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Abstract 
In an era of rapid medical treatment development and with various options available to 
patients, personalized medicine has become an important topic to both researchers and 
practitioners. A new subgroup identification algorithm developed by Fu et al. (2016) 
provides individualized treatment recommendation under the outcome weighted learning 
framework. We here focus on its applications in randomized clinical trials to generate 
easy-to-interpret results. We applied this method to a dataset from a real clinical trial, and 
identified the optimal treatment recommendations for patient subgroups.  
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1 Introduction 
 
Personalized medicine, also termed theranostics or precision medicine, is a medical 
procedure that separates patients into different groups -- with medical decisions, 
practices, interventions and/or products being tailored to the individual patient based on 
their predicted response or risk of disease. In a clinical trial context, sometimes we may 
not be able to establish statistically the treatment benefit over control in the overall tested 
population, yet obvious treatment effect may be observed in a subgroup of patients. In 
this case, if we could identify the subgroup by evaluating patients’ heterogeneous 
responses to the treatment, we may be able to learn more about the investigational drug, 
the underlying disease, and ultimately be able to develop recommendations of most 
efficacious or safer drugs for subgroups of patients. 
 
There have been quite a few statistical methods developed in recent years for this 
purpose. For example, interaction trees detect subgroups by recursively partitioning the 
patient population based on treatment-by-covariate interactions (e.g., Su et al. (2009), 
Loh et al. (2015)); the Virtual Twin (VT) method first estimate differential treatment 
effect of each individual patient measured by a score function and then use these scores 
as responses to find subgroups (e.g., Foster et al. (2011)); and Lipkovich et al. (2011) 
proposed a subgroup identification algorithm based on differential effect search (SIDES). 
To identify an optimal treatment for a given patient rather than finding the “best patient” 
for a given treatment, the Individualized Treatment Recommendation (ITR) method aims 
to find an optimal treatment rule that maximizes a value function based on patient benefit 
evaluation (e.g. Qian et al. (2011), Zhao et al. (2012), Zhang et al. (2012)). Most of these 
ITR algorithms generate treatment rules as a linear combination of covariates, which may 
not easy to interpret in a clinical trial context. A new ITR algorithm developed by Fu et 
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al. (2016) under the outcome weighted learning framework provides simple rules where 
subgroups of an open rectangle shape can be identified. In this paper, we focus on its 
applications in randomized control clinical trials to generate easy-to-interpret results. We 
applied this method to a dataset from a real clinical trial, and identified the optimal 
treatment recommendations for patient subgroups. 
 
This paper is organized as follows. In Section 2, we describe the ITR framework and 
introduce the searching algorithm proposed by Fu et al. (2016). Application of this 
method in a real clinical trial is discussed in Section 3. We conclude in Section 4. 
 

2 The Individualized Treatment Recommendation (ITR) Method 
 
2.1 The Framework 
Assume we have a random sample of 𝑁  subjects from a large population. 𝑇𝑖  is the 
treatment assignment for patient 𝑖, where 𝑖 = 1,⋯ ,𝑁. 𝑌𝑖 is the response variable, 𝑋𝑖 is a 
vector of covariates, and (𝑌, 𝑇, 𝑋) is the generic random variable of {(𝑌𝑖, 𝑇𝑖, 𝑋𝑖)}. 
Without loss of generality, we assume that larger 𝑌  corresponds to a better clinical 
outcome. Let 𝒫  be the distribution of (𝑌, 𝑇, 𝑋), 𝐸  the expectation w.r.t. 𝒫 , 𝒫𝑟  the 
distribution of (𝑌, 𝑇, 𝑋) given 𝑇 = 𝑟(𝑋), where 𝑟(∙) is a rule defining a treatment 
recommendation for each individual in a population. The value function, which is the 
expected value of treatment benefit with respect to 𝑟 , is defined as: 𝑉(𝑟) = 𝐸𝑟(𝑌) . 
Simple derivation gives:  

𝑉(𝑟) = 𝐸𝑟(𝑌) = �𝑌𝑑𝑑𝑟 = �𝑌
𝑑𝒫𝑟

𝑑𝑑
𝑑𝑑 = 𝐸 �

𝐼𝑇=𝑟(𝑋)

𝑝(𝑇|𝑋)𝑌�     (1) 

The goal is to estimate 𝑟0 such that 
𝑟0 ∈ arg max𝑟∈𝑅𝑉(𝑟),              (2) 

where 𝑅 is a collection of ways to assign treatments. Here 𝑟0is the optimal treatment 
regime that, if followed by the entire population of patients, would lead to the best 
outcomes on average.  
 
Several advantages of using this framework can be observed from equation (1). First of 
all, there is no restriction on the variable 𝑌, 𝑋, or 𝑇. That is, 𝑌 can be binary, continuous, 
or time-to-event data types; 𝑋 can incorporate a variety of covariates, e.g., if 𝑋 includes 
study ID, the framework can be used for meta-analysis; and 𝑇  can handle multiple 
treatments. Notably, 𝑝(𝑇|𝑋) explicitly allows the treatment assignments to depend on 
covariates, therefore, the framework can handle both randomized control trials (RCTs) 
and observational studies. Also, there is an objective function to evaluate different 
treatment assignments, which is a feature of the ITR method. 
 
2.2 An ITR Algorithm for Simple Optimal Rule 
Focusing on meeting the needs for drug development, Fu et al. (2016) proposed an ITR 
algorithm that directly searches for subgroups with an open rectangle shape (e.g., age <= 
75 & body mass index > 18). These simple rules are often more desirable in clinical trial 
settings. Here, subgroups are defined by a certain number of covariates, called depth. In 
practice, only depth <= 3 is allowed for interpretability. The optimal simple rule can be 
obtained using a comprehensive searching algorithm, as follows: 
• With observed data (𝑌, 𝑇, 𝑋), use a logistic regression to estimate the propensity 

scores 𝑒 = 𝑃(𝑇 = 1|𝑋). 
• Fit a linear model 𝑌~𝑋 to obtain the residuals 𝑌� . The data input to the algorithm are 

�𝑌�, 𝑇, 𝑒, 𝑋�. 
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• Select any depth number of covariates (e.g., when depth = 3, 𝑋𝑘1, 𝑋𝑘2, 𝑋𝑘3) and for 
each selected covariate, choose a split value (𝑐𝑘1, 𝑐𝑘2, 𝑐𝑘3). 

• For each split value, we select a direction (≤ or >) to define the subgroup. E.g., when 
depth = 3, one possible subgroup can be 𝐴𝑘,𝑗 = (𝑋𝑘1 ≤ 𝑐𝑘1 ∩ 𝑋𝑘2 ≤ 𝑐𝑘2 ∩ 𝑋𝑘3 >
𝑐𝑘3), where 𝑗 = 1,⋯ ,8.  

• Assign treatment to subgroup 𝐴𝑘,𝑗 and control otherwise. Evaluate the value function 

𝑉𝑘,𝑗 = 1
𝑁
∑

𝑌�𝑖𝐼𝑇𝑖=𝐼𝑋𝑖∈𝐴𝑘,𝑗

𝑇𝑖𝑒𝑖+(1−𝑇𝑖)(1−𝑒𝑖)
. 

• By selecting different covariates, split values, and directions, we evaluate all the 
value functions 𝑉𝑘,𝑗 and provide a subgroup associated maximal value of 𝑉𝑘,𝑗.  

 
The operating properties of this algorithm have been evaluated via simulations on various 
aspects including speed test, numerical stability, convergence, variable importance, etc. 
(see Fu et al. (2016)). 
 

3 Application To Clinical Trials 
 
In this section, we apply the ITR method for simple rule to a real clinical trial dataset.  
 
This is a phase 2, randomized, placebo-controlled clinical study. Most of the trial 
information is masked here to maintain confidentiality. In total about 200 subjects were 
randomized into the study with around 120 subjects in the treatment group and 80 on 
placebo control. The efficacy endpoint is the occurrence of a clinical event for disease 
worsening, with 0 indicating an event and 1 otherwise. The baseline covariates included 
demographics, other characteristics, lab markers, imaging markers and derived disease 
risk scores. There were in total 37 covariates used, of which 30 were continuous, 1 
ordinal and 6 categorical. The data collected were of very high quality. With this many 
variables, we only had < 8% incomplete cases. Therefore, we used the approximately 180 
complete cases (with both non-missing response and covariates) for this analysis. 
 
For the searching algorithm, we used split values as the deciles based on the observed 
data, i.e., 10%, 20%, …, 90% quantiles, for each covariate. Using depth = 3, the variable 
importance ranking is plotted as in Figure 1.  
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Figure 1: Variable Importance Ranking. 

From the graph, we can see that from the second top variable to the 3rd, there is an 
obvious big drop in the variable selection frequency, which may indicate that a lower 
depth could be a more reasonable choice providing easier interpretation. 
  
Using depth = 2, the ITR method selected a subgroup of patients with age <= 48 (60% 
quantile) and baseline Ishak fibrosis stage <= 4 (80% quantile). That is, patients in this 
subgroup are recommended to take the treatment, otherwise the control. This subgroup 
includes around 56% of the patients and non-subgroup 44%. In this example the top 2 
variables from using depth = 3 happened to associate with the largest value function 
when using depth = 2. This may not always be the case, and if not, we may need to 
consider to compromise the best choice but to rely on clinical judgement to select the 
subgroup. 
 
Figure 2 shows the treatment effect in the selected subgroup and non-subgroup in the 
original data. We can see that the patients in the non-subgroup might be better off if they 
were assigned to the control group. 
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Figure 2: Probability of clinical event occurrence in the selected subgroup and non-
subgroup. 

To demonstrate the benefit of the ITR treatment allocation rule, in Table 1, we report the 
probability of clinical event occurrence before and after following the ITR rule.  
 
Table 1: Probability of clinical event occurrence before and after following ITR  

Original data Following ITR 
0.204 0.185 

Control Treatment  Control Treatment 
0.200 0.206 Subgroup 0.216 0.135 

Non-subgroup 0.310 0.328 
 
If we were to follow the ITR optimal rule, that is, to assign treatment to the selected 
subgroup and control to the rest, then our estimate is that we would have approximately 
18.5% event occurrence overall, as compared to the 20.4% in the original data. 
Furthermore, patients in both the subgroup and the non-subgroup would have a chance to 
improve their outcomes. For patients in the subgroup who received placebo control, they 
have a 21.6% event rate in the original data; if we follow the ITR allocation method, that 
is, to assign them to treatment, then they would have an estimated event rate of 13.5%. 
Similarly, for patients in the non-subgroup who received treatment, they have a 32.8% 
event rate in the original data, while under ITR assignment, their estimated event rate 
becomes approximately 31%. 
 
The ability to come up with such an optimal rule is a unique feature of the ITR method. It 
provides us a useful tool to practice personalized medicine in subgroups of patients. And 
in doing this, we would be able to maximize the overall welfare of the patient population.   
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4 Conclusion 
 
In this paper, we briefly reviewed the ITR framework and an algorithm that generates 
simple optimal rules in clinical trial settings. The algorithm is applied to a real clinical 
trial dataset. A subgroup of patients was identified and the benefit of following the ITR 
treatment rule was demonstrated. For future research, meta-analysis of multiple clinical 
trials may be considered, and angle-based classifiers may be utilized to accommodate 
high dimensional covariate space.  
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