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Abstract 

The maximum likelihood method is the gold standard in molecular phylogenetics and 
accounts for nearly half of all published phylogenetic trees, but the method has a strange 
phylogenetic bias so far not explored. If the aligned sequences are equidistant from each 
other with the true tree being a star tree, then the likelihood method is incapable of 
recovering it unless the sequences are either identical or extremely diverged. Here I 
analytically demonstrate this “starless” bias and identify the source for the bias. In contrast, 
distance-based methods (with the least-squares method for branch evaluation and either 
minimum evolution or least-squares criterion for choosing the best tree) do not have this 
bias. The finding sheds light on the star-tree paradox in Bayesian phylogenetic inference. 
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1. Illustration of the bias 

 
The starless bias refers to the bias of a phylogenetic method that cannot recover a star tree 
even when the star tree is the true tree. It was first alluded to in a study of potential bias in 
maximum likelihood method involving missing data and rate heterogeneity over sites (Xia 
2014). I will illustrate this bias here numerically, identify the source of the bias, and discuss 
its relevance to the star-tree paradox associated with Bayesian phylogenetic inference 
(Lewis et al. 2005; Yang 2007; Yang and Zhu 2018). 
 
Suppose we have a set of four sequences (Figure 1A) generated from the JC69 substitution 
model (Jukes and Cantor 1969). This simplest substitution model, together with other 
frequently used Markovian nucleotide substitution models such as F84 (used in DNAML 
since 1984, Hasegawa and Kishino 1989; Kishino and Hasegawa 1989), HKY85 
(Hasegawa et al. 1985), TN93 (Tamura and Nei 1993), and GTR (Lanave et al. 1984; 
Tavaré 1986) have been numerically illustrated in great detail (Xia 2017; Xia 2018b). The 
four sequences have the same nucleotide frequencies. The last four sites are all identical, 
but the first four sites differ, with each sequence differing from the other three by exactly 
four nucleotide substitutions. There are twice as many transversions as transitions as one 
would expect from JC69. One may note that some sequences differ from others by two 
transitions and two transversions (e.g., S1 and S2), or by four transversions (e.g., between 
S1 and S4). However, JC69 does not discriminate between transitions and transversions. If 
we impose the JC69 model, then the four sequences are expected to be equidistant from 
each other (with Dij = 0.82396), and should be related by a star tree (Figure 1B), with 
branch lengths being Dij/2 from the internal node to each of the four leaves. Indeed, a 
distance method such as Neighbor-Joining (Saitou and Nei 1987) or FastME (Desper and 
Gascuel 2002; 2004) will recover the expected star tree in Figure 1B. In fact, we would 
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expect all reasonable phylogenetic reconstruction method to recover the star tree in Figure 
1B. 
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Figure 1: Phylogenetic bias in ML. (A) Four sequences conforming the JC69 model. (B) 
A star tree. (C) ML tree with x5 > 0. 

Surprisingly, the ML tree (Figure 1C), given the sequence data in Figure 1A and the JC69 
model, has x5 > 0, with its lnL = -39.843371588, achieved when x1 = x2 = x3 = x4 = 
0.482505887 and x5 = 0.133851489. Furthermore, the three alternative unrooted trees all 
have exactly the same branch lengths and the same lnL. Thus, none of three ML trees is 
correct. While the difference in lnL between the Figure 1B tree and the Figure 1C tree is 
small with eight sites in Figure 1A, the difference increases proportionally with sequence 
length. 
 
One may argue that the ML method does not do anything wrong because all three 
possible topologies are equally supported. However, in practical phylogenetic analysis, 
the ML method does not generate all possible topologies but instead produces just one. 
One might also argue that sites 1-4 and sites 5-8 in Figure 1A represent extreme rate 
heterogeneity, so the sequence alignment is unrealistic. However, one may obtain the 
same results with a large number of sites with intermediate variability over sites. My 
choice of the eight sites are simply for easy illustration. The starless bias does not need to 
have such two groups of sites with extreme rate heterogeneity over sites. 
 
One might suspect that the likelihood function may reach a local maximum, so the tree in 
Figure 1C is not the true ML tree. However, this is not the case. The lnL value will 
decrease if we force x5 = 0 and re-optimize branch lengths. With the constraint of x5 = 0, 
the best lnL is -39.878988659, achieved when x1 = x2 = x3 = x4 = 0.524860294. This lnL 
is smaller than that for the ML tree with x5 > 0.  
 
One may also argue that the problem is caused by misspecification of the substitution 
model. The aligned sequences in Figure 1A has four highly variable sites and four 
invariant sites, and therefore exhibit a high rate heterogeneity over sites which is not 
accommodated by the aforementioned likelihood calculation assuming a Poisson-
distributed rate. However, this argument does not remove the problem because it is 
perfectly easy to add nucleotide sites with intermediate variation so that a likelihood ratio 
test or an information theoretic index (Burnham and Anderson 2002; Xia 2009) would 
prefer the Poisson-distributed rate model over the more complicated rate heterogeneity 
model such as gamma-distributed rates. We will find the problem remains with such new 
data sets that do not demand a model with rate heterogeneity over sites. 
 
Thus, when the star tree is the true tree, likelihood-based method will take one branch 
from the root node and stick it somewhere on another branch, leading to three wrong but 
equally supported trees (with one shown in Figure 1C). In short, any of the three equally 
supported trees is wrong. This example also suggests that the ML method may favor 
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certain tree shapes relative to distance-based methods. This topic does not seem to have 
been studied. 
 
To facilitate exposition, we will designate the tree with x5 > 0 as Tx5>0 and the tree with x5 
= 0 as Tx5=0, with their corresponding log-likelihood (lnL) as lnL x5>0 and lnLx5=0, 
respectively. Given the optimized branch lengths for Tx5>0 and Tx5=0, the tree length is 
shorter for Tx5>0 than that for Tx5=0.  
 
The lnL value for the star tree obtained by the distance method, with xi = 0.41198, has 
lnL = -40.13321515, which is worse based on the maximum likelihood criterion. Thus, 
the likelihood principle gives us a wrong tree with inexplicably weird branch lengths. 
I have checked the likelihood calculation by using both the pruning algorithm 
(Felsenstein 1973; 1981) and the brute-force approach by writing down all 16 terms for 
the tree in Figure 1C. The pruning algorithm for four sequences has been numerically 
illustrated before (Xia 2018a). Likelihood for the first and fifth sites (designated L1 and 
L5, respectively), given the tree in Figure 1C and the brute-force approach, are 
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where A, G, C, and T are equilibrium frequencies and all equal to 0.25, Pii and Pij are 
transition probabilities involving two identical or different nucleotides, respectively, in 
two neighboring nodes, xi are branch lengths as indicated in Figure 1C. The derivation 
for the JC69, as well as for F84, HKY85, TN93, and GTR models, have been numerically 
illustrated in great detail (Xia 2017; Xia 2018b). 
 
Given the JC69 model, there are only two site patterns in the aligned sequences in Figure 
1A, one shared among the first four site with the same likelihood as L1, and the other shared 
among the last four sites with the same likelihood as L5. The JC69 model implies that the 
four Pii functions are the same, so are the 12 Pij functions. With x5 = 0, the 16 terms in L1 
and L5 are reduced to only four terms where the two internal nodes are occupied by the 
same nucleotide. This is because Pii(0) = 1 and Pij(0) = 0. One can readily replicate 
numerically this bias which was aptly termed "the starless bias" by Sudhir Kumar (pers. 
comm.). 
 

2. The source of the bias 

 
Why does the ML method arrive at a tree with x5 = 0.13385149 instead of x5 = 0? The 
underlying cause becomes clear if we take notice of two things. First, the tree length (the 
summation of all branches of a tree) is longer for the Figure 1C tree than for the Figure 
1B tree (2.063875 vs 1.647920). Second, highly variable nucleotide sites 1-4 in Figure 
1A would favor longer branches and their site-specific likelihood values (represented by 
L1) will be greater for the Figure 1C tree (with longer tree length) than for the Figure 1B 
tree (with shorter tree length). In contrast, the invariant nucleotide sites 5-8 will favor 
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short branches and their site-specific likelihood values (represented by L5) will be greater 
for the Figure 1B tree (with shorter tree length) than for the Figure 1C tree (with longer 
tree lengths). Thus, L1 is 0.001233825 for Figure 1C tree, but 0.000805733 for the Figure 
1B tree. This is equivalent to say that variable nucleotide sites 1-4 in Figure 1A favor the 
Figure 1C tree with longer tree lengths than the Figure 1B tree with shorter branches. As 
a matter of fact, such extremely variable sites would favor a tree with infinitely long 
branches. In contrast, L5 is 0.038265498 for the Figure 1C tree, but 0.054500457 for the 
Figure 1B tree. This means that the four invariant nucleotide sites 5-8 favor the shorter 
Figure 1B tree than the longer Figure 1C tree. Such sites indeed would favor zero-length 
branches. 
 
The tree lnL values for the Figure 1C tree (lnLx5>0) and the Figure 1B trees (lnLx5=0) are, 
respectively, 
 

5 0 1 5ln 4ln( ) 4ln( ) 39.843371588xL L L  (3) 
 

5 0 1 5ln 4ln( ) 4ln( ) 40.13321515xL L L   (4) 
 
There are only two special cases where a star tree will be reconstructed. The first is when 
all nucleotide sites are invariant like sites 5-8 in Figure 1A, and the two trees will 
converge to a star tree with zero-length branches. The second is when all sites are 
extremely variable like sites 1-4 when the two trees will converge to a star tree with 
infinitely long branches. In practical molecular phylogenetics, if we have far more 
variable sites than invariant sites, or far more invariant sites than variable sites, then the 
two trees will have their respective lnL approaching each other. For four sequences, if we 
fix the number of invariant sites to10 and increase the number of variable sites to greater 
than 35, then the two topologies will have the same lnL up to 6 digits after decimal point. 
Whenever we have a roughly equal mixture of the two categories of sites, the ML method 
will miss the star tree even if it is the true tree. Such a mixture of sites is equivalent to 
rate heterogeneity over sites. Thus, the finding here may help explain the phylogenetic 
distortion involving rate heterogeneity (Kuhner and Felsenstein 1994; Xia 2014). 
 

3. Discussion 

 
This starless bias associated with the ML method sheds light on the well-known star-tree 
paradox in which Bayesian phylogenetic inference prefers one of the three topologies 
when the true tree is a star tree (Lewis et al. 2005; Yang 2007; Yang and Zhu 2018). The 
finding reported here suggests that the problem may not be caused by Bayesian inference 
but instead is caused by the ML method that favors a resolved tree against the star tree. It 
also suggests that the two proposed solutions (Lewis et al. 2005; Yang 2007) are unlikely 
to resolve the problem. The first solution of assigning nonzero prior probability for the 
degenerate star tree (Lewis et al. 2005; Yang 2007) will not work because the nonzero 
prior probability assigned to the star tree will eventually be offset by the likelihood 
difference favoring the resolved tree when sequence length increases to infinity. The 
second solution of increasing informative prior forcing the internal branch length towards 
zero (Yang 2007) will have the same problem, unless the informative prior increases with 
sequence length. The reversible-jump Markov chain Monte Carlo algorithm proposed by 
Lewis et al. (2005), albeit ingenious, is unlikely to solve the problem because the starless 
bias is not due to the star tree being excluded from tree searching but because it has a 
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smaller likelihood value than any of the three resolved tree. The star tree will be 
increasingly disfavored by increasing amount of data. 
 
In short, if the true tree is a star tree, then there are only two special cases in which the 
likelihood method will recover the star tree. One is a trivial case when all sequences are 
identical (Xia 2014). The other is when sequences are all highly and equally diverged. The 
star tree cannot be recovered other than these two extreme cases. The results also suggest 
that the maximum likelihood and the distance-based methods may favor different tree 
shapes.  
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