

Y B
ig
′
A′g
]
,
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where C2 is constant with respect to the parameters being updated. In the E-Step, the
following expectations are calculated:

aBig := E[Y B
ig |Xi, zig = 1] = WA

g
−1

A′gΣ
−1
g (Xi −Mg),

bBig := E[Y B
ig Λ̂−1Bg

Y B
ig
′ |Xi, zig = 1] = pWA

g
−1

+ aBigΛ
−1
Bg
aBig
′
.

As usual, these expectations are calculated using the current estimates of the parameters.
In the CM-step, Ag and Σg are updated via

Âg =
N∑
i=1

ẑig(Xi − M̂g)Λ̂
−1
Bg
aBig
′
(

N∑
i=1

ẑigb
B
ig

)−1
and Σ̂g =

1

Ngp
diag{ŜB

g },

respectively, where

SB
g =

N∑
i=1

ẑig
[
(Xi − M̂g)Λ̂

−1
Bg

(Xi − M̂g)
′ − Âga

B
igΛ̂
−1
Bg

(Xi − M̂g)
′].

AECM Stage 3: In the last stage of the AECM algorithm, the complete-data is taken to
be the observed X1, . . . ,XN , the component memberships z1, . . . , zN and the p× r latent
matrices Y A

ig . In this step, the complete-data log-likelihood is

`3 =C3 −
Ngn

2
log |Ψg| −

1

2

G∑
g=1

N∑
i=1

zig tr
[
Ψ−1g (Xi −Mg)

′Λ−1Ag
(Xi −Mg)

−Ψ−1g BgY
A
ig
′
Λ−1Ag

(Xi −Mg)−Ψ−1g (Xi −Mg)
′Λ−1Ag

Y A
ig B′g

+ Ψ−1g BgY
A
ig
′
Λ−1Ag

Y A
ig B′g

]
,

where C3 is constant with respect to the parameters being updated. In the E-Step, expecta-
tions similar to those in the second step are calculated, i.e.,

aAig := E[Y A
ig |Xi, zig = 1] = (Xi −Mg)Ψ

−1
g BgW

B
g
−1

and
bAig := E[Y A

ig
′
Λ−1Bg

Y A
ig |Xi, zig = 1] = nWB

g
−1

+ aAig
′
Λ−1Ag

aAig.

As usual, these expectations are calculated using the current estimates of the parameters.
In the CM-step, we update Bg and Ψg by

B̂g =

N∑
i=1

ẑig(Xi − M̂g)
′Λ̂−1Ag

aAig

(
N∑
i=1

ẑigb
A
ig

)−1
and Ψ̂g =

1

Ngn
diag{ŜA

g },

respectively, where

SA
g =

N∑
i=1

ẑig
[
(Xi − M̂g)

′Λ̂−1Ag
(Xi − M̂g)− B̂ga

A
ig
′
Λ̂−1Ag

(Xi − M̂g)
]
.

3.3 Semi-Supervised Classification

The MMVBFAmodel presented herein for clustering may also be used for semi-supervised
classification. Suppose N matrices are observed, andK of these observations have known
labels from one of G classes. Following McNicholas (2010), without loss of generality,
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order the matrices so that the first K have known labels and the remaining observations
have unknown labels. The observed likelihood is then

L(ϑ) =
K∏
i=1

G∏
g=1

[
πgϕn×p(Xi|Mg,Σg + AgA

′
g,Ψg + BgB

′
g)
]zig

×
N∏

j=K+1

H∑
h=1

πhϕn×p(Xj |Mh,Σh + AhA′h,Ψh + BhB′h).

It is possible forH 6= G; however, for our analyses we assume thatH = G. Parameter esti-
mation then proceeds in a similar manner for the clustering scenario. For more information
on semi-supervised classification refer to McNicholas (2016a).

3.4 Model Selection, Initialization and Convergence

For a typical dataset the number of components and/or the number of factors will not be
known a priori and, therefore, we will have to select them. One common selection criterion
is the Bayesian information criterion (BIC; Schwarz, 1978) and is given by

BIC = 2`(ϑ̂)− ρ logN,

where `(ϑ̂) is the maximized log-likelihood and ρ is the number of free parameters. The
BIC is used as the selection criterion for all of our analyses.

To initialize the AECM algorithm, we employ an alternating emEM strategy (Biernacki
et al., 2003). This consists of running the AECM algorithm for a small number of iterations
for different random starting values of the parameters and then using the parameters that
maximize the likelihood to continue with the AECM algorithm until convergence.

The simplest convergence criterionwould be to use lack of progress in the log-likelihood,
however; it is possible for the log-likelihood to “plateau” and then increase again thus
terminating the algorithm prematurely (see McNicholas, 2016a). One alternative is to use
a criterion based on the Aitken acceleration (Aitken, 1926). The acceleration at iteration t
is

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
,

where l(t) is the observed likelihood at iteration t. Now,

l(t+1)
∞ = l(t) +

(l(t+1) − l(t))
1− a(t)

,

is an estimate of the observed log-likelihood after many iterations, at iteration t + 1 (see
Böhning et al., 1994; Lindsay, 1995). As in McNicholas et al. (2010), we terminate the
algorithm when l(k+1)

∞ − l(k) ∈ (0, ε). It is important to note that, in each AECM algorithm
run for the analyses herein, we make the choice of ε based on the magnitude of the log-
likelihood. Specifically, after running the 10 iterations of the emEM algorithm, we choose ε
to be four orders of magnitude lower than the log-likelihood.

3.5 Reduction in Number of Free Covariance Parameters

Because the covariance structure of both covariance matrices in the MVVBFA model is
equivalent to the covariance structure in the (multivariate) mixture of factor analyzers
model, many of the results on the number of free covariance parameters may be used
here. Specifically there are nq + n − q(q − 1)/2 free covariance parameters in ΛAg and
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pr + p − r(r − 1)/2 free covariance parameters in ΛBg (Lawley and Maxwell, 1962).
Therefore, reduction in the number of free covariance parameters for the row covariance
matrix is

1

2
n(n+ 1)− nq − n+

1

2
q(q − 1) =

1

2

[
(n− q)2 − (n+ q)

]
,

which is positive for (n − q)2 > n + q. Likewise for the column covariance matrix the
reduction in the number of parameters is

1

2
p(p+ 1)− pr − p+ 1

2
r(r − 1) =

1

2

[
(p− r)2 − (p+ r)

]
,

which is positive for (p − r)2 > p + r. In applications herein, the model is fit for a range
of row factors and column factors. If the number of row or column factors chosen by the
BIC is the maximum in that range, the relevant number of factors will be increased so long
as the aforementioned conditions are met.

4. Data Analyses

4.1 Simulations

Simulation 1

In the first simulation, G = 2 groups are considered with 10 × 7 matrices. The mixing
proportions are taken to be π1 = π2 = 0.5, and we setN ∈ {200, 400, 800}. Observations
are simulated from (4) with q = 2 column factors and r = 3 row factors. For each value
of N , 50 datasets are simulated. For each dataset, for each N , the correct number of
groups, column and row factors are selected. In addition, perfect classification is achieved
(ARI = 1). Note that the adjusted Rand index (ARI; Rand, 1971; Hubert and Arabie, 1985)
is often used to asses agreement between true and predicted classes; it takes a value of 1
for perfect class agreement and has expected value 0 under random class assignment. In
Table 1, we show the average value of ‖Mg − M̂g‖1, for g = 1, 2 and for each value ofN ,
over the 50 datasets. Note that if W is an n× p matrix then

‖W‖1 = max
1≤j≤p

n∑
i=1

|wij |.

As expected, the estimates of Mg get closer to the true values as the sample size N
in increased. Moreover, the variability of ‖Mg − M̂g‖1 decreases as the sample size
increases.

Table 1: Average ‖Mg−M̂g‖1 values over 50 datasets, for g = 1, 2 andN = 200, 400, 800,
in Simulation 1, with standard deviations in parentheses.

N
g 200 400 800
1 13.97(3.61) 9.66(2.65) 6.48(1.69)
2 12.08(3.25) 7.45(1.79) 5.69(1.32)

Simulation 2

The second simulation considers G = 3 groups with 28 × 17 matrices. The mixing
proportions are π1 = π3 = 0.4 and π2 = 0.2, and N ∈ {250, 500, 1000}. Again, 50
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datasets are simulated for each N with q = 2 column factors and r = 3 row factors. As in
Simulation 1, the correct number of groups, column and row factors are chosen and perfect
classification is achieved. In Table 2, we again show the average 1-norms for the differences
between the true and estimated location parameters.

Table 2: Average ‖Mg − M̂g‖1 values over 50 datasets, for g = 1, 2, 3 and N =
250, 500, 1000, in Simulation 2, with standard deviations in parentheses.

N
g 250 500 1000
1 36.28(7.95) 26.36(5.12) 19.37(4.62)
2 55.23(11.75) 40.42(9.64) 29.30(6.26)
3 39.10(8.89) 27.09(6.37) 19.99(4.45)

4.2 MNIST Digit Recognition

We consider the 28 × 28 MNIST digit dataset (LeCun et al., 1998), which contains over
60,000 greyscale images of handwritten Arabic digits 0 to 9. The images are represented
by 28 × 28 pixel matrices with greyscale intensities ranging from 0 to 255. Because of
the lack of variability in the outer rows and columns, some random noise is added while
adding 50 to each of the non-zero elements to avoid confusing the noise with a true signal.
We are interested in comparing digit 1 to digit 7, as was considered in Gallaugher and
McNicholas (2018a). Similar to Gallaugher and McNicholas (2018a), we consider semi-
supervised classification with 25%, 50% and 75% supervision. In each case, 25 datasets
are considered, each consisting of 200 observations from each digit, and we fit the model
for 10 to 20 column and row factors.

In Table 3, we show an aggregated classification table between the true and predicted
classifications at each level of supervision for the points considered unlabelled. As expected,
slightly better classification performance is obtained when the level of supervision is in-
creased. Moreover, there is a more substantial difference when going from 25% supervision
to 50% supervision than from 50% to 75%.

Table 3: Cross-tabulations of true (1,7) versus predicted (P1, P7) classifications for the ob-
servations considered unlabelled in theMNIST data at each level of supervision, aggregated
over all runs.

25% Supervision 50% Supervision 75% Supervision
P1 P7 P1 P7 P1 P7

1 3550 173 2449 53 1232 26
7 200 3577 51 2447 18 1221

Table 4 shows the average ARI and misclassification rate (MCR) over the 25 datasets,
with the respective standard deviations, for each level of supervision. We note that we
obtain better results than Gallaugher and McNicholas (2018a) even with a lower level of
supervision; however, the results in Gallaugher and McNicholas (2018a) were based on
resized images due to dimensionality constraints whereas this analysis was performed on
the original images.

In Table 5 the frequency of the number of factors chosen for each level of supervision
over the 25 datasets is shown. For the majority of the datasets, the number of row and
column factors lie between 13 and 15.
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Table 4: Average ARI values and misclassification rates (MCR), with associated standard
deviations in parentheses, for each level of supervision for the points considered unlabelled
for the MNIST data, aggregated over all runs.

ARI (std. dev.) MCR(std. dev.)
25% 0.82(0.15) 0.050(0.046)
50% 0.92 (0.056) 0.021 (0.015)
75% 0.93 (0.056) 0.018 (0.015)

Table 5: Numbers of row and columns factors chosen for the MNIST dataset for 25%, 50%
and 75% supervision.

10 11 12 13 14 15 16 17 18 19 20
25% Supervision

Row Factors 0 0 0 2 7 6 4 3 2 1 0
Column Factors 0 0 2 6 7 6 3 1 0 0 0

50% Supervision
Row Factors 0 0 0 4 6 10 2 0 1 1 1
Column Factors 0 0 2 9 7 5 1 1 0 0 0

75% Supervision
Row Factors 0 0 0 1 9 9 3 3 0 0 0
Column Factors 0 0 0 9 11 4 0 0 0 0 1

Finally, in Figure 1, heatmaps are displayed for the average estimates of the location
matrices over the 25 runs for each level of supervision for both digits. We see a slight
increase in quality when going from 25% to 50% supervision for digit 7 with the centre of
the digit being a little smoother with 50% supervision. There is no noticeable difference
when going from 50% to 75% supervision. This similarity across the three levels of
supervision illustrates the power of semi-supervised classification.
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Figure 1: Heatmaps for the average estimated location matrices taken over the 25 runs for
digit 1 at 25%, 50% and 75% supervision, respectively (a, b, c), and digit 7 at 25%, 50%
and 75% supervision, respectively (d, e, f).
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4.3 Olivetti Faces Dataset

Finally, consider the Olivetti faces dataset from the R package RnavGraphImageData
(Waddell and Oldford, 2013). The dataset consists of greyscale images of faces that
were taken between 1992 and 1994 at AT&T laboratories in Cambridge. There were 40
individuals with 10 images of each individual for a total of 400 64 × 64 images. The
images were taken with varied lighting, expressions (eyes open/closed, smile/frown etc.),
and glasses or no glasses. We fit the model for 15 to 30 column and row factors, and for
G = 1, . . . , 9 components. The BIC chooses three components with 23 column factors and
26 row factors. The estimated mixing proportions are π1 = 0.22, π2 = 0.49, π3 = 0.29.
In Figure 2, we show a heatmap of the estimated location parameters for each component.
The heatmap for component 3 arguably shows the clearest image and appears to display the
glasses feature.
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Figure 2: Estimated location matrices for (a) component 1, (b) component 2, and (c)
component 3 for the faces dataset.

Upon looking at individual faces classified to component 3 (Figure 2), all the faces have
glasses. Moreover, all faces with glasses are classified to component 3 with the exception of
twowhich are classified to component 2. The faces with closed eyes are scattered throughout
the three different components and are not classified to any one component. Although it is
a difficult to determine the main feature that differentiates component 1 from component 2,
it is apparent that the eyebrows for the faces classified to component 1 tend to be more
prominent and higher above the eyelid. Of course, a semi-supervised approach to these
data could be used to detect specific classes, similar to the MNIST analysis (Section 4.2).
However, the unsupervised analysis here has shown that the MMVBFA approach can be
effective at detecting subgroups without training.

5. Summary

In this paper, we developed a MMVBFA model for use in clustering and classification
of matrix variate data. Two simulations as well as two real data examples were used for
illustration. For each of the simulations, the correct number of components and column/row
factors were chosen by the BIC for all of the datasets. Perfect classification performance was
also obtained in the simulations. In the MNIST digit application, even with a lower level of
supervision, we obtained better results than Gallaugher andMcNicholas (2018a). However,
this is probably due to the fact that the MMVBFA model could use the full 28× 28 image.
In the faces application, the BIC chooses three groups with the third group being defined
by the presence of the glasses facial feature. The matrix normality of X in the MMVBFA
model will allow for direct extensions to mixtures of matrix variate t factor analyzers, as
well as skewed matrix variate factor analyzers analogous to their multivariate counterparts.
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