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Abstract: Bayesian statistics is just another chapter at the end of the semester in mathematical statistics 
sequences for which much time is not allocated. Students consider it as another section of statistics rather 
than a totally different way to look at the entire field of statistics. At lower level undergraduate classes, 
students do not even hear about Bayesian statistics. In this paper, the author will discuss his effort to 
introduce Bayesian concepts to several statistics classes at undergraduate level. Difficulties of teaching 
for the instructor and difficulties of understanding for the students will also be discussed. 
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1. Introduction 

Bayesian statistics has come a long way over the last several decades.  There are free software such as 
WinBUGS available to easily implement Bayesian methods.  World scientific community has started 
recognizing Bayesian methodologies.  With this development, it is advantageous for modern graduate to 
know Bayesian methods as well as frequentist methods. With the availability of new software it is not 
very difficult to add some Bayesian concepts to lower level statistics classes.  This paper will discuss how 
to incorporate Bayesian methods in undergraduate classes. Few lectures of applied Bayesian methods can 
be easily added to existing applied statistics courses. Some theoretical background can be added to typical 
mathematical statistics courses with programming component. Instructors can encourage undergraduate 
students to do honors projects using Bayesian methods, especially with computing.  One way to get the 
attention of the students is to include a few lectures in Bayesian methods with more emphasis in 
computing in undergraduate applied statistics classes.  Theory and applied Bayesian methods can be 
easily added to mathematical statistics sequence.  Some textbook authors such as Rice, J. A. (2009) have 
added Bayesian ideas in appropriate places of their books.  Finally, it is easy to add Bayesian methods for 
upper level undergraduate/ graduate level applied statistics courses such as Applied Linear Regression. 
An instructor who teaches undergraduate statistics courses can make some desired outcomes such as 
ability to find credible intervals for mean and proportion, conduct Bayesian hypotheses testing for mean 
and proportion, and conduct Bayesian linear regression. For some undergraduate students who take 
graduate level courses, one can expect goals of higher level such as ability to conduct logistic regression 
using Bayesian methods, select reasonable priors, find theoretical posterior distributions, prior, and 
posterior predictive distributions, write WinBUGS and R codes and understand basics of MCMC 
methods.  

In this paper coding in WinBUGS is used but not explained.  Readers are expected to know WinBUGS.  
Learning WinBUGS for an instructor is an easy task.   

There are a few articles written about teaching Bayesian statistics at lower level or service statistics 
classes.  Albert, J. H. (1993) discusses the difficulties of deriving posterior distributions and propose 
simulation approach to posterior distributions.  Those of who have tried simulation of posterior 
distributions prior to 1993 may remember the difficulties involved with such simulations.  He gives an 
example of baseball home run prediction which will be revisited in this paper using modern Bayesian 
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software.  Berry (1997), discusses the difficulties of teaching Bayesian statistics at elementary statistic 
level and provides a list of topics one can cover if such a course is planned. In his article, he refers to 
some Minitab macros written by James Albert in 1996 as some examples to introduce Bayesian statistical 
software to students. In my classes students found a lot of online resources but I recommended Lunn et. 
al. (2013) “The BUGS Book” as a reference.    

 

2. Getting the Attention of Students 

Using simulation methods to approximate integrals is one way to get the attention of undergraduate 
mathematics students. For other students, rather than plugging numbers in to an equation to find 
quantities such as mean and variance of distributions, simulations are an attractive alternative.    
Example 1: Evaluation of the integral of 3x  from 0 to 1 yields 0.25.  Using the WinBUGS code: 

model{ 
Integral~<- pow(x,3) 
x~dunif(0,1) 
} 

and calculating the mean of the random variable 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 will produce an approximate value. See Table 
1.  
 

 
Table 1. 

 
Example 2: Evaluate the mean of the exponential distribution with parameter 2.  Integration will yield a 
value of 0.5.  
 
Using the WinBUGS code: 

model{ 
x~dexp(2) 
} 

and calculating the mean of the random variable 𝑥 will produce an approximate value. See Table 2.  
 

 
Table 2. 

 
At this stage it is possible to explain that the expected value of a function 𝑔(𝑥) can be approximated by 
𝐸[𝑔(𝑥)] =

1

𝑁
∑ 𝑔(𝑥𝑖)𝑁

𝑖=1   where random values of 𝑥𝑖  are generated from the desired distribution.  
 
Example 3: 
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Probability integral transform. Let  𝐹(𝑥) = 1 − 𝑒𝑥𝑝(−𝑥) , then 𝐹(𝑥)~𝑈𝑛𝑖(0, 1) 𝑎𝑛𝑑 𝑥 =

−𝑙𝑜𝑔(1 − 𝐹(𝑥)) = −log (𝑢).  
 
Using the WinBUGS code: 

model{ 
u~dunif(0,1) 
x<- -log(u) 
} 

and plotting the posterior densities, one can show that the distribution of 𝑥 is close to exponential. See 
Figure 1. 

 
Figure 1. 

 

Example 4: Probability distribution tables. 
Let 𝑋~𝐵𝑖𝑛(𝑛 = 4, 𝑝 = 0.4 ) and we want to approximate the cumulative distribution function table.  
 
Using the WinBUGS code: 

model{ 
x~dbin(0.4,5) 
cdf0<-1-step(x-0.5) 
cdf1<-1-step(x-1.5) 
cdf2<-1-step(x-2.5) 
cdf3<-1-step(x-3.5) 
cdf4<-1-step(x-4.5) 
cdf5<-1-step(x-5.5) 
} 

and calculating the mean of the random variables one can approximate the cdf values for 𝑥 = 1, 2, 3, 4, 5.  
See Table 3. If the summary statistics of the node 𝑥 was requested one can get the mean of the 
distribution too 
 

 
2712



 
Table 3. 

 

Example 5: Transforming normal distributions to standard normal distributions.  
Using the WinBUGS code: 

model{ 
x~dnorm(50,0.25) 
z<-(x-50)/2 
} 
and graphing the random variables 𝑥 and 𝑧 one can approximate the distributions.  Also summary 
statistics provide approximations to the means and standard deviations. See Figure 2 and Table 4.  

 
Figure 2. 

 

             

Table 4. 

 

3. Introducing Bayesian Concepts 

 

Example 6: Using the data 1192, 1200, 1207, 1185, 1198, 1194, 1210, 1197, 1212, 1209, 1189, 1202, 
1194, 1196, 1179, 1191, 1214, 1197, 1213, 1213, 1211, 1193, 1204, 1187, 1196, 1194, 1220, 1193, 1194, 
1194, 1177, 1181, 1217, 1213, 1204, 1119, 1221, 1198, 1210, 1183, find a 95% confidence interval for 
the mean. Assume the data have a normal distribution with standard deviation of 12.  Kokoska, S (2015)  
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The frequentist confidence interval is 1199.47 ± 1.96 (

12

√40
)  which produces[1195.75,1203.19].   

 
Using the WinBUGS code:  
 
model{ 
for (i in 1:40) 
{ 
x[i]~dnorm(mu,tau) #Model 
} 
mu~dunif(1000,1500) #Prior distribution for mu 
tau<-1/144 
} 
#Data 
list( x=c(1192, 1200, 1207, 1185, 1198, 1194, 1210, 1197, 1212, 1209, 1189, 1202, 1194, 1196, 
1179, 1191, 1214, 1197, 1213, 1213, 
1211, 1193, 1204, 1187, 1196, 1194, 1220, 1193, 1194, 1194, 1177, 1181, 1217, 1213, 1204, 
1119, 1221, 1198, 1210, 1183)) 
#Initial values 
list(mu=1100) 
and calculating the summary statistics, a 95% credible interval is [1194,1201].  Students should 
be encourages to use different priors and how the credible interval changes.  See Table 5. 
 
 

 
Table 5. 

 
 
Example 7: Using the data 3.4, 3.5, 3, 3.4, 3.3, 3.5, 3.3, 3 ,3.5, 3, 2.7, 3.1, 3.8, 3.1, 3.3, 3.1, 3.1, 2.9, 2.5, 
3.1, 3, 3.6, 3.2, 3.2, find a 95% CI for the mean.  Assume normality with unknown variance. 

Frequentist confidence interval is 0.025,23
0.29033.19

24
t

 
  

 
which produces[3.00, 3.31].    

Using the WinBUGS code: 
 
model{ 
for (i in 1:n) 
{#model 
#df=n-1 
x[i]~dt(mu, tau,23) #Syntax for t disn is dt(mu, tau, df). Each x is t distributed with randomly generated mu and tau and 23 df. 
} 
#priors 
mu~dunif(0,10) 
#tau~dgamma(0.01,0.01) Using either a uniform or a gamma distribution with small parameters produces similar results. 
tau~dunif(0,24) 
} 
#Data 
list( x=c(3.4,3.5,3,3.4,3.3,3.5,3.3,3,3.5,3,2.7,3.1,3.8,3.1,3.3,3.1,3.1,2.9,2.5,3.1,3,3.6,3.2,3.2), n=24) 
#Initial values 
list(mu=3, tau=10) 
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and calculating the mean, the Bayesian credible interval for the mean is [3.07, 3.31].  See Table 6. 
Students will ask the question that what will happen if you assume the variance is unknown in Example 6.  
Instructors should let them answer their question by themselves.  
  

 
 

Table 6. 

 

Example 8: Find a 95% confidence interval for the variance of the data 16, 19, 22, 23, 18, 17, 18, 16, 11, 
8, 8, 7, 9, 10, 12, 18, 19, 16, 12, 10, 11, 9, 9, 7, 6, 9, 10, 12, 15, 15. Kokoska, S (2015) 
 
Frequentist 95% confidence interval is [14.257, 40.622].  
 
Using the WinBUGS code: 
 
model{ 
for (i in 1:30) 
{#model 
x[i]~dt(mu, tau,29) 
} 
#priors 
mu~dunif(0,24) 
#tau~dgamma(0.01,0.01) 
tau~dunif(0,100) 
variance<-1/tau 
} 
#Data 
list( x=c(16,19,22,23,18,17,18,16,11,8,8,7,9,10,12,18,19,16,12,10,11,9,9,7,6,9,10,12,15,15)) 
#Initial values 

list(mu=15, tau=50) 

 

and calculating the mean the Bayesian credible interval for the variance is (12.67, 36.15).  See Table 7. At 
this stage student will be struggling with the difference between confidence intervals and credible 
intervals.  Actuarial science majors will be delighted to learn about the credible intervals. I usually ask 
students to read about it and prepare for a discussion in class.  A two page paper before the discussion is 
also another approach if writing is part of the course.    
   

 
Table 7. 

 
Example 9: James H. Albert (1993) gives an example of Bayesian prediction of Kevin Mitchell’s home 
run production for 1989 using the 1986-1988 data.  Kevin Mitchell had 53 homeruns from 1297 at-bats 
from 1986-1988 producing an average home run rate of 0.041.  Assuming the home run rate 𝑝 is between 
0 and 0.11about 95% of the probability to be between 0.01 and 0.1 one can model the 𝑝 by a Beta 
distribution with parameters 𝑎 and 𝑏.  Since 𝑎 and 𝑏 are unknown, the mean of the Beta distribution can 
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be used to get some idea of the values of 𝑎 and 𝑏.  Equation 𝑎

𝑎+𝑏
=

0.10−0.01

2
   produces 𝑏 ≈ 21𝑎.  By trial 

and error and using WinBUGS code: 
model{ 
x~dbeta(4,84) #x~dbeta(a, 21a)   
} 

and calculating the summary statistics, 𝑎 = 4 produces a desired Beta distribution. See Table 8. 

 
Table 8. 

James Albert (1993) predicted the homerun rate for 50 future games assuming that Kevin Mitchell played 
4 home runs in 44 at bats during the first 10 games of the 1989 season.   

Using the WinBUGS code: 

model{ 
y<-4 
p~dbeta(4,84) 
y~dbin(p,44) 
ypred~dbin(p,50) 
pprior~dbeta(4,84) 
yprior~dbin(pprior,50)  
######OR 
pnew~dbeta(8,124) 
ynew~dbin(pnew,50) 
z<-1/pnew  
} 
 

and calculating the summary statistics and graphing the prior and posterior probabilities one can 
reproduce the predictions of James Albert (1993) for 50 future games using WinBUGS.  James Albert 
used MINITAB macros for his simulations. In this paper variable 𝑦𝑝𝑟𝑖𝑜𝑟 does not consider the assumed 4 
homeruns during first 10 games.  Variables 𝑦𝑝𝑟𝑒𝑑 and 𝑦𝑛𝑒𝑤 are supposed to predict the distribution of 
home runs for the next 50 at-bats. Variable 𝑧 estimates the number of times at bat to get one home run. 
See Table 9 and Figure 4.   

 
Table 9. 
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Figure 3. 

Our results are comparable to James Albert’s results but writing and running WinBUGS code did not take 
much time.   

 

4. Conclusion 

Students had difficulties with selecting the prior and switching between the familiar frequentist 
methods and using subjective Bayesian priors. Slowly they understood the difference between the 
non-informative prior and a subjective prior. They enjoyed the computations compared to analytical 
approaches. Students enjoyed the Monte Carlo approach to estimate integrals such as the area inside 
the unit circle and especially estimating the mean of a probability distribution.  Some even 
commented that they understood calculus better after these exercises. Monte Carlo approach to 
explaining the p-value of a hypothesis test was another favorite example among the students. Most 
students appreciated the value of learning WinBUGS.  As far as the workload for the instructor, some 
of these examples were done for the graduate students and some by the graduate students, the 
pleasure of teaching new things was more than the little burden of getting ready for classes. Bayesian 
software and computer technology had improved so much these days one can easily add Bayesian 
methods in to even general education elementary statistics course.             

 

 

 
2717



References 

Albert, J. H. (1993) “Teaching Bayesian Statistics Using Sampling Methods and MINITAB.” The 
American Statistician, Vol 47, No. 3, pp 182-191.  
 
Berry, D. A. (1997) “Teaching Elementary Bayesian Statistics with Real Applications in Science.” 
The American Statistician, Vol. 51, No. 3, pp 41-245.  
 
Kokoska, S (2015) Introductory Statistics: A Problem-Solving Approach, Second ed. Freeman, New 
York.  
 
Lunn et. al. (2013) The BUGS Book, CRC Press, Boca Raton, FL. 
 
Rice, J. A. (2009) Mathematical Statistics and Data Analysis, Duxbury, 2009.  

 
2718




