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Abstract 
Small area estimation (SAE) uses explicit or implicit statistical models to estimate 
characteristics for geographic areas or other domains where the available survey data are 
insufficient to produce acceptably reliable direct estimates. In practice, most SAE 
procedures are now based on small area models that explicitly account for the error in 
predicting the target characteristic given the auxiliary data. These SAE procedures can be 
classified as to whether the model is expressed at the area level using direct survey 
estimates for the areas being modeled or at the unit level, typically at the level of the 
individual survey response. In a 2016 paper, Hidiroglou and You examined the 
performance of some unit- and area-level SAE procedures for simulated samples from a 
known population, finding that unit-level estimators had a distinct advantage over area-
level ones. This paper expands their simulation to a broader set of circumstances and 
estimators in order to assess the generality of their findings. 
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1. Introduction 
 
The small area estimation problem is widely recognized in the statistical profession. The 
problem arises when one or more surveys produce direct estimates of acceptable reliability 
for the total population and perhaps a limited set of areas or domains, but interest extends 
to a larger set of smaller areas where the reliability of the direct survey estimates is limited. 
Indeed, in some applications, some of the small areas may lack any representation in the 
available sample. 
 
Small area estimation models interpret the observed sample data with statistical models 
that explicitly account for error in predicting the target characteristic given available 
auxiliary data. The literature on small area models continues to grow vigorously. In the 
year in which his book appeared, Rao (2003) provided an extensive review of the 
underlying theory of small area models and discussed many specific applications; Rao and 
Molina (2015) more recently updated and expanded this work. The range of models and 
their associated estimation approaches can be divided along two primary dimensions, 
which is reflected in the organization of these books. One of these is the inferential basis, 
where frequentist, empirical Bayes, and hierarchical Bayes alternatives are all possible. 
The other is the distinction between unit-level and area-level models. Unit-level models 
are formulated at the individual level and build up the small area estimates from unit-level 
predictions. Area-level models are instead formulated only at the area level. Of course, 
small area models can vary along several other dimensions. 
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In a paper titled “Comparison of Unit Level and Area Level Small Area Estimators,” 
Hidiroglou and You (2016) used simulation to compare the performance of some 
frequentist unit-level and area-level small area models. At the unit level, they considered 
both the model introduced by Battese, Harter, and Fuller (1988), which is a form of 
empirical best linear unbiased estimation (EBLUP), and the pseudo-EBLUP of You and 
Rao (2002). In contrast to the EBLUP, in which the survey weights play no role, the 
pseudo-EBLUP incorporates the survey weights in the estimator. Hidiroglou and You 
(2016) represented area-level small area estimation by three forms of the approach of Fay 
and Herriot (1979). The best performing of the three, denoted FH-HA, applied an area level 
model to the weighted Hájek estimator, that is, to the familiar ratio of the weighted sum of 
the variable divided by the sum of the weights. The Hájek estimator is more typically called 
the direct estimator.  
 
Hidiroglou and You presented simulation results in detail for two scenarios, both for 30 
areas. For each scenario, they simulated one fixed finite population as the standard, and 
then measured the performance of each estimator over 3,000 repetitions of the sampling. 
In each scenario, they considered sample sizes of 10 and 30 per area. They investigated the 
characteristics of the estimates for individual areas, the average overall performance, the 
estimation of mean square errors, and the coverage properties of the confidence intervals 
derived from the estimated mean square errors. 
 
In terms of the potential implications for practice, Hidiroglou and You’s most striking 
result is the consistently strong superiority of the pseudo-EBLUP over the area-level model 
in terms of average overall performance. Table 1 extracts their key findings for the average 
relative root mean square error, where both EBLUP and pseudo-EBLUP outperform FH-
HA. The comparison between EBLUP and pseudo-EBLUP is mixed, where the gain from 
incorporating survey weights is evident only under Scenario II. 
 

Table 1:  Average Percent Relative Root Mean Square Error Reported by Hidiroglou 
and You (2016) 

 Estimator n=10 n=30 
 Scenario I 
Unit level EBLUP 4.98 3.01 
Unit level Pseudo-EBLUP 5.49 3.58 
Area level FH-HA 9.68 6.51 
 Scenario II 
Unit level EBLUP 6.78 5.62 
Unit level Pseudo-EBLUP 5.42 3.21 
Area level FH-HA 11.21 6.79 

 
For the average percent absolute relative bias shown in Table 2, the unit-level EBLUP 
performed the best of the three under scenario I, but the pseudo-EBLUP was best under 
scenario II. Indeed, under scenario II, the average percent relative bias of EBLUP is the 
worst of the three. 
 
This paper will examine the generality of these findings by considering a broader set of 
populations, sampling situations, and estimators. The “Further” in the title of this paper 
signals the goal of building on the results of Hidiroglou and You. The next section details 
the estimators considered by Hidiroglou and You and then introduces additional estimators 
based on incorporating survey regression estimation as a first step in the small area model. 
This step is not new: Bijlsma et al. (2016) previously applied it, and there may be several 
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other such precedents. The third section describes the simulation design. The fourth section 
presents the findings from the simulation. The discussion section summarizes the 
conclusions and identifies remaining open questions. 
 

Table 2:  Average Percent Absolute Relative Bias Reported by Hidiroglou and You 
(2016) 

 Estimator n=10 n=30 
 Scenario I 
Unit level EBLUP 1.71 0.75 
Unit level Pseudo-EBLUP 2.14 0.86 
Area level FH-HA 4.33 2.59 
 Scenario II 
Unit level EBLUP 4.31 4.52 
Unit level Pseudo-EBLUP 0.25 0.12 
Area level FH-HA 3.48 1.47 

 
 

2. Unit- and Area-Level Small Area Estimators 
 
2.1 Unit-Level Estimation  
Hidiroglou and You employed the sampling setup in Rao (2003). A universe 𝑈 of size 𝑁 
is divided into 𝑚 non-overlapping small areas 𝑈  of size 𝑁 , for 𝑖 = 1,…,𝑚. Probability-
based samples 𝑠  of size 𝑛  are drawn. Hidiroglou and You specifically considered 
sampling with replacement with 𝑛  fixed, for which survey weights 𝑤 = 𝑛 𝑝  were 
based on selection probabilities 𝑝  for unit 𝑗 at each sample draw. The Hájek estimator for 

the population mean 𝑌 = 𝑁 ∑ 𝑦  is 𝑌 = ∑ 𝑤 𝑦 / ∑ 𝑤 . 

Battesse, Harter, and Fuller (1988) introduced the basic unit level model, 
 

𝑦 = 𝒙′ 𝛃 + 𝜈 + 𝑒  (2.1) 
 

for 𝑗 = 1, … , 𝑁 , 𝑖 = 1, … , 𝑚, where 𝒙′ = (𝑥 , … , 𝑥 ) is a column vector of auxiliary 
variables with 𝑥 = 1 , and 𝛃 = (𝛽 , … , 𝛽 )′  is a column vector of regression 
parameters. The random effects 𝜈  ~  𝑁(0, 𝜎 )  are assumed independent of the unit 
errors 𝑒  ~  𝑁(0, 𝜎 ). 

When 𝑁  is much larger than 𝑛 , the estimation problem for 𝑌  is essentially equivalent to 
estimating 
 

𝜃 = 𝑿 ′𝛃 + 𝜈  (2.2) 

where 𝑋 = 𝑁 ∑ 𝑥 . The best linear unbiased prediction (BLUP) of 𝜃  under (2.1) is 
 

𝜃 =  𝑟 𝑦 + (𝑿 − 𝑟 𝒙𝒊)′ 𝛃 (2.3) 

where 𝑦 = 𝑛 ∑ 𝑦 , 𝒙 = 𝑛 ∑ 𝑥 , 𝑟 = 𝜎 /(𝜎 + 𝜎 /𝑛 ), and 
 

𝛽 =  𝐱 ′ 𝐕 𝐱 𝐱 ′ 𝐕 𝑦  (2.4) 
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with 𝐱 ′ = (𝑥 , … , 𝑥 ),  𝑉 = 𝜎 1 1 + 𝜎 𝐈 ,  𝑦 = (𝑦 , … , 𝑦 )′,  𝑖 = 1, … 𝑚 , and 
where 1  is a column vector of ones, and 𝐈  is the identity matrix of rank 𝑛 . An empirical 
best linear unbiased predictor (EBLUP) results from estimating 𝜎  and 𝜎 , then using 
them to estimate 𝛽 from (2.4), �̂� , and 𝜃 from (2.3). 
  
Maximum likelihood or restricted maximum likelihood are typical choices to estimate 𝜎  
and 𝜎 , but Hidiroglou and You used the method of fitting of constants, which is of interest 
here because of its role in the pseudo-EBLUP method. The method involves estimating 𝜎  
and 𝜎  from two unweighted regressions. The regression to estimate 𝜎  involves centering 
about the area-level sample averages, thereby eliminating the area level random effect. 
Specifically, the regression is of 𝑦 − 𝑦   on 𝐱 − 𝐱  giving 
 

�̇� =  (𝐱 − 𝐱 )(𝐱 − 𝐱 )′
∈

(𝐱 − 𝐱 )
∈

(𝑦 − 𝑦 )   

(2.5) 
 

Residuals 𝜀̂ = 𝑦 − 𝑦 − 𝐱 − 𝐱 �̇�  are then used to estimate 𝜎 = (𝑛 − 𝑚 − 𝑝 +

1) ∑ ∑ 𝜀̂ . (Adjustments are required if the matrix inverted in (2.5) is of rank less 
than (𝑝 − 1)). The second regression is of 𝑦  on 𝐱 , the residuals of which, 𝑢 , can be 
used to estimate  𝜎 = max (0, 𝑛∗ ∑ ∑ 𝑢 − (𝑛 − 𝑝)𝜎 ) , where 𝑛∗ = ∑ 𝑛 −

𝑡𝑟 (𝐗 𝐗) ∑ 𝑛 �̅� �̅� ′  for 𝐗 = (𝑥 , … , 𝑥 ). 
 
You and Rao (2002) introduced a pseudo-EBLUP unit-level model that incorporates the 
survey weights. The same population model, (2.1), is assumed as for EBLUP estimator, 
but if the survey weights are informative, the unweighted estimator (2.4) may not 
consistently estimate the population parameter. The variance impact of incorporating 
survey weights 𝑤  on estimating 𝑌  with 𝑦 = ∑ 𝑤 𝑦 / ∑ 𝑤∈∈  is assumed to be 
𝛿 = ∑ 𝑤  where 𝑤 = 𝑤 / ∑ 𝑤 . You and Rao showed that the BLUP in this 
situation is 

where 𝑟 = 𝜎 /(𝜎 + 𝛿 𝜎 ) and 

(2.7) 
 
They used the fitting of constants method to estimate 𝜎  and 𝜎  without incorporating 
weights, but then estimated �̂�  and substituted it into (2.7) and (2.6).  
 
2.2 Area-Level Estimation 
Fay and Herriot (1979) introduced an area-level model 

where the term 𝑒  ~  𝑁(0, 𝜎 ) reflects the effect of sampling error on the estimate 𝑦 , 
and 𝜈 ~𝑁(0, 𝜎 ). The BLUP of 𝜃 = 𝑿 𝜷 + 𝜈  is 

𝜃 =  𝑟 𝑦 + (𝑿 − 𝑟 𝒙𝒊𝒘)′ 𝛃𝒘 
 

(2.6) 

𝛃 =  𝑤 𝒙 (𝒙 − 𝑟 𝐱 ) 𝑤 𝒚 (𝒙 − 𝑟 𝐱 ) . 
 
 

𝑦 = 𝑿 𝜷 + 𝜈 + 𝑒  
 

(2.8) 
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where 𝑟 = 𝜎 /(𝜎 + 𝜎 ) and 
  

with 𝑉 = 𝜎 + 𝜎 . If the 𝜎  are assumed known, then an EBLUP can be formed by 
estimating 𝜎  through maximum likelihood, restricted maximum likelihood (REML), or 
the method of moments. 
 
As previously noted, Hidiroglou and You considered three alternative estimators for 𝑌 , but 
only the best performing of the three, the Hájek estimator, will be considered here. Two 
forms of the survey regression estimator for 𝑌  will also be included in the comparison. The 
usual form of the survey regression estimator (SRE) is based on a weighted unit-level 
regression 
 

𝛽 =  𝐱 ′ 𝑾𝒊𝐱 𝐱 ′ 𝑾𝒊𝑦  (2.11) 

where, as in the setup for the unit-level model (2.4), 𝐱 ′ = (𝑥 , … , 𝑥 ) ,  𝑦 =

(𝑦 , … , 𝑦 )′,  𝑖 = 1, … 𝑚, and 𝑊 = 𝑑𝑖𝑎𝑔(𝑤 , … , 𝑤 ) is a diagonal matrix of weights. 
The survey regression estimator is 
 

𝑦 =  𝑦 + (𝑿 − 𝒙𝒊𝒘)′ 𝜷 (2.12) 

The standard variance estimator for (2.12) is based on the residuals from the regression 
(2.11). The area level model can then be based on 𝑦  and its estimated variance instead of 
the Hájek estimator, 𝑦  and an estimate of 𝜎 . 
 
A third alternative is to adopt the approach to estimating the regression in (2.5) 
 

𝛽 ̇ =  (𝐱 − 𝐱 )𝑤 (𝐱 − 𝐱 )′
∈

(𝐱 − 𝐱 )
∈

𝑤 (𝑦 − 𝑦 )   

(2.13) 
 
for use in (2.12). The rationale for attempting this approach is that it removes area-level 
variation from the estimation of the regression, similar to the approach in the fitting of 
constants method. In this paper this variant will be termed the modified survey regression 
estimator (MSRE).  
 

3. Simulation Design 
 
Hidiroglou and You (2016) created a single population for each of their two scenarios they 
presented in detail. They reported 

Each finite population had 𝑚 =  30 small areas, and each area consisted of 𝑁 =  200 
population units. Each finite population was generated using the unit level model 𝑦 = 𝛽 +

𝜃 =  𝑟 𝑦 + (1 − 𝑟 )𝑿 ′𝜷𝑾𝑳𝑺 (2.9) 
 

𝛃𝑾𝑳𝑺 =  𝑿 ′𝑉 𝑿 𝑿 𝑽 𝑦  (2.10) 
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𝑥 𝛽 + 𝜈 + 𝑒 . The auxiliary variable 𝑥  was generated from an exponential distribution 
with mean 4 and variance 8, and the random components were generated from a normal 
distribution with 𝜈 ~𝑁(0, 𝜎 ), 𝑒 ~𝑁(0, 𝜎 ), where 𝜎 = 100 and 𝜎 = 225. For the first 
population, the regression fixed effects were set as 𝛽 =50, 𝛽 = 10 for all 30 areas. For the 
second population, different fixed effects values were used: 𝛽 =50, 𝛽 =  10 for areas 
𝑚 = 1,…,10; 𝛽 =  75, 𝛽 =  15 for areas 𝑚 = 11,…,20; 𝛽 =  100, 𝛽 =  20 for areas 
𝑚 =21,…,30. We had three different means for the fixed effects 𝛽 + 𝑥 𝛽  in the second 
population, whereas we only had one in the first population. PPSWR samples within each 
area were drawn independently from each constructed population. PPSWR sampling was 
implemented as follows: We first defined a size measure 𝑧  for a given unit (𝑖, 𝑗). Using 
these 𝑧 values, we computed selection probabilities 𝑝 = 𝑧 / ∑ 𝑧  for each unit (𝑖, 𝑗) and 
used them to select PPSWR samples of equal size 𝑛 = 𝑛. Within each generated population, 
we selected samples of size 𝑛 =10 and 30. The basic design weight is given by 𝑤 =

𝑛 𝑝 , so that the standardized weight is 𝑤 = 𝑝 / ∑ 𝑝 . 

 
Except for a difficulty of replicating the exponential distribution, the preceding description 
is clear. An exponential distribution with mean 4 and variance 16 was used below instead. 
The next part of their account is less clear. 
 

We chose the size measure 𝑧  as a linear combination of the auxiliary variable 𝑥  and data 
generated from an exponential distribution with mean 4 and variance 16. The correlation 
coefficient 𝜌 between 𝑦  and the selection probability in each area varied between 0.02 and 
0.95. The range of the 𝑝 ’s corresponds to non-informative selection (𝜌 = 0.02) to strongly 
informative selection (𝜌 = 0.95) of the PPSWR samples.  

 
The description does not specify the linear combinations except in the form of a resulting 
correlation. But it is not clear how the correlation is determined; for example, is it computed 
theoretically or from the sample? The simulation reported here considered four sampling 
designs, described below, with two of them attempting to approximate the low and high 
correlation scenarios considered by Hidiroglou and You.  
 
First, six finite populations were created, each with 30 areas of size 𝑁 = 200. For each 
population a single covariate 𝑥  and its area level mean �̅�  were generated, then 𝑦  was 
generated conditional on 𝑥 . Estimators were assessed for their predictions of the finite 
population means 𝑌 . Samples of size 𝑛 = 10 and 30 were drawn with replacement from 
each according to four different sample designs. For each simulation, the sampling was 
repeated 10,000 times.   
 
Six populations were considered: 
 

Population 1 
• 𝑥  from exponential distribution mean 4, variance 16 
• 𝑦 = 𝒙′ 𝜷 + 𝜈 + 𝑒  where 𝜈 ~𝑁(0,  100 ), 𝑒 ~𝑁(0,  225) 𝛽 = 50,  𝛽 = 10 

Population 2 
• Similar to population 1, except  

– 𝛽 = 50,  𝛽 = 10 for 𝑖=1,…,10;  
– 𝛽 = 75,  𝛽 = 15 for 𝑖=11,…,20; 
– 𝛽 = 100,  𝛽 = 20 for 𝑖=21,…,30; 

Population 3 
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• 𝑥  from exponential distribution mean 3, variance 9 plus an area-level effect from 
exponential mean 1, variance 1 

• 𝑦 = 𝒙′ 𝜷 + 𝛽 𝑋 + 𝜈 + 𝑒  where 𝜈 ~𝑁(0,  25) , 𝑒 ~𝑁(0,  225) , 𝛽 = 50 , 
𝛽 = 5, 𝛽 = 5  

Population 4 
• Similar to population 3, except  

– 𝛽 = 50,  𝛽 = 5, 𝛽 = 5, for 𝑖=1,…,10;  
– 𝛽 = 75,  𝛽 = 7.5, 𝛽 = 7.5 for 𝑖=11,…,20; 
– 𝛽 = 100,  𝛽 = 10, 𝛽 = 10 for 𝑖=21,…,30;  

Population 5 
• 𝑥  from exponential distribution mean 3, variance 9 plus an area-level effect from 

exponential mean 1, variance 1 
• 𝑦 = 𝒙′ 𝜷 + 𝛽 𝑋 + 𝜈 + 𝑒  where 𝜈 ~𝑁(0,  25) , 𝑒 ~𝑁(0,  225) , 𝛽 = 50 , 

𝛽 = 0, 𝛽 = 10  
Population 6 

• Similar to population 5, except  
– 𝛽 = 50,  𝛽 = 0, 𝛽 = 10, for 𝑖=1,…,10;  
– 𝛽 = 75,  𝛽 = 0, 𝛽 = 15 for 𝑖=11,…,20; 
– 𝛽 = 100,  𝛽 = 0, 𝛽 = 20 for 𝑖=21,…,30;  

 
Populations 3 through 6 include area-level effects either in addition to or instead of the 
unit-level effects assumed by the unit-level models. 
 
Four different sampling designs were implemented: 

1. SRSWR, with equal probabilities 
2. PPSWR proportional to a random variable 𝑧  with mean 4 variance 16 
3. PPSWR proportional to 𝑥   
4. PPSWR proportional to 𝑦  

 
The combination of Population 1 with sample design 2 approximates the Scenario I studied 
by Hidiroglou and You, and the combination of Population 2 with sample design 3 
approximates Scenario II.  
 

4. Results 
 
The results of the simulations will be presented graphically. For comparison, Figure 1 
summarizes the Hidiroglou and You results presented in Table 1. As noted previously, the 
area-level FH-HA consistently had the highest relative root mean square errors of the three 
competitors. The pseudo-EBLUP shows a definite advantage over EBLUP under Scenario 
II. Note that for Scenario I, the relative ranking of the three estimators does not change 
going from a sample size of 10 to 30. Similarly, the change in sample size does not alter 
the relative ranking within Scenario II. 
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Figure 1: Percent relative root mean square errors reported by Hidiroglou and You (2016) 
 
 
Figure 2 presents the results for Population 1 over the four sample designs and two sample 
sizes. In general, the findings are typically slightly better for the modified survey regression 
estimator (MSRE) than the survey regression estimator (SRE), so only the MSRE and the 
area-level FH-MSRE are shown in the graphs. Consistent with Hidiroglou and You’s 
results, FH-HA is not competitive with the other estimators for Population 1, but 
application of an area-level model to MSRE results in an estimator, FH-MSRE, virtually 
tied with pseudo-EBLUP. Notably, the model-assisted estimator MSRE performs almost 
as well as those two, indicating that it is almost competitive with the model-based 
estimators for this population. Generally, EBLUP does well for the first three of the four 
sampling schemes. That it should do well for the first two sample designs is entirely 
expected, because either the weights are constant or entirely uninformative, in the second 
case putting methods that use weights at a disadvantage.  
 
As remarked previously, the combination of Population 1 with sample design 2 
approximates Scenario I of Hidiroglou and You, and the ordering of EBLUP, pseudo-
EBLUP, and FH-HA agrees with their findings. 
 
For Population 2 in Figure 3, the performances of MSRE, FH-MSRE, and the pseudo-
EBLUP are virtually indistinguishable, so the model-based estimators are barely improving 
upon MSRE, the model-assisted alternative. On the right-hand side of the figure, the unit-
level EBLUP is at a disadvantage relative to the alternatives incorporating the sample 
weights. The third sample design for Population 2 approximates Scenario II, and the 
ordering of pseudo-EBLUP, EBLUP, and FH-HA is similar to Hidiroglou and You’s 
findings, except that FH-HA outperforms EBLUP for a sample size of 30 units per area. 
 
In Populations 1 and 2, the large size of 𝜎  =100 relative to 𝜎 = 225 leads to variances 
for the area-level means of 22.5 or 7.5. Consequently, between area variance dominates the 
estimation problem, so the smoothing estimators barely improve upon the model-assisted 
alternative. The reduction of 𝜎  to 25 in Populations 3 through 6 was chosen to encourage 
more separation of the model-based and model-assisted estimators. 
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Figure 2: Percent relative root mean square errors for Population 1 
 

 
Figure 3: Percent relative root mean square errors for Population 2 
 
 
In Figure 4, a clear advantage of FH-MSRE over MSRE is evident for Population 3. 
Including an area effect as well as a unit effect when generating the population resulted in 
a slight but distinct advantage for FH-MSRE over pseudo-EBLUP. EBLUP does well 
except under the fourth sampling scheme. 
 
In Figure 5, the advantage of FH-MSRE over MSRE again narrows for Population 4. There 
is a barely discernable advantage of FH-MSRE over pseudo-EBLUP. EBLUP is adversely 
affected under both sample designs 3 and 4. 
 
In Figure 6, Population 5 has only area-level effects, so both FH-HA and FH-MSRE 
perform essentially identically and better than pseudo-EBLUP. The unit-level regression 
fails to pick up the area-level effect correctly.  
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Figure 4: Percent relative root mean square errors for Population 3 
 

 
 
Figure 5: Percent relative root mean square errors for Population 4 
 
 
In Figure 7, pseudo-EBLUP, FH-HA, and FH-MSRE perform identically in terms of 
relative root mean square error. 
 
To avoid crowding the figures further, FH-SRE was omitted from Figures 2 through 7, but 
the Appendix presents comparisons of pseudo-EBLUP, FH-MSRE, and FH-SRE.  
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Figure 6: Percent relative root mean square errors for Population 5 
 

 
Figure 7: Percent relative root mean square errors for Population 6 
 
 
The principal focus of the simulation study was on estimators that incorporate weights, and 
EBLUP was included for comparison. Few of the simulations show EBLUP to be 
dramatically worse than the weighted versions. As noted earlier, the first two sample 
designs were favorable to EBLUP, so only the third and fourth sampling designs provided 
situations to illustrate possible advantages of incorporating the survey weights. In fact, 
EBLUP often performed well under the third sample design.  As a possible explanation, 
the third sampling design based the sampling probability on 𝑥 , which was also strongly 
predictive of 𝑦 , so use of 𝑥  in the EBLUP model may have captured most of the 
information in the weights.  
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5. Discussion 

 
The Hidiroglou and You paper examined topics such as mean square error estimation and 
confidence coverage not considered here. The focus here was more narrowly on estimator 
performance based on mean square error. An apparent conclusion from Hidiroglou and 
Your (2016) that the unit-level model reliably outperforms an area level version disappears 
with the option of applying area level models to a survey regression estimator.  
 
The unit-level model and the survey regression estimator have similar requirements for 
their use; in particular, the unit-level observations 𝑥  and area-level aggregates 𝑋  must 
come from the same or equivalent sources. 
 
Further research will be needed to investigate issues such as MSE estimation under the 
simulation conditions studied here. 
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Appendix 

 

 

 
 

Figures A1-A3: Percent relative root mean square errors for Populations 1-3, respectively 
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Figures A4-A6: Percent relative root mean square errors for Populations 4-6, respectively 
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