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Abstract 

We present a multivariate data set of 878 observations (395 men, 483 women) on 500-yard 
freestyle swim times in the biennial U.S. National Senior Games (ages 50 and up) in five 
successive NSGA competitions (2009, 2011, 2013, 2015, 2017). We ask: (1) What is the 
relationship between age and swim time, and how should it be modeled? (2) Do men and 
women exhibit the same patterns of change by age? (3) How well do seed times predict 
actual times? (4) Do competition years differ? (5) What is the pattern of split times (i.e., in 
each of the 10 laps)? We examine the time-age relationship using regression (OLS, 
quantile, bootstrap standard errors) with age category binaries as well as with quadratic 
and semi-log models of age. To predict time for a "typical" swimmer, we favor quantile 
regression (25%, 50%, 75%). Swim time increase is nonlinear after age 50, and women's 
average times increase more rapidly than men's. Competition year plays no consistent role. 
Seed times slightly overestimate actual time. Split times are faster in the first and last laps 
of the race and fairly level in between. 
 
Key Words: Senior Athletes, Women in Sports, Quadratic Model, Semi-Log Model, 
Quantile Regression, Bootstrap 

 
1. Background 
 
The National Senior Games Association (NSGA) sponsors nationwide competitions during 
odd years. To participate in the NSGA Nationals, one must first qualify in a NSGA State 
Game during the preceding even year (e.g., 2016). Participants must be at least 50 years 
old during the qualifying year in the state where they live, or any state that allows out-of-
state competitors. Summer Games medal sports include archery, badminton, basketball, 
bowling, cycling, golf, horseshoes, pickleball, race walk, racquetball, road race, 
shuffleboard, softball, swimming, table tennis, tennis, track and field, triathlon, and 
volleyball. In most sports (including swimming) the top 4 finishers in each age group 
qualify for Nationals. Competition is by age bracket in 5-year intervals (50-54, 55-59, … , 
95-99). Our study examines swim times in the 500-yard freestyle (25-yard, short course) 
event in the Summer National Senior Games (ages 50 and up) in five successive biennial 
competitions (2009, 2011, 2013, 2015, 2017).  
 
Because this is more of an endurance event, rather than a sprint, individual performance is 
less affected by random variation and is more reflective of stamina and training. On 
average, performance is expected to decline with age, but how should this be modeled and 
estimated? Do men and women show the same patterns of decline? We explore alternative 
model specifications, estimation techniques, and benchmarks so swimmers can compare 
their times against recent NSGA competitors. Our findings on the roles of age and gender 
are broadly consistent with other studies of elite competitors in the Olympics and U.S. 
Master’s Swimming competitors. However, because our goals, methods, and database are 
different, our results should not be generalized beyond the biennial NSGA competitions.  
 
Although the role of gender may be studied in regression using a gender binary and 
interaction terms, students will find it more natural to estimate each gender separately. We 
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report parameter estimates for each gender using both OLS and quantile regression (25%, 
50%, 75%). Aside from the effects of age and gender, our rich data set permits us to study 
additional questions. Do times differ by year? What is the pattern of split times (i.e., in 
each of the 10 laps)? Do age and gender affect starting platform reaction times (time from 
the starting buzzer to when the swimmer’s weight actually leaves the platform)? How well 
do qualifying seed times predict actual meet times? 
 
2. Data 
 

Our data set has 878 observations (395 men, 483 women) and 40 variables. Contact 
doane@oakland.edu to obtain the data (Excel format). 
 
Obs  observation in sorted list (year, gender, age group, place) 
Place  finish order in age group for that year 
Name  name of each participant (omitted in shared data set) 
State  participant’s qualifying state 
Gender  0 = male, 1 = female 
Age  age in years 
Age2  age squared (for non-linearity tests) 
AgeGrp  age group in 5-year bins: 1=50-54, 2=55-59, … , etc.) 
A1…A10 age group binaries (e.g., A1=1 if 50-54, 0 otherwise, etc.) 
Year  competition year (2009, 2011, 2013, 2015, 2017) 
Y9…Y17 0-1 binaries for year (e.g., Y9=1 if 2009, 0 otherwise, etc.) 
Seed  qualifying time prior to national competition 
Time  swim time in race (seconds) 
Time-Seed difference between actual time and seed time 
lnTime  natural logarithm of Time 
S1…S10 time (seconds) in each 50-yard split (ten data columns) 
NumEst  number of lap times that were estimated 
Num*  number of missing lap times 
 
We have deliberately created variables (e.g., lnTime and Age2) that are intended to lead 
students to examine specific questions, such as whether the relationship between Time and 
Age should be modeled as non-linear. We have created categorical variables to encourage 
students to look at specific Time patterns (e.g., by year and by split). We also included age 
categories to permit model-free investigation of the relationship between Time and Age. 
This is a rich data set whose characteristics cannot be inferred without data analysis, hence 
being useful for class demonstrations or student team projects. 
 
While data accuracy is generally high, a few issues exist. For example, some split times 
were missing. The 500-yard race consists of ten 50-yard laps (20 lengths of 25 yards). Each 
50-yard lap is a split. The swimmer touches an electronic pad at the end of each lap. 
Occasionally, a swimmer touches with hands above the pad or pushes off so lightly that 
the touch is not recorded. This is more common with older swimmers, who also may avoid 
flip turns. In addition, electronic touchpads may vary in their sensitivity, may be 
imperfectly calibrated, or may have “dead spots.” Human spotters will report if the 
swimmer actually fails to touch, which would disqualify the time and would not be part of 
our data. If only one touch was unrecorded, we estimated the missing split time as half the 
time between the adjacent touches. Otherwise, a split time was recorded as missing. 
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As a further accuracy check, the ten split times should sum to the total time. If not, it was 
sometimes possible to reconcile the difference by examining raw timer data. We had access 
to some detailed data for individual participants, which allowed us to retain many of the 
discrepant observations. 
 
Another problem was high extremes. While there is a physiological lower limit on swim 
times, there is no upper limit. For example, a swimmer may suffer cramps or may simply 
need to slow down. Senior swimmers are philosophical about their limitations and are more 
willing to “back off” than a younger athlete might be. Residuals, therefore, will be 
positively skewed and may contain extremes. 
 
Selection bias is also a concern. Many eligible swimmers (the top four per state) decline to 
participate in the nationals. This is partly a financial matter. The cost of hotel, meals, and 
travel to the host city (2009 San Francisco, 2011 Houston, 2013 Cleveland, 2015 
Minneapolis, 2017 Birmingham) can be daunting. The summer games last for two weeks, 
and many athletes compete in multiple events (up to six) so hotel and meal costs add up. 
Health problems force some athlete to drop out after qualifying, or to enter only the events 
in which they have the best chance. A few may judge that their medal chances are too low 
to justify the trip. Some states have well-organized senior swim teams that encourage and 
support participation, while others have none. The effect is to reduce the potential sample 
size substantially. 
 
3. Initial Data Exploration 

 
The age distribution of participants in our database is shown in Figure 1. Male and female 
swimmers have similar patterns, with two modes (ages 60-64 and 70-74). As would be 
expected, there are fewer participants in higher age categories. 
 

     
Figure 1: Distribution of swimmers by age group 

 
Our first regression employs 5-year age group dummy (0-1) variables: A1 (50-54), A2 (55-
59), A3 (60-64), A4 (65-69), A5 (70-74), A6 (75-79), A7 (80-84), A8 (85-89), A9 (90-94), 
A10 (95-99). This has the advantage of avoiding a specific model form. We omit A1 so 
that age group 50-54 becomes the base. We estimate OLS regressions separately for each 
gender as shown in Tables 1 and 2.  
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Table 1: Age Binary Regression Coefficients: Men 
 All Men (n = 395) Omit Two (n = 395) 

Predictor Coef t  Coef t 

Intercept 396.6 19.43  396.6 22.69 
A2 4.5 0.17  4.5 0.20 
A3 44.3 1.82  33.5 1.60 
A4 85.9 3.50  85.9 4.08 
A5 147.1 5.90  133.6 6.24 
A6 170.6 6.36  170.6 7.43 
A7 204.6 6.85  204.6 8.00 
A8 409.0 13.27  409.0 15.50 
A9 518.8 10.77  518.8 12.57 
n 395  393 
s 115.445  98.874 
R2 50.17%  58.31% 

 
The estimated age group coefficients for men increase with age as would be expected 
(Table 1). However, the A2 coefficient is effectively zero, suggesting that average times 
for ages 55-59 (A2) are about the same as for ages 50-54 (A1). Two unusually slow swim 
times (standardized residuals 6.89 and 7.54 respectively) pose a problem. These two 
individuals had swim times that were almost three times their predicted times. Omitting 
these two atypical observations greatly improves the fit (last two columns). The estimated 
coefficients are the same except for A3 and A5 (highlighted). In subsequent regressions, 
we choose to omit these two observations (n = 393 instead of n = 395) to obtain more 
realistic performance benchmarks for typical contestants. 
 

Table 2: Age Binary Regression Coefficients: Women 
 All Women (n = 483)  Omit One (n = 482) 

Term Coef t  Coef t 

Constant 456.2 25.33  456.2 26.16 
A2 16.9 0.74  16.9 0.77 
A3 82.2 3.74  82.2 3.86 
A4 150.8 6.64  150.8 6.86 
A5 192.1 8.45  192.1 8.73 
A6 273.4 11.51  262.3 11.37 
A7 332.2 12.74  332.2 13.15 
A8 533.5 12.63  533.5 13.05 
A9 603.1 12.29  603.1 12.69 
A10 887.0 7.26  887.0 7.50 
n 483  482 
s 120.813  116.974 
R2 55.47%  56.64% 

 
For women, as with men, the age binary coefficients for women increase with age as would 
be expected (Table 2). However, as with the men, the A2 coefficient is effectively zero, 
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suggesting that average times for age 55-59 (A2) are almost the same as for age 50-54 
(A1). One slow swimmer (standardized residual 5.52) has a noticeable effect on the 
standard error (and on the coefficient for age category A6, highlighted). Her time was twice 
its fitted value. In subsequent regressions, we will omit this observation (n = 482 instead 
of n = 483) to obtain more realistic performance benchmarks for typical swimmers. Figure 
2 shows predicted times by age category. Expected swim times deteriorate more than 
linearly, suggesting that we should examine non-linear models of the age-time relationship. 
 

 
Figure 2: Predictions Using Age Binaries 

 
4. Quadratic Model 
 
One way to capture nonlinearity is the quadratic model Time = 0 + 1 Age + 2 Age2. We 
wanted to see whether there was any difference in swim times by competition year, so we 
coded 0-1 dummy variables (Y9, Y11, Y13, Y15, Y17) for the years (2009, 2011, 2013, 
2015, 2017). The OLS estimates (Table 3) suggest that, for men, there is no difference in 
years (Y9 was omitted so 2009 is the base year). Women’s times seem to have been 
consistently faster since 2009. Perhaps recent biennial competitions became stiffer? Aside 
from noting this interesting phenomenon, it seems best to ignore competition year as a 
predictor on grounds that there is no logical way to incorporate it into a predictive model. 
 

Table 3: Quadratic Regression Coefficients with Year Binaries 
Men (n = 393) Women (n = 482) 

Term Coef t  Coef t 

Constant 1240 5.72  842 3.69 
Age -32.32 -5.17  -19.51 -2.90 
Age2 0.3101 6.96  0.2400 4.93 
Y11 13.8 0.89  -31.1 -2.00 
Y13 -9.2 -0.61  -36.2 -2.22 
Y15 2.2 0.14  -32.6 -1.91 
Y17 1.7 0.11  -27.0 -1.60 

s 98.783  115.797 
R2 58.17%  57.25% 
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We estimated the quadratic model without year binaries for each gender separately, using 
OLS (Minitab 18) and quantile regression (Stata bsqreg with bootstrapped standard errors). 
We fitted 25%, 50%, 75% quantiles. To facilitate comparison with OLS, Table 4 shows 
only the median (50%) quantile results 
. 

Table 4: Estimated Quadratic Regression Coefficients 
 OLS Regression Coefficients  Median Coefficients 

Predictor Men t Women t 
 

Men t Women  t 

Constant 1244 5.80 843 3.68  1066 3.87 1036 4.53 
Age -32.42 -5.23 -20.14 -2.99 

 
-27.77 -3.17 -26.67 -3.97 

Age2 0.3109 7.04 0.2437 4.99 
 

0.2781 4.03 0.2934 6.07 
s 98.551 116.104 

 
---- ---- 

R2 57.93% 56.65% 
 

---- ---- 
 
Because quantile regression minimizes the sum of the absolute residuals rather than the 
sum of the squared residuals, we do not get a comparable standard error or R2. While the 
OLS and median (50%) coefficients differ, the implied function shape and predictions are 
similar, as shown in Figure 3. For either gender, the OLS prediction (conditional mean) is 
usually a bit higher than the 50% quantile prediction (conditional median) because median 
coefficient estimates are less affected by high extremes (i.e., the unusually slow 
swimmers). While the differences for between OLS and 50% quantile may appear small 
on this scale, they can represent a pool length for some age groups. 

 
Figure 3: Predictions Using Quadratic Model 

 
Teaching Idea #1 

An interesting class demonstration (or student exercise) would be to solve for the implied 
minimum on the quadratic function. We equate d(Time)/d(Age) to zero and solve for the 
“best” age (denoted Age*). Using the OLS estimated coefficients: 
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For men: 
Time = 1244 − 32.42 Age + 0.3109 Age2 
d(Time)/d(Age) = −32.42 + 2(0.3109) Age 
Age* = (32.42)/(0.6218) = 52.1 years 
 

For women: 
Time = 843 − 20.14 Age + 0.2437 Age2 
d(Time)/d(Age) = −20.14 + 2(0.2437) Age 
Age* = (20.14)/(0.4874) = 41.3 years 

For men, the “best” age is 52 while for women it is 41 (or 50 and 45 respectively if we 
solve using the median coefficients). Women appear to reach their best times at an 
earlier age than men. But if our sample had included swimmers of all ages, we would 
expect the “best” age to be earlier, so this should not be interpreted as the “best” age for all 
swimmers. Worthy of discussion with students. 
 
Teaching Idea #2 

Is the quadratic function form too restrictive? Is the main question how swim time 
deteriorates after age 50? We used Excel’s Solver to fit the model Time = b0 + (Age−50)b1 
with an objective of minimizing of  2

ie The results were: 
 

Men:    Time = 368.9612 + (Age-50)1.653486 
Fem:     Time = 458.6627 + (Age-50)1.708483 

 
These results suggest that, after age 50, women slow down faster than men. This exercise 
is within reach of students who have learned to use Excel’s Solver. The only tricky part is 
that Solver requires reasonable seeds for parameter estimation. An instructor can suggest 
choosing the intercept seed as any 50-year old swimmer’s time and exponent seed 1 or 2.  
 
Teaching Idea #3 

Quantile regression offers another teaching opportunity. Although students may lack 
access to quantile regression software, it is useful to discuss alternatives to ordinary least 
squares, e.g., minimizing ie  instead of minimizing 2

ie . There is no calculus-based 
solution to the former problem, so quantile estimation requires linear programming. While 
the computations are not simple, students can grasp that a median estimate is likely to be 
more robust to violations of the OLS assumptions (e.g., nonnormality). Many universities 
do have licenses for statistical packages such as Stata to handled quantile computations, 
and the R proc quantreg in the CRAN repository is well documented. One or two students 
could be asked to research quantile regression on the web and give a short presentation to 
the class what they have learned.   
 
Residual Tests 

We expected the distribution of OLS residuals to be positively skewed, as there is no limit 
on how slow a swimmer can be while even the best swimmers face an asymptotic limit on 
ability. The residual plots for the OLS regressions (Figure 4) suggest that OLS might also 
benefit from using bootstrap standard error for our t-tests. These plots also suggest the 
futility of trying to trim unusual observations. 
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Figure 4: Predictions Using Age Binaries 

 
5. Semilog Model 
 
We specify the semilog model as ln(Time) = 0 + 1 Age. We estimate each gender 
separately using OLS and quantile (median) regression, as summarized in Table 3.  
 

Table 3: Estimated Semi-Log Regression Coefficients – Separate Genders 
 OLS Regression Coefficients  Median Regression Coefficients 

Term Men t Women t  Men t Women t 

Constant 4.8496 79.77 4.9821 87.77  4.850799 74.04 4.88394 65.05 
age 0.019757 22.39 0.020809 24.85  0.0193568 20.08 0.0220744 19.91 
s 0.173562 0.178432 

 
---- ---- 

R2 56.18% 56.26% 
 

---- ---- 
 
The semilog predictions (Figure 5) also show that swim times deteriorate non-linearly with 
age, although not as steeply as the quadratic model. A “typical” swimmer would probably 
find the median (50%) predictions from the semilog model to be a realistic guide to the 
competition. An attraction of the semi-log model is its conformance to what one might 
expect based on human physiology (i.e., steady deterioration past age 50). However, unlike 
the quadratic model, the log model allows no point of inflection.  
 

 
151



 
Figure 5: Semilog Model Predictions 

 
While these predictions appear similar on this scale, a closer look (Figure 6) at the 
differences between OLS and median (50%) predictions) reveals a systematic difference 
that could be important, particularly to swimmers older than 80. 
 

 
Figure 6: Difference Between OLS and Median Predictions for Semilog Model 

 
Teaching Idea #4 

Have students estimate a regression combining both genders using a gender binary (Gender 
= 0, 1) and an interaction term. For example, the semilog model would be ln(Time) = 0 + 
1 Age + 2 Gender + 3 Age*Gender. Do the results support the conclusions from 
estimating each gender separately? What are the advantages and disadvantages of each 
approach? Is separating the genders easier to interpret and explain? These questions can be 
discussed in class, or students can explore them on their own. 
 
Other Quantiles 

Figure 7 shows the estimated 25%, 50%, and 75% quantiles plotted on the entire 2009-
2017 data set for each gender. Scales do not start at zero to show more detail. Given the 
recent number of competitors in each age group, a swimmer in the fastest 25 percent would 
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have a reasonable chance of placing in the top 8, thereby qualifying for recognition on the 
winner’s dais (but only the top 3 receive medals). 
 

   
Figure 7: Quantile Regression Predictions 

 
A swimmer who plans to compete in NSGA Summer Games can assess his/her relative 
standing against competitors in recent biennial NSGA competitions using the estimated 
semilog models shown below. The 2019 NSGA competition could be used as a test. 
 
Men: 

 25% quantile:  Time = exp(4.898135+0.0173513 Age) 
 50% quantile:  Time = exp(4.850799+0.0193568 Age) 
 75% quantile:  Time = exp(4.769993+0.0224767 Age) 

 
Women: 

 25% quantile:  Time = exp(4.972687+0.0189086 Age) 
 50% quantile:  Time = exp(4.883940+0.0220744 Age) 
 75% quantile*:  Time = exp(5.004823+0.0221311 Age) 

 
6. Comparison with Existing Research 
 
The effects of age and gender on athletic performance have been analyzed extensively, 
including swim times, both in cross-sectional and longitudinal studies. In these studies, 
data become sparse toward the highest ages. Swimming research has utilized results from 
U.S. Master’s Swimming competitions (Rubin and Rahe 2010, 2013) and has focused on 
best times by elite swimmers in a variety of events (e.g., Fairbrother 2007; Donato et al 
2003; Konig et al 2014; Rust et al 2014). Despite a focus on sex differences (e.g., Wild et 

al, 2014) the “peak” age is addressed (e.g., Rust et al 2014). Yet research on elite swimmers 
(including younger ones) has a different application than our research on swimmers of 
varied ability aged 50 and over. Studies of the 800 m or 1500 m endurance events (e.g., 
Tanaka and Seals, 1997; Fairbrother, 2007) are somewhat comparable to ours. Researchers 
have used the quadratic model or hierarchical regression (e.g., Rust et al, 2014) to capture 
nonlinearity, although we also see linear regression (e.g., Rahe and Arthur, 1975), the semi-
log model (e.g., Rubin et al 2013), and correlation analysis (e.g., Konig et al 2014). An 
interesting recent study compares 5-year age groups like ours, but it starts at age 25-29 
(whereas we start at 50-54). Studies generally support our conclusion that swim times 
deteriorate non-linearly with age, especially after age 70. 
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While our results cannot easily be compared with other studies, given differences in ages 
covered, race length, and data sources, our fitted models and gender conclusions resemble 
those in other research. Our use of quantile regression adds a useful new perspective, and 
our 50-and-over NSGA data provide realistic benchmarks for “typical” senior swimmers 
of various abilities. 
 
7. Split Times 
 
Figure 8 shows standardized split times for 100 randomly-chosen swimmers (both 
genders). For each swimmer, we divided each split time (Split) by the swimmer’s average 
split time (Time/10) in the 500-yard race. Thus, the reference point 1.00 would be an 
“average” split time for that swimmer. The first 50-yard split (denoted S1 in Figure 8) is 
faster because of the dive from the starting platform. An exception would be swimmers 
who choose (because of age or health issues) to start in the water rather than risk a dive, or 
who have trouble getting up onto the platform (a problem especially for swimmers age 75 
and over). The second split (S2) usually is also faster because of the “adrenalin” factor at 
the race’s start (crowd noise, etc). The middle laps (S3-S9) tend to be “just swimming.” 
The final 50-yard split (denoted S10) typically is faster as the swimmer makes a strong 
finishing effort.  
 

 
Figure 8: Split Time Ratios for 100 Swimmers 

 
There is obviously a great deal of variation, but a pattern also exists. To see the pattern 
more clearly, we took averages over all swimmers (by gender) as displayed in Figure 9 
(omitting any missing or estimated split times). Women’s and men’s patterns are 
essentially the same. Good strategy requires a swimmer to know her/his capabilities and to 
regulate the pace. Swimmers must balance “type I error” (over-doing it in early laps, then 
fading) against “type II error” (conserving too much, then unable to catch up). Experienced 
swimmers swim against themselves as much as against others, who may be hard to see 
clearly. 
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Figure 9: Relative Split Time Averaged Over All Swimmers 

 
8. Reaction Times 
 
For one year (2011) we data on the time (seconds) from the sound of the starting buzzer 
until the time the swimmer’s weight left the starting platform. Figure 10 shows the 
distributions of these reaction times. The statistics for women and men are almost identical. 
For men, the Anderson-Darling test suggests a normal distribution (p = .67) but not for 
women (p = .049). 
 

  
Figure 10: Reaction Times for Starting Platform 

 
Does reaction time deteriorate with age? Not to a noticeable degree, as shown in Figure 11. 
While the regression has a positive slope, the scatter plot says that the effect is of no 
practical importance. It is interesting that the oldest competitor (a 94-year old woman) got 
off the platform quicker than some younger swimmers. In this illustration, both genders 
are combined because tests showed no significant differences by gender (t-tests of means 
were insignificant and fitted regressions were almost identical). 
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Figure 11: Reaction Times versus Age (both genders combined) 

 
9. Seed Times 
 
One more question that we studied was how well a swimmer’s qualifying time (“seed”) 
predicts the actual time. The seed time is usually the best time in state competitions prior 
to the nationals. Seed times are provided to NSGA competitors prior to the finals in “psych 
sheets” (this title emphasizes the psychological aspect of competitive swimming). Figure 
12 shows that seed time predicts national time very well. However, for both genders, the 
national competition time is better, on average, than seed time (slope less than 1). 
Presumably, the national competition brings forth extra effort in most swimmers. 
 

   
Figure 12: Seed Time as Predictor of Actual Time 

 
10. Conclusions 
 
While we cannot generalize beyond NSGA competitions, our empirical observations about 
age, gender, split times, reaction times, and seed times are reasonable a priori. At a 
minimum, our analysis provides a reference point for future empirical research. We 
speculate that Title IX may reduce the male-female gap as more women participate in 
competitive swimming. although swimming is a sport where equality of opportunity 
already has a fairly long history. Over time, we predict tougher competition in senior swim 
meets because many senior swimmers today are self-taught. Competitive swim training 
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nowadays starts as early as young as age 6 (e.g., USA Swimming, YMCA Live Y'ers). As 
these youths age, they are likely to be formidable senior competitors. 
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