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Abstract

In a high school championship diving competition, athletes are asked to perform 11 dives. Each of

5 judges gives each dive a rating from 0, for a failed dive, to 10 for a perfect dive. Round scores are

determined by dropping the lowest and highest judge’s rating, adding the remaining three ratings,

and multiplying that sum by the degree of difficulty of the dive. The total score is determined by

the sum of the round scores. Agreement in the context of multiple raters has been well explored in

the literature. However, measuring agreement in the context of multiple raters, with multiple scores

per rater, and with covariates influencing the ratings, has been much less explored. Data from a

regional high school diving competition has all of these components. We examine various measures

of interrater agreement from the literature, and discuss the shortcomings of each in the context of

this data set.
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1. Introduction

Agreement among judges in athletic competitions has been discussed extensively in the

literature (Pajek, et. al., 2013) and in the media (Easterbrook, 2004, Clarke, 2014 and

Associated Press, 2002). Most of the attention has been on gymnastics and figure skating.

Diving is another sport where awards are given based on ratings from a panel of judges.

National bias in Olympic diving events has been investigated in Emerson, et. al., 2000.

The data for this study consist of scores from a regional high-school diving competition.

Each dive is rated from 0, which means a failed dive, to 10, which is a perfect dive, by 5

judges, all of whom are high school coaches for the teams represented in the competition.

In reality, it is rare for a dive to be rated below a 3.0 or above a 7.0 by any judge. Scores

typically are given in increments of half points, for example, A score of 5.0 or 5.5 is a valid

score, but a score of 5.3 is not. Effectively, the scoring by half points results in 21 possible

ratings that can be given to a diver for a given dive. Even there are are many possible

scores, the mechanism is ordinal, because a difference of a point (or a half point) does not

necessarily indicate the same difference in dive quality for all points on the scale.

Thirteen girls and 12 boys participated in the competition from which the data for this

study come. In high school championship competitions, each diver performs 11 dives.

Divers must perform one “voluntary” dive from each of the five categories (forward, back-

ward, inward, reverse, and twist), five optional dives (one from each category), and a sixth

dive that can be from any category (Franklin, 2018). The diver has a choice of which dives

to perform and the order in which to perform them; however, 11 dives in the prescribed

categories must be performed by each diver. In addition, each dive has a degree of diffi-

culty associated with it, ranging from 1.3 to 2.8 for the dives performed in this competition.

These data will be used to illustrate the calculation and interpretation of common measures

of interrater agreement.
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Figure 1: Ratings for female divers Figure 2: Ratings for male divers

Before examining numerical measures of any kind, it is a good idea to plot the data.

Figures 1 and 2 show the judges’ scores for each dive on the y-axis by the finishing place

on the x-axis. Each dot represents a dive, each column of dots is a diver, and the color of a

dot indicates a judge. The points are jittered so that individual points are easier to see. The

chart for the girls is on the left, and the chart for the boys is on the right. For both groups,

we see that Judge 1 (orange dot) tends to award lower scores than the other judges. We

also see more spread in the girls’ scores than in the boys’ scores. On average, the boys tend

to have higher scores than the girls; however, the plot indicates generally good agreement

among the judges for each diver.

Now that we have an idea of what to expect from the data, we can examine numerical

ratings to see whether their values support what was seen in Figures 1 and 2.

2. Measures of Agreement

There are many ways to measure agreement in the literature. The first statistic for mea-

suring agreement that most researchers consider is Cohen’s kappa. It measures agreement

between two raters where the rating scale is nominal. For the diving data, we have five

raters who are rated on an ordinal scale. Some have used Cohen’s kappa for multiple raters

by computing agreement between all pairwise combinations of raters; however, this often

leads to nonsensical results (Fleiss, 1971). Although Cohen’s kappa is inappropriate for the

diving data, it’s formulation is given in (1) for purposes of completeness.

Suppose that there are 2 judges who rate n subjects into m mutually exclusive and

exhaustive categories. Let pi· =
∑m

j=1 pij be the proportion of subjects in the ith row and

p·j =
∑m

i=1 pij denote the proportion of subjects in the jth column. Then Cohen’s kappa

is given by

κ̂c =
p0 − pc

1− pc
(1)

where po =
∑m

i=1 pii and pc =
∑m

i=1 pi·p·i. Cohen’s kappa ranges from zero to one, where

κ̂ = 0 indicates no detectable agreement and κ̂ = 1 indicates perfect agreement.

Fleiss (1971) developed a kappa-like statistic for use when a constant number of m

raters is randomly sampled from a larger population of possible raters. Let Kij be the num-

ber of raters who assigned the ith subject to the jth category, i = 1, . . . , n, j = 1, . . . ,m,
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and define pj =
1

Kn

∑n
i=1Kij . Fleiss’s Kappa is given by

κ̂f =

∑n
i=1

∑m
j=1K

2
ij −Kn[1 + (K + 1)]

∑m
j=1 p

2
j

nK(K − 1)(1 −∑m
j=1 p

2
j)

(2)

This version of the formula comes from Banerjee, et. al., 1999. Just as with Cohen’s

kappa, Fleiss’s kappa is meant for measuring agreement between raters who rate objects

into nominal categories. Furthermore, it ranges from 0 to 1, with 0 indicating no agreement

beyond chance and 1 indicating perfect agreement.

Another measure of agreement is the intraclass correlation (ICC). There are many dif-

ferent formulations of the ICC, depending on whether subject and/or rater effects are fixed

or random and the number of raters (Shrout and Fleiss, 1979). The ICC chosen for use on

these data is ICC3, which is intended for multiple raters where the raters and subjects are

fixed effects. Typically, the ICC is also used when the rating scale is nominal.

Let k be a fixed number of raters who judge n subjects. Then, ICC3 is given by

MSB −MSE

MSB + (nk − 1)MSE
(3)

Fleiss’s kappa and the ICC are a good place to start when measuring agreement. In

general, the closer these values are to 1, the more agreement there is among judges. Both

of these measures are intended for the situation where the number of raters is greater than

2, the scale is nominal, and each subject is rated only once. These measures have been used

for ordinal data with reasonable results (Agresti, 1988; Maclure and Willett, 1987). The

diving data are not only ordinal, but also each participant performs 11 dives. Therefore,

each subject is rated by all of the judges 11 times.

One way to examine agreement using Fleiss’s kappa and the ICC is to treat the dif-

ferent rounds as if they were simply different ratings. In other words, there would be

13 × 11 = 143 ratings or each female diver and 12 × 11 = 132 measures for each male

diver. Essentially, this method treats each round as if it were a separate diver, and not the

same diver performing a different dive.

Another way to examine the data, that preserves the fact that each diver performs 11

dives, would be to compute measures of agreement for each round. Doing so would allow

the analyst to see patterns that may not be visible were all of the ratings treated simulta-

neously. Figures 3 and 4 shows Fleiss’s kappa (left) and ICC3 (right) computed for each

round of the diving competition. For each score, the agreement of the 5 judges in each of

the 11 rounds was calculated, and the round is plotted on the x-axis.

One thing to notice about these measures is that the scales are quite different. Fleiss’s

kappa scores range from 0.1 to 0.4, and ICC scores range from 0.9 to 0.99. Part of the

discrepancy can be explained by the underlying assumptions of the measurements. The

ICC is calculated under the assumption that the ratings for each subject are uninfluenced by

rater bias. Fleiss’s kappa, on the other hand, is not influenced by this assumption (Banerjee

et. al., 1999). In addition, many authors have pointed out shortcomings in both Fleiss’s

kappa and ICC that could contribute to a difference in the scales (Kraemer, 1980; Davies

and Fleiss, 1982).

The purple solid line in Figures 3 and 4 represents scores per round for females, and

the green dotted line represents scores per round for males. For both measures, we see that

agreement for females is more variable and typically lower than that for males, particularly

in the case of the ICC. It is not clear why this is so, or if the same variability would be

seen in other competitions. However, it would be interesting to discuss possible variables

that could result in such differences, and how one might go about gathering data to test any

hypotheses.
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Figure 3: Fleiss’s Kappa measure of

agreement for each round of 11 dives

Figure 4: ICC measure of agreement for

each round of 11 dives

Kraemer (1980) developed a measure of agreement when there are multiple raters who

examine multiple measures on each subject. She also allowed for a subject to be classified

into more than one category by a single rater, and her coefficient can be used for ordinal

categorical data. Kraemer’s coefficient can be calculated using the formula (Arbuckle,

2012).

κ̂0 =
r1 − rT

1− rT
(4)

where r1 is the unweighted average of the intrasubject correlation coefficients (computed

using Spearman’s rank correlation coefficient) and rT is the average Spearman rank coeffi-

cient among all pairs of observations in the sample. Unfortunately, there does not seem to

be an implementation in R of Kraemer’s statistic. Therefore, we do not consider it further

for the purposes of this paper.

3. Modeling Patterns of Agreement and Disagreement

As we can see, the diving data set has many features that make measuring agreement with

“classical” methods somewhat unsatisfactory. A partial list is given below.

• For most data sets, each rater (judge) rates the same set of subjects only once. The

diving data set contains 11 ratings from each of 5 judges.

• Diving data set ratings are ordinal.

• Dives are done in different orders for different divers.

• Not every diver performs the same dives.

• Covariates such as degree of difficulty and seed may affect ratings.

Given all of these intricacies of the data, it seems that a single number that measures

agreement may be insufficient. Many researchers have examined how to model patterns

of agreement, such as chance versus beyond-chance components. Log-linear models to

compare patterns of agreement among observers or for different values of covariates have

been investigated (Tanner and Young, 1985; Graham, 1995), as well as latent-class models

((Aickin, 1990; Uebersax and Grove, 1990; Agresti,1992), and agreement plus linear-by-

linear association (Agresti, 1988).
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More recently, Nelson and Edwards (2015) present models for agreement of data with

multiple raters where the ratings are on an ordinal scale. They apply their measure to

radiologists’ assessment of the stage of cancer. The model that they use is a probit model,

where a statistic for agreement is calculated from the cumulative probability score of a

measure being classified in category c or lower.

In their formulation, each of J experts, J = 1, . . . , j independently assigns each of I

subjects, i = 1, . . . , I to one of C ordinal categories, c = 1, . . . , C , yielding classifications

Yij = c. A GLMM for modeling agreement with ordinal classifications calculates the

cumulative probability of a score being classified into category c or lower:

Φ−1(Pr(Yij ≤ c|ui, vj)) = Φ [αc − (ui + vj)] (5)

An observed agreement statistic κm is given by a linear transformation of ρc and ρ0,

rescaled to be between 0 and 1. Formally, κm =

(

C

C − 1

)
∫

+∞

−∞

C
∑

c=1

[

Φ

(

Φ−1( c
C
− z

√
ρ√

1− ρ

)

− Φ

(

Φ−1( c−1

C
)− z

√
ρ√

1− ρ

)]2

φ(z)dz− 1

C − 1

(6)

where z is a N (0, 1) random variable. The form for ρ, ρc, ρ0 and their relationships are

given in Nelson and Edwards (2015), along with a proof in Appendix 3 of their paper.

A Bayesian ordinal model has been developed in the context of multiple judges for wine

tasting (Cao, 2014). The assumption for this model is that there is an underlying continuous

measurement of each subject’s ability, denoted as θi. Let yij the observed ordinal score

assigned by judge j on subject i. yij = s if cs−1 < xij < cs, where cs−1 and cs are

category cutoffs for score s. Then the continuous estimate of the ith’s subject’s ability is

xij = αj + βjθi + eij (7)

where eij ∼ N (0, σ2
j ) is the judgment error made by judge j on the rating of subject

i. The Bayesian Ordinal Model allows for determination of whether bias, discrimination

ability, or random variation are responsible for disagreement among judges. Here, bias (αj)

measures whether a judge is relatively stringent, neutral, or generous with regard to other

judges. Discrimination (βj) measures a judge’s ability to distinguish between good and

bad dives. Variation measures the amount of judgment error (σ2
j ). Judge performance can

be evaluated based on the correlation between his/her assigned ratings and the estimates of

latent quality, θi.

For the remainder of this paper, we examine the use of the probit model and the

Bayesian ordinal model on the diving data.

4. Results

Neither of these models as they currently stand has a place for covariates; therefore, we

ignored the degree of difficulty for each dive and modeled males and females separately. In

Table 1: Measures of Agreement based on the Nelson and Edwards Probit Model

Statistic Males Females

ρ̂0 0.537 (0.031) 0.331 (0.026)

ρ̂c 0.176 0.204

κm 0.066 (0.006) 0.035 (0.003)
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addition, we modeled each round as if it were a separate diver, leading to 132 observations

for males and 143 for females. There are 12 different ordinal score levels for females and

15 for males.

Table 1 gives the results of statistics derived from the ordinal probit model. Standard

errors for each measure, where obtainable, are given in parenthesis. For this model, κm
measures the overall assessment of chance-corrected agreement based on ρ0 and ρc, scaled

to be between 0 and 1. Because κm is close to 0, there is little agreement among the judges’

ratings. However, the low agreement is more likely a result of combining all rounds for all

divers than it is for actual non–agreement. ρ0 measures the observed (exact) agreement

between many experts classifying the same sample of subjects using an ordinal categorical

scale. Here, ρ0 is moderate at 0.537 for males and 0.331 for females. ρc is the agreement

corrected for chance. ρc is slightly greater for females than it is for males. Although there

is some discrepancy using the probit model, there is also some support for what was seen in

Figures 3 and 4; there is slightly less agreement among female divers than for male divers.

The Bayesian Ordinal Model given in (7) is another way of examining these data, in

that we can see where sources of disagreement among judges arise. The results for this

model are given in Table 2. Each statistic is calculated separately for males and females.

The first pair of columns gives the bias statistic for each judge. The second pair of columns

shows the discrimination statistic, and the third pair of columns shows the signal to noise

ratio. The 0’s for Judge 1 indicate that all bias measurements are relative to Judge 1. Since

the bias measurements are all positive, this indicates that Judge 1 is stricter compared to

the other judges. There was some evidence for the strictness of Judge 1 in Figures 1 and 2.

For discrimination, we see that scores for males are greater than those for females. This

indicates that judges were better able to discriminate the performance of males than they

were for females. Perhaps this is easiest to explain with the signal to noise ratio, which is

much greater for males than for females. This result supports the other measures in that

there seems to be more variability in agreement for female divers.

Table 2: Statistics calculated from the Bayesian Ordinal Model

Judge Bias (αj) Discrimination (βj ) STN Ratio (β2
j /σ2

j )

Males Females Males Females Males Females

1 0 0 0.436 0.225 11.129 3.248

2 0.047 0.075 0.421 0.273 11.466 5.221

3 0.048 0.054 0.411 0.264 9.748 5.113

4 0.054 0.049 0.418 0.261 11.748 5.251

5 0.085 0.068 0.388 0.283 10.157 4.907

5. Conclusion and Future Work

Measuring agreement among the five judges for these data proved to be a more difficult task

than expected. The data have several features that render classical measures of agreeement,

such as Cohen’s kappa, Fleiss’s kappa, and even Kraemer’s kappa, unsatisfactory. Because

of the intricacies of the data, we chose to model the pattern of agreement with a probit

model (Nelson and Edwards, 2015) and a Bayesian ordinal model (Cao, 2014), instead of

using simple measures of interrater agreement,

Although different measures and models were used for these data, some common

themes emerged. For example, all of the measures hinted at more variability in agree-

ment for females than for males. However, all measures ignored covariates. The increase
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in variability for females may be eliminated if covariates were accounted for in the model.

Furthermore, the rounds were treated as if they represented scores for different divers.

There are not 132 male divers in this competition. There were 12 males with 11 dives each,

and similarly for females. In future work, it would be important to model the nesting of

divers within rounds, as well as account for the degree of difficulty in the dives and the fact

that different dives are performed by each diver.
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