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Abstract
Target identification is crucial in many defense and national security domains, such as

target tracking, surveillance, and gaining situational awareness. In practice, a variety of
multi-modal sensors are deployed to support such applications. A critical challenge is to
exploit multi-sensor information to robustly identify targets in noisy and imperfect data,
such as low contrast imagery under adverse weather conditions. For example, a sensor
may identify a set of targets with high confidence, but another sensor may poorly resolve a
potential target. The intent is to combine information from all available sensors for robust
identification. We tackle the problem by exploiting contextual information based on
inter-target relationships in different scenarios of interest, such as desert, forest, urban
terrain, under-water zones, cultural festivals, etc. In this paper, we develop discriminative
random field based scenario specific contextual models using past labeled sensor data.
Subsequently we use these models to quantify the likelihood of an ill-identified target, and
determine the most likely identification of a current low confidence target by probabilistic
inference using the random field models.

Key Words: Discriminative random field, contextual model, target identification,
Conditional random field

1. Introduction

Target identification is a fundamental and crucial task in many application domains relevant
to defense and national security. Examples of such applications are surveillance, perimeter
security, target tracking from air-borne and space-borne sensors, autonomous navigation,
etc. The fundamental goal of target identification is to classify a target as belonging to a
particular class or category, such as a tank, a helicopter, a car, a building, and so on. In
some cases, the targets need to be identified with a finer level of specificity, such as a T-90
model tank, a T-80 model tank, an M1A1 tank, an M1A2 tank, etc. It is not uncommon to
deploy and exploit a variety of sensors of multiple modalities (such as visible band optical,
infrared, lidar etc.) for this task. The advantage of exploiting multi-modal sensors is that
different modalities can detect different targets, or different aspects of the same target, thus
providing a more comprehensive situational awareness. For example, a visible band camera
can provide information about the color and texture of an object while a lidar sensor can
provide information about the 3D profile and the distance of the object from the sensor.
Having more sensor measurements about a target potentially enhances the robustness of
identifying the target.

In general, the task of target identification can be decomposed into two high-level sub-
tasks: (i) target detection, and (ii) target classification. The goal of the first sub-task, target
detection, is to detect the presence of a target within the sensors’ field of view, without
attempting to determine the type or class of the target. The second task, target classification,
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takes as input the sensor measurements corresponding to the sub-areas of the sensor’s field
of view where the presence of potential targets were detected by the first sub-task, and
classifies the targets using appropriate feature space computation. The focus of this paper
is this second sub-task of target classification. We assume that target detection has already
been carried out, and bounding boxes or contours for potential target regions are available.

Traditionally, the task of target identification considers each target in isolation, and
ignores contextual information such as target co-occurrence, spatial relationships among
various targets, relative size, temporal relationships, the surrounding environment, and
other such context. However, context of a scene can provide valuable information to
facilitate disambiguation of target categories for identification.

1.1 Importance of Context

The importance of contextual information for target/object identification has been well
documented in literature (Torralba 2003, Mottaghi 2014). Human understanding of the
World around us is heavily dependent on contextual models that we develop through
observations about our surroundings. For example, even if we look at a very minimal
sketch of a square shape on a wall in a room, our mind almost immediately interprets that
as a mirror or a framed photograph but not a book or a laptop since it is not common for us
to hang the latter two on a wall. Hence our mental contextual model rules them out. But if
we see a sketch of a square on table top, then a book or a laptop is more likely than a
photo frame or a mirror. One of the most groundbreaking work in this area was by (Hock
1974). The authors demonstrated that our cognitive biases about arrangement of objects in
scenes, their relative sizes, relative locations, and other such contextual information play a
major role as cues when we detect real world objects. Our biases resulting from our
cognitive models can fool us too under insufficient contextual information. Figure 1
illustrates the important role that context plays in our understanding of a scene. The image
on the left is a segment of a larger scene shown in the image on the right. Most of us will
likely interpret the image on the left as portraying a peaceful situation where a man is
relaxing with his dog. Given the larger context on the right, it is obvious how wrong that
perception is!

(a) (b)
Figure 1: Illustration of importance of contextual information in object/target
identification. The image on the left in isolation will most likely be interpreted as a scene
where a person is relaxing with his dog. However, the interpretation changes significantly
when we are presented with the larger context as shown in the image on the right (Image
source: https://i.ytimg.com/vi/6mMLLO5U1AY/sddefault.jpg)

Since context plays such a crucial role in our ability to detect objects in a scene, our goal
in this paper is to exploit such contextual knowledge in identifying targets that are difficult
to classify individually. Various factors may result in such low-confidence classifications
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in isolation. Examples of such factors are limitations in sensor operational sweet spots,
occlusion, and challenging environmental conditions that degrade sensor measurements,
such as low contrast, shadows, background clutter etc. The focus of our work is to boost
the identification confidence of such poorly identified targets by exploiting the knowledge
we have about the other targets in the scene that have been classified with high confidence.

We use a discriminative random field to model the contextual knowledge. In
particular, we use a discriminative model based on Conditional Random Fields (CRF)
(Lafferty 2001). The advantage of a CRF is that it directly models the conditional
distribution of a variable L given an observation variable X , encoding complex
dependencies between the two. For context enhanced target identification, the CRF
framework can incorporate target appearance features as well as their spatial properties in
a unified probabilistic graphical model.

1.2 Previous Work

CRF was first introduced by (Lafferty 2001) with primary application in the domain of
natural language processing. Since then, the value of CRFs have been recognized by
researchers in other fields, and it has seen significant popularity in the area of computer
vision. Some of the notable applications of CRF in this domain are image labeling (He
2004, Huang 2011), and object recognition and segmentation (Shotton 2006). These
applications primarily use a 2D CRF graph to process imagery at the pixel level for
labeling each pixel as belonging to a class, or segmenting an image by exploiting
inter-pixel relationship. (Singhal 2003) used CRF to take into account inter-segment
properties as higher level pairwise relationships for scene understanding, but did not
consider explicit relative spatial relationships. (Galleguillos 2008) considered high level
inter-object appearance as well as spatial relationships, and their work is closest to the
approach in this paper. The primary difference of this paper from these previous research
is that we use a different graph structure to suit the need of our specific focus, which is to
enhance the identification of a poorly classified target in a scene when other targets in the
scene have been identified with high confidence. The main contributions of this paper are
use of additional pairwise spatial relationship such as relative size, and the use of rotation
invariant local binary pattern (LBP) as a discriminating feature for the computation of the
pairwise potential in the CRF formulation.

Rest of this paper is structured as follows: Section 2 presents a brief introduction to
CRF; Section 3 describes the specific CRF structure used in this paper; Section 4 provides
details about our experiment and results; and finally we provide a conclusion.

2. Conditional Random Field (CRF)

This paper uses a discriminative random field based on a Conditional Random Field
(CRF) as proposed by (Lafferty 2001). (Sutton 2011) presents an excellent and detailed
introduction to CRFs, which are a class of undirected probabilistic graphical models. The
graphical structure for a CRF in general has two classes of nodes: (i) nodes representing
observations, and (ii) nodes representing output labels or categories. In Figure 2, which
represents the graphical structure used for the CRF in this paper, the nodes labeled xi and
S are the observation nodes and the nodes labeled li are the output nodes. Here the xi
nodes correspond to the observed features of targets, such as size and texture; the node S
encodes the scene category, such indoor, outdoor, etc.; and the nodes li correspond to the
labels of the targets, such as car, dog, book, etc. The CRF graph structure allows the
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computation of the output variables conditioned on the input observations. In Figure 2,
the input observation is X = {xi}ni=1 ∪ S. The goal is to develop a model to compute
P (L|X) where L = {li}ni=1. The graph structure shows that an output li (the label of an
object) depends on the features of that object (by the existence of an edge between li and
xi), the scene category S, and the relationship with all the other output labels lj ∈ L, j 6= i
(because of the fully connected nature of the CRF graph). The edge between two output
variables encode the relationships between them. Under the CRF framework, the desired
joint conditional distribution is computed as

P (L|X) =
1

Z(X)
· exp (−E (L|X)) (1)

where Z(X) is a partition function and E (L|X) is a Gibbs potential computed as

E (L|X) =

n∑
i=1

λiφu(li) +

n∑
i=1

∑
j∈N (i)

µijφp(li, lj) (2)

whereN (i) is the neighborhood of the node li in the CRF graph, and λ, µ are the parameters
of the model which are learned during training. The optimal output labels conditioned on
the input are obtained by minimizing this Gibbs potential.

Here φu(li) is a unary potential, and φp(li, lj) is a pairwise potential. φu(li) is
computed independently for each object and primarily captures information about the
probability of that i-th object appearing in a given scene context. The pairwise potential
φp(li, lj) captures the relationship between the i-th and j-th object in a given context.

3. Context Model For Target Identification

The goal of this paper is to build a context model using CRFs for enhancing the
identification of individually poorly classified targets. Our goal is to capture scene specific
contextual information in the model. In particular, we incorporate object features,
co-occurrence, relative spatial information, and scene category in our model.
Co-occurrence provides rich knowledge about objects in a scene. For example, we
commonly find dogs with people but it is rare for bears to co-occur with people. If this
knowledge is captured in the context model, it can be used to disambiguate a target with
general characteristics of an animal that appears in spatial proximity of a person. The
model will assign a high probability to a dog than a bear based on the contextual
knowledge.

Besides co-occurrence, relative spatial relationships provide powerful contextual cues
as well. For example, signal lights are normally above a car, whereas fire hydrants are
usually at the same level as cars. Relative size of targets also provide highly useful
contextual information. For example, birds are smaller than cars, and houses are larger
than cars. The model presented here takes into account these contextual aspects: object
specific features, co-occurrence, relative spatial positions, and relative size among the
objects in a scene. Note that only relative vertical spatial relationship is used, since
horizontal spatial information does not provide useful information for scenes captured
with a ground based sensor (as is the case for the dataset used in our experiment (see
Section 4)). The model framework is general enough to allow incorporation of additional
contextual information in the future.

A notable strength of our approach is that with proper feature alignment, sensors with
multiple modalities can be seamlessly used in this CRF framework for enhanced target
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identification. Such feature alignment across modalities is not always trivial. But once it is
achieved, the object nodes in the CRF model can be described using components from this
aligned feature space, and the rest of the context modeling process will have no difference
from the case of uni-modal sensors.

To formally define the problem, let us introduce the following notations. Let
X = {xi}ni=1 be the set of objects in the training dataset; S = {si}Ns

i−1 be the set of scene
categories under consideration; given a scene si, let XH ⊂ X be the set of objects
recognized with a high confidence to have category labels L(XH); and XL ⊂ X be the set
of objects in the scene that are classified with low confidence. The goal is to enhance the
classification of the objects XL by taking into account the contextual relationships among
in XL and XH . The contextual model developed here allows this in a probabilistic setting
by computing the optimal classification L̂ (XL) as

argmax
L̂

P
(
L̂ (XL) |L (XH) , S

)
(3)

To construct the probabilistic context model, a CRF with the graph structure shown
in Figure 2 was employed. It is a fully connected CRF, where the nodes li representing
the object category labels are fully connected, i.e., each li ∈ L is connected to every
lj ∈ L, j 6= i. This allows encoding the relationships between any two objects in the scene.
The optimal joint probability of output labels conditioned on the input observations and
scene category is obtained by minimizing the Gibbs potential described in equation (2).
The unary potential φu(li) is given by the negative log of the probability P (li|xi, S), and
the pairiwse potential φp(li, lj) is computed as the negative log of P (li, lj |xi, xj , S).

Figure 2: Graph structure for the CRF based context model

4. Experimental Results

Due to unavailability of suitable open, labeled, multi-modal, co-located, ground based
sensor data, the openly available COCO 2017 dataset 1 was used to train and test the
contextual model. Only the 2017 Train Images dataset 2 was downloaded, and then split

1http://cocodataset.org
2http://images.cocodataset.org/zips/train2017.zip
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into training and testing subsets. This dataset contains over 118 thousand images. The
motivation behind choosing the COCO dataset in our experiment was that it corresponds
to complex everyday scenes containing common objects in their natural context, and
comes with interesting objects in each image hand-segmented and annotated with category
and super-category labels. Objects are labeled using per-instance segmentations to aid in
precise object localization. These features align well with our needs since the focus of this
paper is to build a model of contextual knowledge about mutual relationships among
known (labeled) targets appearing in the context of a scene (such as indoor, outdoor,
dinner party, etc.) The dataset spans 91 easily recognizable objects categories, such as
person, bicycle, car, motorcycle, airplane, cup, fork, baseball etc. Each category is further
clustered into 12 higher level super-categories.

Figure 3: An image of dining table scene from the COCO dataset and the corresponding
segmented objects

Figure 4: An image of an idoor scene from the COCO dataset and the corresponding
segmented objects

To get a glimpse of the COCO dataset, Figure 3 shows an example image from the
set. The image on the left is a raw imgae and the one on the right is the version with hand
segmented objects. Figure 4 is another example of a COCO image. The one on the left
is an image showing an indoor scene, and the one on the right shows the version with the
objects in the scene manually segmented with contours and color masks. For each such
image, the dataset provides various attributes about the segmented objects. Among those,
the following were used in this experiment: (i) the area of objects, (ii) the bounding boxes
of objects, (iii) category labels of objects, and (iv) super-category labels of objects.
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Since the intent is to build a contextual model that takes into account the overall scene
category in addition to relationships among the objects/targets within the context of a
scene, it was necessary to have training data corresponding to multiple scene categories.
CCOO dataset, however, does not come with subsets aggregated by scene types. So, for
this experiment, a simple heuristic was used to classify a set of images as belonging to one
of two scene categories: (i) indoor and (ii) outdoor. If an image had any object belonging
to the “outdoor” super-category, the image was marked as portraying an outdoor scene,
otherwise if the image contained any object belonging to the “indoor” super-category, it
was assumed to portray an indoor scene. If neither of these super-categories were present
in an image, it was not included in our training data. While this scheme was not perfect
and produced some anomalous category memberships, overall it created reasonably
accurate clusters as was verified manually via random inspection. Since our context model
is a probabilistic one, a few erroneous image memberships would not have a significant
impact on the model’s predictive capability.

For training the CRF model, the following features were used for the graph nodes
(representing the objects in a scene): (i) area, (ii) aspect ratio of the bounding box, and (iii)
computed feature vector of length eight corresponding to rotation invariant Local Binary
Pattern (LBP) (Ojala 2002) for an object. Each edge in the CRF graph had two features: (i)
relative vertical spatial locations (above/below) between the two objects for the edge, and
(ii) the relative size (larger/smaller). 2500 images from each of indoor and outdoor scene
categories were used for training the CRF. While much larger number of images were
available, selection of this training data size was driven primarily by current computational
resource constraints. It took about six hours to train this CRF on a desktop with Intel i7
2.67 GHz CPU with 8 cores and 16 GB RAM. We used six of the eight cores for training,
leaving the other two cores for auxiliary tasks and essential system processes. This training
data size was sufficient to validate the approach presented in this paper. The open source
python package pystruct3 was used to build and train the CRF based contextual model,
which was then used for inferring the categories of the originally poorly identified objects.

To test the performance of our context enhanced target identification algorithm, the
labels of a subset of the objects were ignored, and the algorithm was used to predict them.
Since the ground truths were available, it was easy to verify the accuracy of the predictions.
Since the contextual model developed here is a probabilistic one, the output of the inference
algorithm is a probability distribution over all the categories. The top three categories were
considered for evaluating the performance. If the ground truth appeared in the top three of
the possible 91 categories, it was considered to be a successful prediction. The top three
instead of the single highest category are considered because the currently used object
features are relatively coarse for computational efficiency, and we hypothesize that the
performance of the contextual model can be further improved by enhancing and fine tuning
the node features. Use of other features in addition to the currently used rotation invariant
LBP will likely increase the accuracy, and this will be researched in the future. Note that
the basic assumption behind the current model is that majority of the target objects in a
scene are already recognized with high confidence, and a small number of targets with low
confidence need to be recognized with higher accuracy. This is because there is no useful
context to exploit where most of the targets have poor classifications to begin with.

Here are a set of results from our experiment. Figure 5 shows an image of a room with
bookcases along the farthest wall. A segment of the bookcase, enclosed inside the red box
was assumed to be unknown. The true manual annotation for this target object was book.

3https://pystruct.github.io
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Figure 5: An indoor scene from the
COCO dataset. The object inside the red
box toward the top right was treated as
unknown, and inferred using the context
model. The top three inferred categories
were book, keyboard, and clock.

Figure 6: Same scene as in Figure 5, but
with a different target, inside the red box in
the center, assumed to be unknown. It was
inferred using the context model. The top
three inferred categories were bottle, potted
plant, and apple.

The top three inferences for this object by the context model were book, keyboard, and
clock. In this case, the topmost inference matched the ground truth.

Figure 6 shows the same scene as in Figure 5, but a different target, enclosed by the red
box toward the center of the image, was assumed to be unknown. The ground truth, in this
case, was vase, and the top three inferences by the CRF model were bottle, potted plant,
and vase - in that order. Here, the third inferred item matched the ground truth, but the first
two were closely related.

Figure 7: An image from the COCO dataset portraying the interior of a store. The teddy
bear in the bottom left was treated as an unknown object and predicted using the context
model

It was found that objects that appear relatively rarely in the training dataset could
result in relatively higher rate of inaccurate inferences. Figure 7 shows an image of a store
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interior. When teddy bear inside the red box was treated as an unknown object, the top
three inferences were clock, teddy bear, and toothbrush respectively. Based of the limited
availability of features for teddy bear, the model did not learn about this object well, and
produced relatively visually different matches, such as a toothbrush.

5. Conclusion

This paper has presented a formulation of a discriminative context model based on
Conditional Random Field (CRF) for identifying targets in a scene by exploiting domain
specific contextual knowledge. The experimental results show that a fully connected CRF
with appropriate node and edge features can encode useful contextual knowledge to
facilitate target identification. It was shown that rotation invariant Local Binary Pattern
(LBP) can be an effective object feature to use for visible band imagery. The context
model presented here also exploited inter-object spatial relationships such as relative
vertical location and relative size in addition to pure object co-occurrence which has been
used by other researchers in the past.

One of the drawbacks of CRFs is the computational complexity. It took over six hours
to train the context model using relatively modest number (5000) training images. In the
future, we are going to explore heuristics to speed-up this computation.
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