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Abstract 
In finite population estimation, the Horvitz-Thompson estimator is a basic tool. Even 
when auxiliary information is available to model the variable of interest, it is still used to 
estimate the model error. The estimator works well when the variance matrix of the 
vector of interest, or the vector of residuals if a model is used, is diagonal; when there is 
no correlation. Here, the Horvitz-Thompson estimator is generalized. The generalized 
estimator will be useful in the presence of correlation. Since calibration estimation seeks 
weights that are close to the Horvitz-Thompson weights, it too can be generalized by 
seeking weights that are close to those of the generalized Horvitz-Thompson estimator. 
Calibration is known to be optimal, in the sense that it asymptotically attains the 
Godambe-Joshi lower bound. That lower bound has also been derived under the 
assumption that no correlation is present. This too, can be generalized to allow for 
correlation. Generalized calibration asymptotically attains the generalized lower bound. 
 
There is often no closed-form formula for the generalized estimators. However, simple 
explicit examples are given here to illustrate how the generalized estimators take 
advantage of the correlation. This simplicity is achieved by assuming a correlation of one 
between some population units. Those simple estimators can still be useful, even if the 
correlation is smaller than one. Simulation results are used to compare the generalized 
estimators to the ordinary Horvitz-Thompson estimator. 
 
Key Words: calibration estimator, Godambe-Joshi lower bound, Horvitz-Thompson 
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1. Introduction 
 
For a simple random sample of a population of N units which is grouped into / 2pN N  

pairs, there is a simple unbiased estimator of the total, 
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 , that is an alternative to the 

Horvitz-Thompson estimator presented in Horvitz and Thompson (1952). It uses no 
auxiliary information, and it is not model based.  
 
The new estimator is 
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where pN  is the number of pairs on the frame,  observe -th pairP i  is the probability 

that at least one unit of the pair is in the sample s, and 1 if , 0k kk s     
otherwise.  
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The new estimator is reminiscent of the Horvitz-Thompson estimator, except it works 
with pairs, instead of individual units. It assigns a value to each pair with a sampled unit. 
The value associated to the i-th pair is twice the value of the sampled unit if only one unit 
is sampled, and it is the sum of the two values if both units are sampled. This approach is 
possible because the probability of sampling one unit is equal to the probability of 
sampling the other unit of the pair. The estimator is a special case of a more general one 
that applies to more  complex sampling plans. Because it yields examples that are simple 
to interpret and understand, Section 6 and Section 7 will also be about the case where the 
population, or a domain, is grouped into pairs. The generalized Horvitz-Thompson 
estimator is presented in the next section, it depends on a parameter Σ , a positive definite 
N × N matrix. The choice of that parameter is discussed in Section 3. In Section 4, the 
new estimator is applied to the problem of calibration. In Section 5, we see that the 
resulting generalized calibration estimator is optimal, in the sense that it asymptotically 
attains a generalization of the Godambe-Joshi lower bound. Simple examples are given in 
Section 6, and the results of a simulation are presented in Section 7. 
 

2. The Generalized Horvitz-Thompson Estimator 
 
For a vector of interest  1 2' , , , Ny y yy , the Horvitz-Thompson estimator of the total 
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  can be written 
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where  k kE   is assumed greater than 0 for 1, 2, ,k N , and sΔ  is the N × N 
diagonal matrix of the k . 
 
The generalization of the Horvitz-Thompson estimator relies on the Moore-Penrose 
inverse of a matrix M , denoted †M . The unique Moore-Penrose inverse always exists, 
and it is equal to the ordinary inverse if the latter exists. In particular, †

s sΔ Δ . More 
properties of the Moore-Penrose inverse can be found in Ben-Israel and Greville (2002). 
 
For any N × N  positive diagonal matrix Σ  one can express the Horvitz-Thompson 
estimator as 
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If in (3), we replace the positive diagonal matrix Σ  by any N × N  positive definite matrix 
Σ , we obtain the generalized Horvitz-Thompson estimator 

       
1† †

1
ˆ .GHT s s s s NE




Σ y Δ ΣΔ Δ ΣΔ 1  (4) 

 

The vector       
1† †

1s GHT s s s s NE


w Σ Δ ΣΔ Δ ΣΔ 1  gives the weights of  ĜHT Σ . 

As shown in (3),  ˆ ˆ
GHT HT Σ  when Σ  is diagonal. It is immediately seen from (4) that 

the generalized Horvitz-Thompson estimator is unbiased. In fact, it is unbiased regardless 
of the choice made for the positive definite matrix Σ . The matrix  

†
s sE Δ ΣΔ  is 

invertible under the assumptions that Σ  is positive definite, and  k kE   is greater 

than 0 for 1, 2, ,k N . This ensures that  ĜHT Σ  is well defined. The proofs of many 

results given here can be found in Théberge (2017).  Because    
† †

s s s s sΔ ΣΔ Δ Δ ΣΔ , it 
is seen by substitution in (4) that the generalized estimator only depends on the observed 
values of y , as any estimator should. 
 
Often, there is no closed-form formula for  

†
s sE Δ ΣΔ , but it can be easily 

approximated. One simply takes the average of a large number of values of  
†

s sΔ ΣΔ , 
each computed for a different sample obtained with the same sampling plan. The 
computation does not require the knowledge of any of the variables of interest. 
 

3. The Choice of the Positive Definite Matrix Σ   
 
Different choices of Σ  will generally lead to different generalized Horvitz-Thompson 
estimators. A matrix Σ  is an appropriate choice to use for  ĜHT Σ , if a model   with 

 V y Σ  is an appropriate model for y . The estimator remains unbiased, even if the 

matrix Σ  used in  ĜHT Σ  is different from the variance matrix under the model, but 
there are advantages for the two to be as close as possible. The ordinary Horvitz-
Thompson estimator uses (4) with a diagonal Σ . It is often used, and it is always 
unbiased, even though  a more appropriate model for y  would have  V y  non-diagonal. 

One could use  ĜHT Σ  with a positive definite matrix Σ  which is closer to  V y  than 

a diagonal matrix would be. As for the variance of  ĜHT Σ , it may often be higher than 

that of the ordinary Horvitz-Thompson estimator, even with the choice of  VΣ y . 
The advantage of the generalization of the Horvitz-Thompson estimator comes from its 
use in a generalization of calibration, as discussed in the next section. 
 
The use of a block-diagonal matrix simplifies the computation of inverses needed in (4). 
Blocks may correspond to persons of a household, students of a class, workers of an 
establishment, dwellings of a block, etc. It is often natural for units belonging to the same 
block to have a correlated variable of interest. For example, how one worker rates their 
employer is likely correlated to the rating of another worker with the same employer; the 
race or religion of a couple is often the same. An extreme case presents itself if the blocks 
are persons of a same household and the variable of interest is household income. In such 
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a case the correlation is perfect, and lines of Σ  corresponding to persons from a same 
household should be identical. Such a matrix Σ  is not positive definite, but it is the limit 
of a sequence of positive definite matrices, and the limit of the corresponding generalized 
Horvitz-Thompson could be computed. The example given in the introduction is based 
on this idea. 
 
If the population is partitioned into blocks of correlated units, the variable defining the 
blocks must be on the frame. But, that variable need not be perfect. For example, a unit’s 
household may only be known at the time of the survey, but using an outdated household 
variable available on the frame will still be useful, while not introducing any bias. It 
simply means that the strength borrowed by the generalized Horvitz-Thompson estimator 
from the correlations will be reduced. On the other hand, the strength borrowed from the 
correlations by the ordinary Horvitz-Thompson estimator is nil. 
 
If an estimator Σ̂  converges to Σ  in probability, then the bias and variance of  ˆ ˆ

GHT Σ

are asymptotically the same as those of  ĜHT Σ . In practice, even if the general form of 
Σ  depends on  1 / 2N N    covariances, the number of parameters in Σ  should be small 
compared to the sample size. Using the Horvitz-Thompson estimator means assuming all 
covariances are zero. When using the generalized Horvitz-Thompson estimator, there is 
nothing wrong with assuming that those covariances depend on one, or a few, parameters, 
and that those parameters are considered fixed, rather than estimated from the sample. 
That is to say, consider ˆ Σ Σ . 
 

4. The Generalized Calibration Estimator  
 
The sum of the weights of an estimator is an estimate of the known population size, N. 
When the sampling plan is such that the sample size is not fixed, the ordinary Horvitz-
Thompson estimator of the known population size will have a variance greater than zero. 
The sum of the weights of the generalized Horvitz-Thompson estimator is often a worse 
estimator of the population size; it will often vary, even when the sample size is fixed. 
 
An estimator whose estimates of the known population size vary cannot be seen as very 
reliable. Indeed, for many choices of Σ , the variance of the generalized Horvitz-
Thompson estimator will often be worse than that of the ordinary Horvitz-Thompson 
estimator. Even if the matrix Σ  used for  ĜHT Σ  is equal to  V y , the sum of the 

weights of  ĜHT Σ , noted  S Σ , will generally be a worse estimator of the population 

size than the sum of the weights of ˆ
HT . 

 
To fix the problem that the ordinary Horvitz-Thompson estimator experiences when the 
sample size is variable, calibration can be used. The weights of ĈAL  are calibrated so that 
their sum equals the population size, N. A similar improvement can be made to the 
generalized estimator:       ˆ ˆ/GCAL GHTN S Σ Σ Σ . Although  ĜHT Σ  is often 

more variable than ˆ
HT , with an appropriate choice for Σ ,  ĜCAL Σ  will generally be 

preferable to ĈAL . Before giving more details about the optimality of  ĜCAL Σ , the 
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definition of  ĜCAL Σ  will be expanded to include the possibility of more calibration 
equations involving more auxiliary variables. The use of calibration equations was 
presented in Deville and Särndal (1992). 

 

With an auxiliary variable matrix N q
X  assumed to be of full rank and noting 

 
1/2


M

v v Mv  the weighted Euclidean norm, the following problem is addressed: 

Calibration  Problem: Among the weight vectors N

s w  in the range of 
sΔ , i.e. non-

sampled units should have a weight of 0, which minimize 1s N
 X w X 1 T , i.e. which 

“best” satisfy the calibration equations, seek one that minimizes  s s GHTw w UΣ , 

i.e. as close as possible to the weights of  ĜHT Σ , where q q
T  and N N

U  are 
positive definite matrices. 
 
Weights, sw , that satisfy the calibration equations, 1s N

 X w X 1 , do not always exist, 
especially if the number of equations, q, is high relative to the sample size. To prepare for 
this eventuality, the matrix T  is at the statistician’s disposal for specifying the relative 
importance of the q calibration equations.  The matrix U  specifies the relative 
importance given to each unit when measuring the distance from  s GHTw Σ . This 
formulation of the calibration problem generalizes that of Théberge (1999), where T  and 
U  were diagonal matrices, and the Horvitz-Thompson weights were used instead of the 
generalized Horvitz-Thompson weights. 
 
The solution to the calibration problem yields 

 

   

   

ˆ

ˆ ˆ ,

GCAL s GCAL

s GHT

 

  

Σ y w Σ

y c y y w Σ  (5) 

where ˆˆ y Xβ  with 

     
†† †1/2 1/2 1/2 1/2ˆ .s s s s

 β T T X Δ UΔ XT T X Δ UΔ y  (6) 

The estimator  ĜCAL Σ  is asymptotically unbiased. 
 
It can be seen from the form of (5), that  ĜCAL Σ  is also a regression estimator that uses 

a model   such that  E y Xβ  and  V y Σ , a positive definite matrix. When 

viewed as a regression estimator, it is important to realize that  ĜCAL Σ  is 
asymptotically unbiased, regardless of both parts of the model; the parameter β , and the 
parameter Σ . 
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5. The Generalized Godambe-Joshi Lower Bound  
 
For any unbiased estimator ̂  of the population total , Godambe and Joshi (1965) have 
given a lower bound for the value of  ˆpE V   under the assumption that the variance 

matrix  V y  was diagonal. That result can be generalized: 
 
For any linear unbiased total estimator, ̂ , if  V y  is positive definite, then  ˆpE V   is 

not lower than the sum of the elements of the matrix      
1†

s sE V V 



Δ y Δ y . It is 

easily verified that the usual Godambe-Joshi lower bound is obtained if  V y  is 
diagonal. 
 
Just as the calibration estimator asymptotically attains the Godambe-Joshi lower bound, 
the generalized calibration estimator, with  VΣ y , asymptotically attains the 
generalized Godambe-Joshi lower bound. 
 
The fact that  ĜCAL Σ  asymptotically attains the generalized Godambe-Joshi lower 
bound shows that the generalized Horvitz-Thompson estimator performs well when 
applied to residuals, as it does in (5), even though it is not recommended in general. 
Similarly, the ordinary Horvitz-Thompson estimator can run into problems if the sample 
size is random, but will perform well if applied to residuals. 
 
It should be noted that, contrary to the ordinary Godambe-Joshi lower bound, the 
generalized lower bound applies only to linear unbiased estimators. In fact, an example 
with  V y  not diagonal, of a non-linear unbiased estimator which does better than the 
lower bound is given in Théberge (2017).  
 

6. Example  
 
There are cases simple enough for  ĜHT Σ  to be given explicitly. Say  Σ  is a block-

diagonal matrix where each of / 2
p

N N blocks equals 
1

1





 
 
 
 

, with 1 < < 1 . 

Such a block-diagonal matrix is appropriate if the population can be grouped into pairs 
where, within a pair, the variable of interest is correlated. Then, (4) reduces to 
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 (8) 

 
Once again, this generalized Horvitz-Thompson estimator is unbiased, regardless of any 
assumptions made about the variance-covariance matrix of y . It is seen that, as expected 
when Σ  is diagonal, the estimator reduces to the Horvitz-Thompson estimator when 

0  . The case of 1   is a special case of the following limit problem. 
 
Let  Σ  be a sequence of positive definite matrices indexed by  , such that 

  1lim , Σ Σ  the block-diagonal matrix with each block equal to 2 21 . Such a block-

diagonal matrix is appropriate if the population can be grouped into pairs where the 
variable of interest is perfectly correlated (e.g. household income of two-person 
households). Because 1Σ  is only positive semi-definite and not positive definite, we 
cannot define the generalized Horvitz-Thompson estimator with 1Σ . However it can be  
defined if we replace the correlation of 1 with a correlation of 0.999. The limit, for an 
infinite number of nines after the decimal point is of interest. More generally, it can be 
shown that   ˆlim GHT Σ , noted  1ĜHT Σ , can be written 
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Σ  (9) 

where   2 1 2 2 1 2observe -th pair i i i iP i       , / 2pN N  is the number of pairs in 

the population, and  2 2 1 2 1 2/diff i i i i i      . In particular, 

    1 1
ˆ ˆlimGHT GHT


  


Σ Σ . It is unbiased, for any sample design with known 

probabilities of inclusion, even if   1V y Σ . It can be calibrated so that the sum of the 
weights of the estimator given in (9) is equal to N. The resulting estimator is 
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where 2 1 2 2 1 2
1

( )
pN

p i i i i

i

     



    is the number of pairs in the sample. If, for every 

pair 1, 2, ..., pi N , the two units have the same probability of inclusion, that is 

2 1 2i i   , then 0diff i   and the simplification will result in the example given in 
Section 1. If the variable of interest of both units of the i-th pair take the same value, 

twin iy , then the estimators (9) and (10) will reduce to 
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respectively. We see from (11) and (12) that the generalized estimators are reminiscent of 
their ordinary cousins, except we are working with pairs, instead of  individual units. The 
generalized calibration estimator (10) is optimized for 1Σ , but it can still have a lower 
variance than both, the Horvitz-Thompson estimator and the ordinary calibration 
estimator, if the correlation between the units of a pair is strong (e.g. race, religion or 
education level of a couple). 
 
There are modified versions of the generalized Horvitz-Thompson estimator and of the 
generalized calibration estimator. If 0diff i  , the modified calibration estimator 
optimized for 1Σ  becomes: 
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where 2 1 2 2 1 2
1

( 2 )
pN

p i i i i
i

     


    is the number of pairs with exactly one unit sampled. 

 
The modified versions have the advantage of having a closed form; there is no need to 
compute the expectation of  

†
s sΔ ΣΔ . For a positive definite matrix Σ , they are defined 

as 

    
11 1

1
ˆ
MGHT s s N


 


 y Δ Σ Δ Σ Π 1Σ  (14) 

and 

       ,ˆ ˆ
M̂GCAL s MGHT   y c y y wΣ Σ  (15) 

where      N N

kl k lE     Π  is the matrix of second order probabilities of 

inclusion and  s MGHTw Σ  is the vector of weights of  ˆ
MGHT Σ . The modified 

generalized estimators are also unbiased, or at least asymptotically unbiased in the case of 
 ˆ

MGCAL Σ .  
 

7. Simulation Results  
 
For this simulation, a population of 1,000 units grouped into 500 pairs was generated. 
The model   used to generate y was such that the correlation between the units of a pair 
was 0.8. More precisely,  V y  is a block-diagonal matrix with each block proportional 

to
1 0.8

0.8 1
 
 
 

. The population total was 478. A simple random sample of 200 units was 

selected 10,000 times. For each sample, four estimators of the total were calculated: 
Horvitz-Thompson, which in this case equals the ordinary calibration estimator, 
generalized Horvitz-Thompson, generalized calibration, and generalized modified 
calibration. The generalized estimators were computed assuming, wrongly, that 

  1V y Σ . The simple closed-form formulae of the preceding section could thus be 
used. Their average and variance over the 10,000 repetitions are given in Table 1. The 
theoretical variance of each estimator, or asymptotic variance in the case of the calibrated 
estimators, can be calculated, and is also shown. 
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Table 1: Simulation results comparing four estimators 

Estimator  Total  Variance  Theoretical  
variance  

Horvitz-Thompson  478.19  1002  999  
Generalized Horvitz-Thompson  478.26  1023  1022  
Generalized Calibration  478.28  930  928  
Generalized Modified Calibration  478.40  1119  1117  

 
As expected, the bias of each estimator is negligible. Also to be expected, is that the 
Monte Carlo variance of the estimators is close to the theoretical values. The generalized 
calibration estimator, with a variance of 930, performed the best. This is in spite of the 
fact that it was calculated assuming that the correlation between the units of a pair was 
one. It should be remembered that the Horvitz-Thompson estimator, with a variance of 
1002, is also a generalized Horvitz-Thompson estimator, but it is computed assuming that 
the correlation between the units of a pair is zero. The variance of the generalized 
Horvitz-Thompson estimator was 1023. That estimator is not expected to perform well, 
unless it is applied to residuals. Finally, the generalized modified calibration estimator 
had the highest variance. There are reasons to believe it could do better with a population 
grouped into larger groups of correlated units, such as triplets of quadruplets.  
 
The generalized Godambe-Joshi lower bound for the model   used to generate y was 
923. This is the variance that could be expected of the generalized calibration estimator, 
if it had been calculated with a matrix  VΣ y  based on the correct model  , where 

the correlation between units of a pair is 0.8. If, as in the preceding section,  Σ  is a 

family of positive definite matrices such that   1lim  Σ Σ , then the limit of the 

generalized Godambe-Joshi lower bounds for the models with  Σ  is 888. This is the 
variance that could be expected of the generalized calibration estimator, if the correlation 
between units of a same pair was one. On the other hand, the variance of the Horvitz-
Thompson estimator is expected to remain the same, since it does not draw any strength 
from the correlation. 
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