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Abstract
Tail risk measures is of critical importance for enterprise risk management, especially for managing large portfolios

of complex financial instruments. The computational burdens required by such simulation can be substantial or even
unbearable, depending on the complexity of the underlying economic model and the risk management objective. This
paper proposes, analyzes, and tests an efficient nested simulation procedure for estimating tail risk measures. The
procedure first uses proxy models and their concomitants to quickly and accurately identify tail scenarios where the
given computational budget is concentrated. We demonstrate the proposed procedure in estimating tail risk measures
of variable annuities. Our results show that, given a fixed computational budget, the proposed procedure can be an
order of magnitude more accurate that a standard nested simulation procedure.
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1 Introduction

Variable annuity (VA) are insurance contracts that are widely used to provide retirement income. Its annual
sales in the U.S. market in recent years is around $100 billion1. In addition to death and survival benefits
to the policyholder, a VA contract also offers benefits that are linked to the performance of certain financial
assets, e.g. stocks and bonds. Such equity-linked benefits are offered in the form of riders, which provides
different types guarantees to protect the policyholder from downside market risks. From the insurer’s per-
spective, these guarantees can be viewed as embedded options on the underlying financial assets offered to
the policyholder. The complexities of the embedded options varies: from European put options of standard
Guaranteed Minimum Maturity Benefits (GMMB) to complex combinations of path dependent, exotic look-
back and tandem options of the Guaranteed Minimum Income Benefit (GMIB) studied by Marshall et al.
(2010). Similar to the risk management of financial options, in practice insurers commonly use a dynamic
hedging strategy to mitigate the financial risks of the guarantees in a VA contract. For insurers who must
model the liabilities for valuation and hedging purposes, depending on the complexity of the economic
model and the options under consideration, risk measurement and management could be difficult tasks. For
example, due to the long term nature of insurance policies such as VAs, simple economic models such as
log-normal returns with constant volatility are often insufficient for risk management purpose, which often
concerns the tail risk of the loss distribution. In addition, as alluded above, some embedded options are
complicated in nature. Lastly, as a unique feature to VAs, insurers need to consider the policyholder behav-
iors, e.g. full/partial withdrawal (lapse) of the contract, under different economic scenarios. Due to these
complexities, Monte Carlo simulation is often the only viable way for measuring and managing the risks of
a VA contract. Indeed, it is now standard in the insurance industry to use Monte Carlo simulation to deter-
mine hedge portfolios. The computational burden is substantial and can sometimes become the bottleneck
of making high-quality risk management decisions. The goal of this research is to provide an efficient and
reliable nested simulation framework that can quickly and accurately estimate the tail risk measures of a
dynamic hedging program of VA.
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Tail risk measures are important enterprise risk management for insurance companies. Such importance
is evidenced by their ubiquitous presence in regulations around the globe: As a main regulatory directive in
the European Union, Solvency II requires insurers to project all their future cashflows for current policies,
calculate the aggregate discounted net liability cash flows at each year end, for each simulated path of asset
and liability experience, and evaluate the 99.5% Value at Risk (VaR) of the change in surplus each year.
In North America, insurers use a similar approach under their Own Risk Solvency Assessment (ORSA)
obligations, but with the Conditional Tail Expectation (CTE) risk measure taking the place of the VaR, to
be consistent with the regulatory capital requirements. In Canada, VA reserves are generally set between
the 60% and 80% CTE of the liability values from Monte Carlo simulation (CIA 2017). The total gross
calculated requirement (TGCR) is generally set at the 95% CTE, so that the required capital is the difference
between the 95% CTE and the reserve (OSFI 2017). In the US, the stochastic component of the reserve of
VAs uses a 70% CTE and the minimum required capital uses a 90% CTE.

Projecting future hedge cash flows for economic or regulatory capital then requires a nested Monte
Carlo simulation (also known as two-tier or stochastic-on-stochastic simulation). In a nested simulation for
VA economic capital calculations, the first level, or “outer simulations” are the simulated real-world paths
for the underlying risk factors; in the case of VA guarantees this would include the rate of growth of the
policyholder’s fund values, as well as, potentially, policyholder behaviour and interest rates. The time step
for these projections would be at least as frequent as the expected interval between hedge rebalancing points,
and the time horizon would typically be sufficient to run-off the current business. The second level, or “inner
simulations” are used to determine the cost of hedging the guarantees at each future time point, based on
the simulated risk factors under the outer simulation. In some simple economic models, VA hedges would
be self financing, with no requirement for additional economic or regulatory capital. In practice there are
slippages in hedge portfolios, arising from basis risk (as the real world stock price movements do not exactly
follow the assumed model), from discrete hedge rebalancing intervals, and from the effects of policyholder
behaviour. At each rebalancing point the value of the hedging portfolio brought forward from the previous
period may be different from the value of the hedging portfolio required for the subsequent period. As a
result, at each rebalancing point, the insurer may incur additional costs if the hedge brought forward from
the last period is insufficient to fund the hedge required for the next time period.

Nested simulations are computationally very burdensome. Consider a single VA contract with 20-year
maturity and is dynamically hedged monthly. A Monte Carlo projection, based on a two-level nested simu-
lation with 5,000 outer scenarios and 1,000 single step inner simulations at each monthly rebalancing point,
will require 20× 12× 5000× 1000 = 1.2× 109 total simulated asset or liability values. If the inner sim-
ulations were single-step, and if each simulated value takes 1 µs (10−6 seconds) to complete, then it would
take around 20 minutes to simulate the cash flows for a single policy. A typical block of business would
involve potentially tens of thousands of VA contracts. If the inner simulations are stepwise to the end of the
20-year term, the total number of simulated cash flows increases by a factor of around 120. It is not surpris-
ing that there is considerable industry interest in techniques for reducing the number of simulation points
required for VA risk measurement; see for example Cathcart & Morrison (2009) and Feng et al. (2016)
which were commissioned by the Society of Actuaries. In addition, there are other contexts in financial risk
management where nested simulations are required or desirable. Risk measurement using nested simulation
is the topic of Gordy & Juneja (2010), Liu & Staum (2010), and Broadie et al. (2011). Solvency II SCR
(Solvency Capital Requirement) calculation is the topic of Bauer et al. (2012).

The number of individual simulated asset/liability cash flows required in a nested simulation is the
product of (1) the number of contracts in a portfolio, (2) the number of outer paths, (3) the number of inner
paths, and (4) the average number of time steps in each inner simulation. Recent research efforts to address
the computation challenges in nested simulation focus by reducing one or more of the above four factors.
Gan (2013, 2015a,b), Gan & Lin (2015, 2017) propose using clustering algorithms to select representative
policies then use functional approximations to predict the values of other contracts, to reduce the number of
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model points for a portfolio. In this paper we are interested in improving the efficiency of the simulation for
each model policy, so this work can be combined with the representative policy methods.

The literature on nested simulations suggests two main strands of thought. The first is to use a pilot
exercise to generate an empirical metamodel to replace the inner simulations in the subsequent full Monte
carlo simulation. The metamodel might be based on interpolation (Hardy (2003)), stochastic kriging (a
more sophisticated interpolation method, see Liu & Staum (2010) for example), least-squares regression,
(see Broadie et al. (2015) and Cathcart & Morrison (2009), for example), or a generic partial differential
equation approach (Feng 2014). Each of these may be referred to as a proxy model, as a pilot simulation is
used to develop an empirical proxy model which is subsequently used to replace the full inner simulation
distribution.

The second strand in the nested simulation literature focuses on efficiently allocate a given computational
budget between the outer and inner simulations. Gordy & Juneja (2010) demonstrate that outer simulations
are more important than inner simulations in accurate estimation of tail risk measures, so that at some
point the advantage gained from additional inner simulations is minimal. They then propose a method of
strategic allocation of the budget between inner and outer simulations. They use a uniform approach to
inner simulations, that is, all inner simulations use the same number of paths. Subsequently, Broadie et al.
(2011) developed a dynamic allocation algorithm which was not uniform, where more inner simulations
were applied to some outer paths than others. Screening refers to the more extreme form of allocation,
under which some no inner simulations are applied at all to some outer paths, based on the probability that
these outer loops would not contribute to the risk measure of interest – typically VaR, CTE or probability
of a shortfall based on some specified threshold. Liu & Staum (2010) uses an iterative approach involving
stochastic kriging and screening, in three stages. Lan et al. (2010) also use screening, based on a pilot study.

In Dang et al. (2018) we proposed an efficient nested simulation procedure, called the Importance-
Allocated Nested Simulation (IANS) method. The IANS method uses two stages for the inner simulations.
The first stage uses a low-cost proxy model to identify the potential tail scenarios that are most likely to
contribute to the CTE risk measure. In the second stage the entire computational budget in concentrated on
the tail scenarios identified in the first stage. Some important questions remains unresolved in Dang et al.
(2018) and only ad-hoc steps were taken in its numerical demonstrations. More specifically, in the first
stage, how many potential tail scenarios should be identified and why?

In this paper we derive the expected value and variance of rank of concomitant in bivariate order statistics
in the context of nested simulation. Based on these results, we then design an algorithm to search for the
appropriate number of potential tail scenarios to be identified in the first stage of the IANS method. The
proposed algorithm allows us to verify if the potential tail scenarios identified in the first stage of the IANS
method sufficiently cover the tail of the true distribution of inner simulation loss. More broadly, the method
to construct confidence interval of rank of the inner simulation loss may also be applied in other proxy
approaches for nested simulation. Our numerical experiments show that, the proposed algorithm generates a
cut-off for potential tail scenarios that capture the true tail scenarios in terms of inner simulation 94% of the
time and achieves comparable level of efficiency improvement as that shown in the numerical experiments
in Dang et al. (2018).

The remainder of this article is organized as follows: Section 2 provides an overview of Variable An-
nuitiy, its dynamic hedging practice and the process of a standard nested simulation. Section 3 recaps the
Important-Allocated Nested Simulation method presented in Dang et al. (2018). Section 4 derives the first
two moments of the rank of concomitant and presents the algorithm to find the optimal cut-off for poten-
tial tail scenarios. Section 5 illustrates the performance of the proposed method in numerical experiments.
Section 6 concludes.
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2 Modelling Variable Annuity costs using Nested Simulations

In this section we introduce our notation and assumptions. We present the common types of variable annu-
ities riders that we use in the rest of the paper. We also describe the standard two level nested simulation,
with path dependent outer simulations, which is the base method used as a benchmark for the IANS ap-
proach.

2.1 Overview of Variable Annuities

A variable annuity (VA) is a deferred annuity that allows the policyholder to invest contributions into mutual
funds or sub-accounts, subject to an explicit or implicit guarantee fee in addition to the regular mutual fund
management fee. The underlying investment in the mutual funds include equities and fixed income assets.
Lapse is allowed and the fund value less any applicable surrender charges are paid upon lapse. As insurance
contracts, unlike mutual fund investments, a VA contract provides downside protections from the fluctuation
of the financial markets in the form of minimum guarantees.

Consider a generic VA contract whose time to maturity is T ≥ 0. Let F (t) and G(t) be the sub-account
fund value and the guarantee value, respectively, at time t = 0, . . . , T . The major types of benefits provided
by Variable Annuities in the market today include:

Guaranteed Minimum Maturity Benefit (GMMB) Provided survival of the policyholder, GMMB con-
tract pays max(F (T ), G(T )) to the plicyholder at maturity T , of which the insurer is liable for paying
max(G(T )− F (T ), 0). In other words, from the insurer’s perspective, issuing a GMMB contract is equiv-
alent to holding a short position on a put option of the underying investment. This is one of the simplest VA
contracts. For ease of exposure we consider GMMB in our numerical experiments.

Guaranteed Minimum Death Benefit (GMDB) A GMDB contract pays max(F (t), G(t)) upon the pol-
icyholder’s death at time t. G(t) is typically 75% of 100% of the original premium, if we ignore any
previous partial surrender or subsequent premium paid. Under simplifying assumptions (e.g., no lapse),
GMDB’s payoff coincides with that of the GMMB.

Guaranteed Minimum Accumulation Benefit (GMAB) A GMAB contract guarantees a minimum fund
value at both renewal, say at time R < T , and maturity of the contract. Let R− and R+ be the instants
before and after the contract renewal, respectively. Upon renewal at R, a new guarantee value G(R+) may
be set according to the following rules and will be effective from R+ to T :

• If F (R) ≤ G(R), the new guarantee value G(R+) = G(R). In this case the insurer pays the deficit
G(R)− F (R) into the sub-account to meet the new guarantee value.

• If F (R) > G(R), then G(R+) = F (R). In this case the insurer does not need to pay additional
cash flows into the sub-account.

In essence, the new guarantee value is G(R+) = max(F (R), G(R)). At the maturity T the insurer pays
max(F (T ), G(T )). In practice, minimum term applies (typically 10 years) on renewal and there may be a
limit to the number of renewals allowed.

Guaranteed Minimum Income Benefit (GMIB) A GMIB contract guarantees the minimum annual in-
come rate at which the policyholder can convert the fund value to an annuity benefit. The contract typically
pays max(F (t), G(t)) upon the policyholder’s death at time t or max(F (T ), G(T )) at maturity T (Dai et al.
(2008)). This is one of the complicated types of VA contracts.

For more information on VA contracts and different types of guarantees, readers are encouraged to refer
to Hardy (2003).
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2.2 Dynamic Hedging for VA via Nested Simulation

In a dynamic hedging program, a hedging portfolio is set up for a block of VA contracts using stocks, bonds,
futures and possibly options. For instance, for a GMMB contract whose underlying asset is a stock, the
contract is equivalent to a short position on the put option of the stock from the insurer’s perspective. As a
result, the insurer will short the appropriate amount of future contracts of this stock in the hedging portfolio.
The hedging portfolio is rebalanced periodically, responding to changes in market conditions and in the
demographics of the block of contracts.

In this paper we consider a delta hedge for a single VA contract. For transparency, we ignore manage-
ment fees, and all other charges and expenses. We are concerned only with the costs of delta hedging the
embedded option. In our illustrations we also only consider guaranteed maturity benefits, and we ignore
mortality. All of these assumptions can easily be relaxed, but because the main contribution to the costs of
most VA guarantees is the cost of hedging the maturity guarantee, that is our focus here, and eliminating the
other factors helps focus on the primary issue.

We assume that the option matures at T ; for a guaranteed minimum maturity benefit (GMMB) this
would be the expiry date of the policy. At any t ≤ T , let S(t) be the underlying stock price at time t in an
outer scenario. We assume that the delta hedge for the embedded option is composed of ∆(t) units in the
underlying stock, and a sum B(t) in a risk free zero coupon bond maturing at T . The delta hedge portfolio
at t− 1 is then

H(t− 1) = ∆(t− 1)S(t− 1) +B(t− 1)

Given a risk free force of interest of r per time unit, at the end of the tth time period, the value of this hedge
has changed to

HBF (t) = ∆(t− 1)S(t) +B(t− 1)er (1)

and this is the hedge brought forward at time t (we assume no rebalancing between times t− 1 and t). The
cash flow incurred by the insurer, which we call the hedging error, is the difference between the cost of the
hedge at time t and the value of the hedge brought forward

HE(t) = H(t)−HBF (t). (2)

The costs to set up the initial hedging portfolio, the periodic hedging losses due to rebalancing, and the
final unwinding of the hedge are recognized as part of the profit and loss (P&L) of the VA contract. The
present value of these cash flows, discounted at the risk free rate of interest, constitutes the liability of the
VA to the insurer; this is the loss random variable to which we apply a suitable risk measure.

For a straightforward GMMB the liability can be decomposed as follows. Let F (t) denote the value
of the policyholder’s funds at t. The funds increase in proportion to a stock index with value S(t) at t (as
we are ignoring fees and expenses), so for convenience we can scale the stock price index, and assume
that F (0) = S(0) For simplicity, the guaranteed minimum benefit is assumed to be a fixed value, G. Let
H(0) = ∆(0)S(0) +B(0) denote the cost of the initial hedge, and let H(T ) denote the ultimate guarantee
payoff at T , that is H(T ) = (G− S(T ))+. The discounted hedging loss random variable is given by

L = H(0) +
T∑
t=1

e−rtHE(t) (3)

= S(0)∆(0) +

T−1∑
t=1

e−rtS(t) (∆(t)−∆(t− 1)) + e−rT
(
(G− S(T ))+ − S(T )∆(T − 1)

)
(4)

Please refer to Dang et al. (2018) for derivation and interpretation of (4).
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Using Monte Carlo simulation to assess the costs of hedging, we generate J simulated loss values
L1, . . . , LJ . The order statistics of the simulated losses are denoted by L(1), . . . , L(J), where L(j) is the jth
smallest value. An estimator of the 100α%-CTE is given by

CTEα =
1

J(1− α)

J∑
j=Nα+1

L(j). (5)

Algorithm 1 outlines the steps of a standard two-level nested simulation for estimating CTEα of losses
for a Delta-hedged VA contract. A generic stock price model is considered and path-dependent guarantees
are allowed. While omitted for clarity, practical considerations such as fees, renewals, and policyholder
behaviors can be incorporated into Algorithm 1 easily.

The different purposes of the outer- and inner-simulations result in different stochastic asset models
being applied. For the purpose of estimating CTE of L, a real-world model is used in outer simulations
of stock price paths (Line 5) to examine losses associated with the VA contract under realistic scenarios.
Meanwhile, a risk-neutral model is used in inner simulations (Line 11) for evaluating the ∆(t) values and
subsequently the hedge costs for each time step for each scenario. In simple models, inner simulations may
not be necessary and the hedge cost at each time point can be determined analytically, as we demonstrate in
the following section. However, when we use a stochastic volatility model, or when we incorporate dynamic
lapses or other complications, inner simulations will usually be required .

The evolution of sub-account and guarantee values in Line 6 and the inner simulation model in Line 11
of Algorithm 1 can be adapted to a range of VA guarantees and assumptions. Algorithm 1 can also be
extended to hedging strategies that depend on other sensitivities, e.g. Gamma, Rho, Theta, etc. In these
cases, the inner simulation model would be extended to estimate the relevant Greeks, resulting in hedging
portfolios that may consist of additional assets such as options, forwards, VIX and others. See L’Ecuyer
(1990), Glasserman (2013), Fu et al. (2016) for more information on estimating greeks using Monte Carlo
simulation. We use the Infinite Perturbation Analysis (IPA) (Broadie & Glasserman 1996, Glasserman 2013)
method for sensitivity estimation in our numerical studies.

2.3 Analytic hedge calculations using Black-Scholes

In the case where the risk neutral measure is assumed to be Geometric Brownian Motion, and where the
guarantee is a GMMB with fixed guarantee, then the hedge portfolio can be determined analytically, without
requiring the inner simulation step.

Consider the GMMB with a fixed guarantee G. We ignore mortality, fees and expenses, and assume for
convenience that F (0) = S(0). The maturity payoff is a simple European put option, so the hedge at t under
the jth outer simulation, Hj(t), can be determined from the Black-Scholes formula for a put option, where
r is the risk free rate of onterest continuously compounded, per time unit, and σ is the volatility of the risk
neutral GBM, expressed per time unit:

Hj(t) = G(t)e−r(T−t)Φ(−d2)− Sj(t)Φ(−d1), ∆j(t) = −Φ(−d1) (6)

where Φ(x) is the cumulative function of the standard Normal random variable and

d1(t, T ) =
ln
(
Sj(t)
G(t)

)
+
(
r + σ2/2

)
(T − t)

σ
√
T − t

d2(t, T ) = d1(t, T )− σ
√
T − t. (7)

In practice, the analytic expressions from the Black-Scholes model may not be sufficiently accurate for
tail risk measures of the hedge costs. Introducing a stochastic volatility model for the hedge costs can make
analytic evaluation unwieldy or impossible, and when dynamic lapse assumptions are incorporated the only
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Algorithm 1: Two-level nested simulation of losses for a Delta-hedged VA contract with a single
payout date T .

input : r: Per-period risk-free interest rate.
Tk: Potential renewal and maturity dates of the VA contract. T = max(Tk)
G(0): Guarantee value at the time of valuation.
F (0): Sub-account value at the time of valuation.
S(0): Underlying stock price at the time of valuation.
H(0),∆(0), B(0): Hedging portfolio value, delta, and bond value.
α: Confidence level (e.g., α = 95%) at which CTE of losses is required.
N, J : Number of replications in inner and outer simulations, respectively.

output: CTEα for the losses of Delta-hedging the VA contract of interest.
1 for j = 1, . . . , J do
2 Initialization for outer simulations:
3 Set Sj(0)← S(0), Fj(0)← F (0), Gj(0)← G(0).
4 for t = 1, . . . , T do
5 Simulate Sj(t) using the real-world asset model.
6 Calculate sub-account value Fj(t) and guarantee values Gj(t).
7 Calculate guarantee payouts at renewal and maturity dates, e.g. (Gj(T ) = Fj(T ))+

8 for i = 1, . . . N do
9 Initialization for inner simulations:

10 Set Sij(t)← Sj(t), Fij(t)← Fj(t), Gij(t)← Gj(t).
11 Perform the ith inner simulation under a risk-neutral measure

1. Simulate Sij(T ) and Fij(T ) given Sij(t)

2. Determine the guarantee payoff at T given Fij(T ), that is (Gj(T )− Fij(T ))+.

3. The ith inner simulated value of the hedging portfolio at time t is

Hij(t) = e−r(T−t)(Gj(T )− Fij(T ))+

4. The ith inner simulated delta of the hedge portfolio is ∆ij(t), which measures
the sensitivity of Hij(t) with respect to Sij(t).

12 end
13 Estimate the hedging portfolio value, the delta, and the hedge bond value at time t
14

Hj(t) =
1

N

N∑
i=1

Hij(t), ∆j(t) =
1

N

N∑
i=1

∆ij(t), Bj(t) = Hj(t)−∆j(t)Sj(t).

15 Calculate Hj(t)
BF = Bj(t)e

r + ∆t−1,jSj(t), the brought-forward portfolio value.
16 Calculate HEj(t) = Hj(t)

BF −Hj(t), the hedging loss at time t.
17 end
18 Calculate the loss random variable for the jth outer path, Lj , following equation (3) and (4).
19 end
20 Sort the simulated liabilities, such that L(j) is the jth smallest value and estimate the CTE using equation (5).
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Algorithm 2: Importance-Allocated Nested Simulation of losses for a Delta-hedged VA contract with
a single payout date T .

input : – Underlying real world and risk neutral asset models with parameters.
– VA contract, term T , and fully specified dynamic hedging program.
– The risk measure and level, e.g. CTEα.

output: CTEα for the losses of Delta-hedging the VA contract of interest.
Initialization: Simulate J outer scenarios, each is a T -period simulated stock price sample path under the

real-world measure.
Stage I: Identification of proxy tail scenarios
(I.1) Select a proxy financial derivative and associated asset model which provide tractable, analytic hedge

costs, and for which the payoff which is expected to be well-correlated to the VA guarantee costs.

(I.2) Calibrate the proxy asset model to the underlying risk-neutral asset model in inner-level simulations.

(I.3) Implement Algorithm 1 but with the analytic hedge calculations for the proxy derivative and asset model
replacing the inner simulation step.

(I.4) Identify (1− ξ)J proxy tail scenarios with the largest simulated loss in Step (I.3) for some ξ ∈ [0, α].

Stage II: Nested simulation with concentrated computation budget

(II.1) Allocate remaining computational budget to the (1− ξ)J proxy tail scenarios.

(II.2) Implement the inner simulation step of Algorithm 1 with the original risk neutral asset model and VA
payoff, but only for the (1− ξ)J outer scenarios identified in Step (I.4).

(II.3) Identify the (1− α)J largest liability values based on the inner simulations.

(II.4) Compute CTEα in Equation (5) as the output.

feasible approach is Monte Carlo simulation. But the analytic Black-Scholes hedge costs are expected to be
correlated with the true values, so we will use the analytic expressions as our first stage analysis to screen out
the outer scenarios that are very unlikely to contribute to the CTE, and run the inner simulation part of the
nested simulation algorithm only for those scenarios deemed sufficiently important after the first screening.
The two stage process is described more fully in the following section.

3 Importance-Allocated Nested Simulation (IANS) Method

In this section, we present an outline of Importance-Allocated Nested Simulation (IANS) method for es-
timating the CTEα of a VA GMMB, using a nested simulation with screening approach. More detailed
explanation of this approach can be found in Dang et al. (2018).

The IANS method replaces the inner simulation steps in Algorithm 1 with a two stage process. As
before, T denotes the final expiration date of the guarantee. The user must specify some parameters and
experiment design choices that govern the behavior of the IANS method.

Unlike a standard proxy approach, the proxy tail scenarios in the IANS method do not need to accurately
assess the liability values for those scenarios – what we use the proxy step for is to ascertain a ranking of
the liabilities by outer scenarios. This means that the IANS method is expected to perform well as long
as the rankings of losses between the proxies and original models are highly correlated, even if the losses
themselves are not.

For GMMB, the put option identified in Section 2.3 is an obvious proxy derivative, as the option payoffs
are identical to the guarantee payoffs, if we ignore complications of policyholder behaviour. To ensure that
the proxy liability values are as highly correlated as possible with the true values under the inner simulation
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asset model, we dynamically calibrate the Black-Scholes volatility in the proxy model to the conditional
expected volatility of the real world model, based on the scenario path up to the valuation.

The proxies selected in Step (I.2) cannot perfectly capture the complexities of the original asset model
and VA contract of interest, resulting in potential misclassification of tail scenarios. Therefore we select a
proxy confidence level ξ in Step (I.4) with some safety margin, so that α− ξ ≥ 0. This means that the proxy
tail scenarios are the (1−ξ)J outer scenarios with the largest simulated loss based on the proxy calculations.
We use these to identify the largest (1− α)J simulated loss based on the inner simulations, assuming that,
with high confidence, the (1− α)J true tail scenarios are a subset of the (1− ξ)J proxy tail scenarios.

This proxy confidence level ξ is an experiment design parameter in IANS. If ξ is very small, the likeli-
hood of capturing the true tail scenarios is high, but at the cost of running the inner simulations on a large
number of outer scenarios. With a fixed budget for the inner simulations, this will generate higher mean
square errors in the loss values and CTE estimates. On the other hand, if ξ is close to α, the inner simulation
budget is focused on fewer scenarios, so those included will have more accurate liability valuations, but
some tail scenarios will be wrongly omitted because the proxy liability ranking is not comonotonic with the
true liability ranking. Hence there is a trade-off between a high likelihood of including the true tail scenarios
(ξ → 0) and high concentration of simulation budget in Stage II (ξ → α). In Dang et al. (2018), the work
was based on an arbitrary safety margin of 5%. Here in this paper, we propose a structured approach to
determine the optimal proxy confidence level ξ in Section 4.

4 Concomitant of Order Statistics in Application of IANS Method

A nested simulation using the IANS method generates a sample with (1 − ξ)J pairs of bivariate output,
corresponding to the (1 − ξ)J proxy tail scenarios. Each pair of output consists of hedging loss estimated
by proxy and by inner simulation, denoted by (L̂k, Lk), respectively, for k = 1, . . . , (1 − ξ)J . (L̂k, Lk)
are referred to as proxy loss and inner simulation loss hereinafter. Given this sample, we try to determine
if the (1 − α)J true tail scenarios are a subset of the (1 − ξ)J proxy tail scenarios. For this purpose, we
only need to focus on the quantile of proxy loss and inner simulation loss, rather than the actual value of
such losses, which simplifies the problem to one with a bivariate uniform distribution. Because the order
statistics of the proxy loss among all scenarios are known, we can study the quantile of inner simulation loss
as a concomitant of the quantile of proxy loss. We first derive the first and second moment of the rank of
concomitant in a bivariate uniform distribution. We then illustrate how they can be applied in the selection
of the optimal proxy confidence level ξ in the IANS method.

4.1 Rank of Concomitant of Order Statistics

Let (Ui, Vi), i = 1, . . . , n be n independent pairs of r.v. with a common bivariate distribution. We denote the
rth order statistic among n Ui’s as Ur:n. Then the V-variate associated with Ur:n is called the concomitant
of the rth order statistic (David et al. 1977), and is denoted as V[r:n]. The rank of V[r:n] among all n Vi’s are
denoted as Rr:n. In other words, Rr:n = s implies V[r:n] = Vs:n. In Figure 1, we use a sample with 5 pairs
of (Ui, Vi)’s as an example to illustrate the value of Ur:n, V[r:n], and Rr:n in this case.

David et al. (1977) derived a general expression for the expected value ofRr:n,E[Rr:n], for any bivariate
distribution of (U, V ). Since the bivariate random variables we focus on are quantiles of the proxy loss and
inner simulatation loss, (U, V ) has a bivariate uniform distribution in this case. This allows us to use the
copula function C(U, V ) to denote the distribution function of (U, V ). We also denote the density function
of the copula as c(U, V ).

Using the results in David et al. (1977), we derive Proposition 4.1
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Figure 1: Example: Rank of Concomitant of Order Statistics

Proposition 4.1. Suppose (U, V ) has bivariate uniform distribution. In a sample with n pairs of (U, V )’s,
the expected value of the rank of concomitant of U ’s rth order statistic is

E[Rr:n] (8)

=1 + n
(∫ 1

0

[∫ 1

0
C(u, v)c(u, v)dv

]
fUr−1:n−1(u)du+

∫ 1

0

[∫ 1

0

(
v − C(u, v)

)
c(u, v)dv

]
fUr:n−1(u)du

)

where fUr:n(u) is the density function of Ur:n. More specifically, fUr:n(u) = n!
(r−1)!(n−r)!u

r−1(1− u)n−r.

Furthermore, in O’Connell (1974), the author derived an expression for E[R2
r:n], where U and V are

linearly correlated. Following the same methodology as in O’Connell (1974), we derive Proposition 4.2

Proposition 4.2. Suppose (U, V ) has bivariate uniform distribution. In a sample with n pairs of (U, V )’s,
the second moment of the rank of concomitant of U ’s rth order statistic is

E[R2
r:n] = 3E[Rr:n]− 2 + n(n− 1)×

(∫ 1

0

[∫ 1

0

(
C(u, v)

)2
c(u, v)dv

]
fUr−2:n−2(u)du (9)

+

∫ 1

0

[∫ 1

0

(
v − C(u, v)

)2
c(u, v)dv

]
fUr:n−2(u)du

+ 2

∫ 1

0

[∫ 1

0
C(u, v)

(
v − C(u, v)

)
c(u, v)dv

]
fUr−1:n−2(u)du

)

Given Proposition 4.1 and 4.2, the variance of Rr:n can be easily derived. The proof of Proposition 4.1
and 4.2 are shown in the Appendix.
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4.2 Application in Importance-Allocated Nested Simulation

As discussed in Section 3, the optimal proxy confidence level ξ in the IANS method is the highest ξ such
that the (1 − α)J true tail scenarios are a subset of the (1 − ξ)J proxy tail scenarios. This is equivalent
to the highest ξ such that, among all J outer loop scenarios, the lowest rank of all concomitants (i.e. the
proxy loss) of the largest (1 − α)J inner simulation losses is greater than ξJ . Since we could not find this
optimal ξ without a full nested simulation of all J outer loop scenarios, we attempt to answer a similar
question instead. That is, what is the highest value of ξ such that the rank of the concomitant (i.e. the inner
simulation loss) of the (ξJ+1)th proxy loss is higher than αJ? We propose Algorithm 3 to find this answer.

Algorithm 3 is an iterative process to search for the highest ξ in the IANS method so that within the
bivariate sample with (1−ξ)J pairs of proxy and inner simulation losses, the upper bound of the confidence
interval for the rank of concomitant of one of the best proxy losses is less than (α − ξ)J . In other words,
we are looking for the highest ξ such that we could expect with high confidence at least (1 − α)J inner
simulation losses to be larger than the inner simulation losses in the bivariate sample.

In Line 8 of this algorithm, we consider the upper bound of the confidence interval for R(α−ξ0)J :(1−ξ)J ,
i.e. the rank of concomitant of the (α − ξ0)J th proxy loss in the sample. Ideally, the most efficient way to
find the optimal ξ would be by considering R3:(1−ξ)J , the rank of concomitant of the best proxy loss in the
sample whose expected value and variance could be derived. However, we choose to consider the confidence
interval for R(α−ξ0)J :(1−ξ)J instead, because in the sample of (1− ξ)J pairs of proxy and inner simulation
loss that we consider, the joint distribution of the quantile of the losses at the low end of the distribution is
distorted, and is not indicative of the joint distribution of the same quantities among the entire J scenarios.
This is observable in the output from a numerical experiment shown in Figure 2. Given we are ultimately
concerned about the rank of concomitant among the entire J scenarios for the purpose of finding the optimal
ξ, we use a more prudent although less efficient approach of examining R(α−ξ0)J :(1−ξ)J instead. In Section
5, we show the difference in success rate of finding the optimal ξ by considering the confidence interval for
R(α−ξ0)J :(1−ξ)J versus R3:(1−ξ)J in a numerical experiment.

Algorithm 3 provides an objective way to identify the optimal proxy confidence level ξ in the IANS
method. It can be used to replace Stage II in Algorithm 2 as an improved IANS method. It is based on
empirical simulation data so it can accommodate the unique feature and structure of different simulation
models. Nevertheless, one drawback of this algorithm is that, due to its iterative nature, it is difficult to
implement it under a fixed computation budget without any further strategy to allocate uneven number of
inner loop simulations across outer loop scenarios. This will be considered in our future work.

5 Numerical Experiments

In Dang et al. (2018), we used extensive numerical experiments to demonstrate the performance of the IANS
method. In this paper, however, we limit ourselves to the experiment of GMMB under a regime-switching
asset model with dynamic lapse assumption for two reasons. First, this test case is more complex and
presents less correlation between the proxy loss and inner simulation loss than other models considered in
Dang et al. (2018), so it is more difficult to find the optimal proxy confidence level ξ, which makes it a
good test case. Secondly, because Algorithm 3 uses empirical copula to construct the confidence interval
for R(α−ξ0)J :(1−ξ)J , the algorithm should be effective regardless of the underlying asset and liability model
used in simulation.

We start with full nested simulations to estimate the CTE 95 hedging loss of the GMMB contract. We
use the parameters specified in Table 1.

A few simplifying assumptions are made, consistently with the development of the previous sections;
specifically

• No transaction costs in the hedging program.
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Algorithm 3: Proxy Confidence Level Identification in Importance-Allocated Nested Simulation.
input : ξ = ξ0: Initial proxy confidence level for inner simulation in the IANS method

α: Confidence level (e.g., α = 95%) at which CTE of losses is required.
J : Number of replications in inner and outer simulations.
ω = (α− ξ0)J : Initial upper bound of the confidence interval for R(α−ξ0)J:(1−ξ)J .
L̂i, i = 1, . . . , J : Proxy loss for all J outer loop scenarios
Nested Simulation model for the VA contract of interest

output: CTEα for the losses of Delta-hedging the VA contract of interest.
1 while ω ≥ (α− ξ)J do
2 ξ ← 1− dω + (1− α)Je ÷ J
3 Identify a set K of (1− ξ)J proxy tail scenarios with the largest proxy loss L̂i from input
4 Implement the inner simulation step of Algorithm 1 for loss from hedging L with the original risk neutral

asset model and VA payoff, but only for the set of outer scenarios K identified in Step 3
5 Collect the (1− ξ)J pairs of bivariate output (L̂k, Lk) where k ∈ K and convert each output to its

marginal quantiles within the (1− ξ)J points. The converted sample is denoted as (Uk, Vk), for
k = 1, . . . , (1− ξ)J

6 Estimate an empirical copula function of (U, V ) based on (Uk, Vk)’s from Step 5, where

C(u, v) ≈ 1

(1− ξ)J

(1−ξ)J∑
k=1

1{U≤u,V≤v}

(Hofert et al. 2017)
7 Estimate an empirical density function of the copula of (U, V ) based on (Uk, Vk)’s from Step 5, where

b = 1√
(1−ξ)J

and

c(u, v) ≈ 1

4b2

(
C
(

min(u+ b, 1),min(v + b, 1)
)
− C

(
min(u+ b, 1),max(v − b, 0)

)
− C

(
max(u− b, 0),min(v + b, 1)

)
+ C

(
max(u− b, 0),max(v − b, 0)

))

8 Calculate E[R(α−ξ0)J:(1−ξ)J ] and Var[R(α−ξ0)J:(1−ξ)J ] by substituting the empirical Copula and density
function of (U, V ) from Step 6 and 7 into Equation (8) and (9)

9 Construct a 95% one-sided confidence interval for R(α−ξ0)J:(1−ξ)J as(
−∞, E[R(α−ξ0)J:(1−ξ)J ] + 1.645×

√
Var[R(α−ξ0)J:(1−ξ)J ]

)
, and update

ω = E[R(α−ξ0)J:(1−ξ)J ] + 1.645×
√

Var[R(α−ξ0)J:(1−ξ)J ]

10 end
11 Identify the (1− α)J largest liability values based on the inner simulations from Step 4.
12 Compute CTEα in Equation (5) as the output.

Table 1: Parameters for VA Contracts

Description Notation Value
Maturity of Contract and Projection Period T 240 months

Initial Fund Value F (0) $1000
Initial Level of Guarantee G1 100% of F (0)
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(a) QQ Plot of Tail Scenarios as Quantile of the Entire
J Scenarios

(b) QQ Plot of Tail Scenarios as Quantile of the Tail
Scenarios

Figure 2: Quantile of proxy and simulated losses in 1,000 tail scenarios. GMMB Contract with dynamic
lapse under a regime-switching model of 10,000 outer scenarios. See Section 5 for more detail.

• The initial premium is invested in a stock index, with no transfers between funds.

• There are no subsequent premiums.

• We ignore mortality and other decrements unless otherwise stated.

• No management or guarantee rider fees are deducted from the fund.

• The risk is delta hedged at monthly intervals.

Under these assumptions, the liabilities of the VA contracts consist only of the liability from the hedging
program, i.e. the initial cost of the hedging portfolio and the present value of periodic hedging errors. In
practice, fee income, expenses, commissions, decrements, and costs due to basis risk (difference between
real world and hedging models) are likely to make up a proportion of the liability.

The model parameters of the regime-switching model are provided in Table 2.
The financial market is incomplete in the regime-switching model, thus its risk neutral measure is not

unique (Hardy 2001). Given the real-world measure in the regime-switching model, we employ the risk-
neutral model studied in Bollen (1998), Hardy (2001), whose mean conditional log return is r − σ2i /2 for
i = 1, 2. All other parameters are the same in the real world and risk neutral models.

The dynamic lapse behavior by policyholders are modeled as follows.

• The fund value F and guarantee value G are reduced proportionally by lapse.

• qx+t, the monthly lapse rate as of time t is:

qx+t = min
(
1,max(0.5, 1− 1.25× (

G(t)

F (t)
− 1.1))

)
× qbasex+t (10)

where

qbasex+t =

{
0.00417 if t < 84,
0.00833 if t ≥ 84.

(11)
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Table 2: Parameters for the real world Regime-Switching Model used in Section 5.

(Monthly rate) Real World Risk Neutral
Risk-free Rate: r 0.002 0.002

Mean - Regime 1 (ρ = 1): µ1 0.0085 0.0013875
Mean - Regime 2 (ρ = 2): µ2 -0.0200 -0.0012000

Standard Deviation - Regime 1: σ1 0.035 0.035
Standard Deviation - Regime 2: σ2 0.080 0.080

Transition Probability - from Regime 1: p12 0.04 0.04
Transition Probability - from Regime 2: p21 0.20 0.20

Table 3: Model in the Full Nested Simulations in Section 5.2

Description Value
Contract Type GMMB
Asset Model Regime-Switching

Lapse Modeling Dynamic Lapse
Number of Outer Loop Simulation J = 5, 000
Number of Inner Loop Simulation N = 200

5.1 IANS Method with ξ = 10%

Figure 3 recaps the comparisons shown in Dang et al. (2018) between the losses that are simulated by true
nested simulation and those by the IANS method’s proxy simulation, for a GMMB contract under dynamic
lapse assumptions.

The results suggest that the (1−α)J tail scenarios from nested simulations overlap almost entirely with
the (1−ξ)J proxy tail scenarios. Such overlapping suggest that the IANS method is effective in this realistic
setting using only simple proxy calculations. Another important observation in Figure 3 is that the simulated
losses by the nested simulation and those by the proxy simulation can be significantly different in values.
Nonetheless, the rankings of these simulated losses remains similar so the proxy model can still effectively
identify the true tail scenarios.

5.2 Finding the Optimal ξ Using Rank of Concomitant

To demonstrate the effectiveness of Algorithm 3, we conduct 100 experiments of CTE 95 estimate based
on full nested simulation of the model described in Table 3. We also apply proxy evaluation in all 100
experiments and collect the actual proxy confidence level ξ in each experiment of full nested simulation.
We then apply Algorithm 3 to each of the 100 experiments with an initial ξ0 = 0.92 and find the optimal ξ
suggested by the confidence interval of R(α−ξ0)J :(1−ξ)J , where α = 0.95 and J = 5, 000.

As illustrated in the Dang et al. (2018), the CTE 95 estimate in this experiment with only 5, 000 outer
loop scenarios and 200 inner loop simulations is typically biased. However, our focus in these experiments
is not the accuracy of CTE 95 estimate. Instead, we are interested in how well Algorithm 3 can produce ξ’s
that capture all the true tail scenarios based on a full nested simulation.
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Out of the 100 experiments with ξ0 = 92%, Algorithm 3 produces proxy confidence level ξ’s that
capture all the true tail scenarios in 94 of them. Since Algorithm 3 is based on a 95% confidence interval,
we conclude a success rate of 94% is satisfactory. This is compared to a success rate of only 63% in
capturing all the true tail scenarios if ξ’s are fixed at 90%. These results demonstrates the benefit of using
Algorithm 3.

Even in the few experiments where the implied proxy confidence level ξ missed some true tail scenar-
ios, the impact on the accuracy of the CTE estimate is less than 0.03% of the CTE estimate based on the
full nested simulation. This is due to the fact for outer loop scenarios that are closer to the center of the
distribution, the absolute values of losses are closer to each other despite their difference in rank. This can
be observed in Figure 3.

The true proxy confidence level and the implied proxy confidence level based on Algorithm 3 in each
of the 100 experiments are shown in Figure 4. The proxy confidence level is expressed in terms of rank
of proxy loss among all J outer scenarios. An implied proxy confidence level lower than the true proxy
confidence level indicates that the implied proxy confidence level captures all the true tail scenarios in the
entire distribution in the experiment.

Figure 4 also shows that the implied proxy confidence level remains relatively stable regardless of the ac-
tual proxy confidence level. The reason behind is that the first two moments of R(α−ξ0)J :(1−ξ)J are affected
by the rank of all (1 − ξ)J pairs of losses in each sample, which then affect the implied proxy confidence
level. In contrast, the actual proxy confidence level can easily be skewed by the rank of concomitant in a
single scenario because it depends on the lowest rank of proxy losses that correspond to the true tail scenar-
ios. In addition, the underlying asset and liability model are the same across all 100 experiments. Therefore
even though the actual proxy confidence level varies from one experiment to the next, the implied proxy
confidence level remains relatively stable. Indeed, in cases where the actual proxy confidence level is high,
the lower implied proxy confidence level means a “waste” in computation effort. Nonetheless, we argue that
the “waste” in computation effort is again a trade-off for a more robust and accurate CTE estimate.

We conducted another set of experiment by applying Algorithm 3 to the same 100 experiments, but with
an initial ξ0 = 0.9494. This time none of the 100 experiments produces a proxy confidence level ξ that
captures all the true tail scenarios, which demonstrates the necessity to start the experiment with a lower
initial ξ0 such as 92%.

6 Conclusion

In this article, we illustrate an improved Importance-Allocated Nested Simulation procedure in the applica-
tion of estimating the CTE of liabilities in a VA dynamic hedging strategy. The algorithm for finding the
optimal proxy confidence level is proposed based on theories from order statistics. It is a structured ap-
proach that is not restricted to the underlying VA contract or models. The numerical results show significant
improvement in the accuracy of identifying the true tails scenarios in a nested simulation than the previous
proposal of a fixed arbitrary ξ.

For future work, we will expand the improved IANS method to more sophisticated VA contract such as
GMIB and GMWB, as well as nested simulation of other financial instruments.
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Figure 3: Simulated losses in 10,000 outer scenarios. The x and y coordinates of each point in the figures
represent the loss in a scenario, simulated by the IANS proxy simulation and by the true nested simulation,
respectively.
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Figure 4: True and implied proxy confidence level in 100 repeated experiments. The output is sorted based
on the level of the true proxy confidence level.
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A Proof of Proposition 4.1 and 4.2

For a general bivariate distribution of (U, V ),

E[Rr:n] (12)

=1 + n
(∫ −∞
∞

[∫ −∞
∞

θ1f(v|u)dv

]
fUr−1:n−1(u)du+

∫ −∞
∞

[∫ −∞
∞

θ3f(v|u)dv

]
fUr:n−1(u)du

)

(David et al. 1977)
where

• θ1 = P [U < u, V < v]

• θ2 = P [U < u, V > v]

• θ3 = P [U > u, V < v]

• θ4 = P [U > u, V > v]

In our problem where (U, V ) follow a bivariate uniform distribution, we have

• f(v|u) = f(u,v)
fU (u) = f(u, v) = c(u, v)

• θ1 = C(u, v)

• θ2 = u− C(u, v)

• θ3 = v − C(u, v)

• θ4 = 1− u− v + C(u, v)

To recap the notations we use:

• C(u, v) is the copula function of U = u and V = v.

• c(u, v) is the density function of C(U, V ).

• fUr:n(u) represents the density funvtion of the rth order statistics among n U ’s. More specifically,
fUr:n(u) = n!

(r−1)!(n−r)!u
r−1(1− u)n−r.

Therefore, in our problem Equation (12) is equivalent to

E[Rr:n] (13)

=1 + n
(∫ 1

0

[∫ 1

0
C(u, v)c(u, v)dv

]
fUr−1:n−1(u)du+

∫ 1

0

[∫ 1

0

(
v − C(u, v)

)
c(u, v)dv

]
fUr:n−1(u)du

)

To derive the second moment of Rr:n, we first derive the second moment of Rr:n for a general case of
bivariate distribution of (X,Y ), i.e. not specific to uniform distribution. We use the same factorial moment
method as in O’Connell (1974).
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First we have,

E[R2
r:n] =

n∑
s=1

s2P [Rr:n = s] (14)

=
n−1∑
s=0

(s+ 1)2P [Rr:n = s+ 1]

=
n−1∑
s=0

P [Rr:n = s+ 1] + 2
n−1∑
s=0

sP [Rr:n = s+ 1] +
n−1∑
s=0

s2P [Rr:n = s+ 1]

=1 + 2(E[Rr:n]− 1) +
n−1∑
s=0

s2P [Rr:n = s+ 1]

More specifically,

n−1∑
s=0

s2P [Rr:n = s+ 1] =
n−1∑
s=0

s2n

∫ ∞
−∞

∫ ∞
−∞

t∑
k=0

Ckθ
k
1θ
r−1−k
2 θs−k3 θn−r−s+k4 f(x, y)dxdy (15)

where Ck =
(
n−1
r−1
)(
r−1
k

)(
n−r
s−k
)
.

Let j = s− k, then

n−1∑
s=0

s2P [Rr:n = s+ 1] (16)

=
n−1∑
s=0

s2n

∫ ∞
−∞

∫ ∞
−∞

t∑
k=0

Ckθ
k
1θ
r−1−k
2 θs−k3 θn−r−s+k4 f(x, y)dxdy

= n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

n−r∑
j=0

(k + j)2
(
r − 1

k

)(
n− r
j

)
θk1θ

r−1−k
2 θj3θ

n−r−j
4 f(x, y)dxdy

= n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

n−r∑
j=0

(k2 + j2 + 2kj)

(
r − 1

k

)(
n− r
j

)
θk1θ

r−1−k
2 θj3θ

n−r−j
4 f(x, y)dxdy

 
2488



Furthermore,

n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

n−r∑
j=0

k2
(
r − 1

k

)(
n− r
j

)
θk1θ

r−1−k
2 θj3θ

n−r−j
4 f(x, y)dxdy (17)

= n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

n−r∑
j=0

k(k − 1)

(
r − 1

k

)(
n− r
j

)
θk1θ

r−1−k
2 θj3θ

n−r−j
4 f(x, y)dxd

+ n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

n−r∑
j=0

k

(
r − 1

k

)(
n− r
j

)
θk1θ

r−1−k
2 θj3θ

n−r−j
4 f(x, y)dxdy

= n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

k(k − 1)

(
r − 1

k

)
θk1θ

r−1−k
2

n−r∑
j=0

(
n− r
j

)
θj3θ

n−r−j
4 f(x, y)dxdy

+ n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

k

(
r − 1

k

)
θk1θ

r−1−k
2

n−r∑
j=0

(
n− r
j

)
θj3θ

n−r−j
4 f(x, y)dxdy

= n

∫ ∞
−∞

∫ ∞
−∞

(
n− 1

r − 1

)
(r − 1)(r − 2)θ21[FX(x)]r−3[1− FX(x)]n−rf(x, y)dxdy

+ n

∫ ∞
−∞

∫ ∞
−∞

(
n− 1

r − 1

)
(r − 1)θ1[FX(x)]r−2[1− FX(x)]n−rf(x, y)dxdy

= n(n− 1)

∫ ∞
−∞

∫ ∞
−∞

θ21
f(x, y)

fX(x)
fr−2:n−2(x)dxdy + n

∫ ∞
−∞

∫ ∞
−∞

θ1
f(x, y)

fX(x)
fr−1:n−1(x)dxdy

= n(n− 1)

∫ ∞
−∞

[∫ ∞
−∞

θ21f(y|x)dy

]
fr−2:n−2(x)dx+ n

∫ ∞
−∞

[∫ ∞
−∞

θ1f(y|x)dy

]
dy]fr−1:n−1(x)dx

Similarly,

n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

n−r∑
j=0

j2
(
r − 1

k

)(
n− r
j

)
θk1θ

r−1−k
2 θj3θ

n−r−j
4 f(x, y)dxdy (18)

= n(n− 1)

∫ ∞
−∞

[∫ ∞
−∞

θ23f(y|x)dy

]
fr:n−2(x)dx+ n

∫ ∞
−∞

[∫ ∞
−∞

θ3f(y|x)dy

]
dy]fr:n−1(x)dx

And

n

(
n− 1

r − 1

)∫ ∞
−∞

∫ ∞
−∞

r−1∑
k=0

n−r∑
j=0

kj

(
r − 1

k

)(
n− r
j

)
θk1θ

r−1−k
2 θj3θ

n−r−j
4 f(x, y)dxdy (19)

= n(n− 1)

∫ ∞
−∞

[∫ ∞
−∞

θ1θ3f(y|x)dy

]
fr−1:n−2(x)dx

Substitute (17), (18) and (19) back in (16), we have
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n−1∑
s=0

s2P [Rr:n = s+ 1] (20)

= n(n− 1)

∫ ∞
−∞

[∫ ∞
−∞

θ21f(y|x)dy

]
fr−2:n−2(x)dx+ n

∫ ∞
−∞

[∫ ∞
−∞

θ1f(y|x)dy

]
dy]fr−1:n−1(x)dx

+ n(n− 1)

∫ ∞
−∞

[∫ ∞
−∞

θ23f(y|x)dy

]
fr:n−2(x)dx+ n

∫ ∞
−∞

[∫ ∞
−∞

θ3f(y|x)dy

]
dy]fr:n−1(x)dx

+ 2n(n− 1)

∫ ∞
−∞

[∫ ∞
−∞

θ1θ3f(y|x)dy

]
fr−1:n−2(x)dx

= n(n− 1)
(∫ ∞
−∞

[∫ ∞
−∞

θ21f(y|x)dy

]
fr−2:n−2(x)dx+

∫ ∞
−∞

[∫ ∞
−∞

θ23f(y|x)dy

]
fr:n−2(x)dx

+ 2

∫ ∞
−∞

[∫ ∞
−∞

θ1θ3f(y|x)dy

]
fr−1:n−2(x)dx

)
+ E[Rr:n]− 1

Substitute (20) back in (14), we have

E[R2
r:n] = 3E[Rr:n]− 2 + n(n− 1)×

(∫ ∞
−∞

[∫ ∞
−∞

θ21f(y|x)dy

]
fr−2:n−2(x)dx (21)

+

∫ ∞
−∞

[∫ ∞
−∞

θ23f(y|x)dy

]
fr:n−2(x)dx+ 2

∫ ∞
−∞

[∫ ∞
−∞

θ1θ3f(y|x)dy

]
fr−1:n−2(x)dx

)

In the case of bivariate uniform distribution of (U, V ), we have

E[R2
r:n] = 3E[Rr:n]− 2 + n(n− 1)×

(∫ 1

0

[∫ 1

0

(
C(u, v)

)2
c(u, v)dv

]
fUr−2:n−2(u)du

+

∫ 1

0

[∫ 1

0

(
v − C(u, v)

)2
c(u, v)dv

]
fUr:n−2(u)du

+ 2

∫ 1

0

[∫ 1

0
C(u, v)

(
v − C(u, v)

)
c(u, v)dv

]
fUr−1:n−2(u)du

)
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