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Abstract 

Clinical laboratory tests often require a reference interval for quantitative tests and the 
construction of such intervals are common for laboratory tests.  Reference Intervals are 
used to determine unusual or extreme measurements in laboratory medicine. The reference 
interval is the central interval bounded by the reference limits. In vivo diagnostic devices 
in ophthalmology and neurology often compare an individual patient’s medical device 
output/test result against a database of output/test results from subjects deemed to be in 
good health, for clinical management of the individual patient. The device output/test 
results from the subjects in good health constitute a reference database (also commonly 
known as normative database). Reference database for In Vivo diagnostic devices is 
composed of measurements of multiple anatomical or physiological features from healthy 
individuals. 1st, 2nd, 2.5th, 5th, 95th, 97.5th, 98th or 99th percentiles are usually reported from 
the reference database. This presentation compares three common methods – 
Nonparametric, Harrell-Davis and the Robust method to generate reference limits. 
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1. Reference Database 

 
In laboratory medicine, reference intervals are used commonly to determine unusual or 
extreme measurements. The reference interval is defined by the interval between two 
percentile values, centered about the median on the probability scale. The guidance 
document CLSI EP28-A3c1 written for Clinical Chemistry describes how to perform 
reference interval study in detail. The guidance provides the definition of apparently 
healthy population, statistical methods to calculate reference interval/cut-off based on 
percentiles, reasons for partitioning based on covariates and describes transfer of reference 
interval in case a valid reference study already exits. 
 
Reference databases for In Vivo diagnostic devices consists of measurements of one or 
more parameters of an anatomical or physiological feature from reference individuals.  
Reference databases are a sample of reference individuals usually consisting of cross-
sectional (single time point) measurements of either one or more anatomical or 
 
________________________________________________________________________ 
1CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical 
Laboratory; Approved Guideline—Third Edition. CLSI document EP28-A3c. Wayne, PA: 
Clinical and Laboratory Standards Institute; 2008.  
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physiological feature on these individuals.  A reference individual is a subject/person 
selected for testing based on well-defined criteria like the person’s state of health and 
usually individuals are in good health. A reference value is the value or measurement 
obtained by measurement of a particular anatomical or physiological feature on a reference 
individual and the distribution of these values constitute a reference distribution. 
 
1.1 Reference limits 
The reference limits are often generated from a cross-sectional (i.e. one measurement per 
parameter in an individual) reference database. A cross-sectional reference database 
provides information about the variability across multiple individuals at a single time point 
for the anatomical/physiological feature(s) of interest. Reference limits are values derived 
from the reference distribution and used for descriptive purpose.  
 
Percentiles (1st, 5th, 95th or 99th) are usually reported from these reference databases. Often, 
2.5th and 97.5th percentiles, defining a 95% reference interval (reference interval sometimes 
also called reference range) are reported from these reference databases or the database is 
used to generate a z-score which is a commonly seen for Neurological medical devices. 
 
1.2 Examples 

Reference databases are common to Optical Coherence Tomography (OCT) devices and 
neurological medical devices. OCT is a type of imaging device that uses light to capture 
micrometer-resolution, three-dimensional images from within optical scattering media 
(e.g., biological tissue). Optical coherence tomography is based on low-coherence 
interferometry, typically employing near-infrared light. OCT is used in ophthalmology and 
optometry to obtain detailed images from within the retina which offers objective and 
quantitative anatomical measurements of the eye. Measurements involve- the topography 
of the optic nerve head, including the rim and the cup, the peripapillary RNFL, retinal 
ganglion cell thickness, macular thickness –often in multiple sectors of the eye (superior, 
inferior, nasal, temporal) 
 
Reference databases in neurological medical devices are often for cognitive battery tests 
and quantitative EEG based tests. The cognitive battery tests are based on response to 
sequence of questionnaires where the measurements obtained are on speed of processing, 
attention/vigilance, working memory, verbal learning, visual learning, reasoning and 
problem solving, social cognition and overall composite score. 
The quantitative EEG is used to record brain’s spontaneous electrical activity over a period 
of time which involves placement of electrodes on the scalp and measurements are non-
invasive. The measurements obtained are EEG spectra, behavioral data (omission, 
commission errors, reaction time and variance of response in the task), and ERP (Evoked 
Response Potential) independent components. 
 
 

2. Statistical Methods to generate reference limits 

 
2.1 Statistical methods 
The document CLSI EP28-A3c, written for Clinical Chemistry discusses statistical 
methods for estimating reference interval and percentiles. The different methods for 
estimating reference limits discussed are -Nonparametric methods, Iterative weighted 
percentile method (also known as robust method), Harrell-Davis method and Bootstrap 
Method. In this presentation three methods- Nonparametric, Harrell-Davis and the Robust 
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methods are studied and compared. Data sets following specific distributions were 
simulated to observe the performance of the three methods. 
 
2.1.1 Non-parametric  

Nonparametric method is a distribution-free method using rank of ordered observed values. 
The ordered observations are denoted as x(1), x(2), …, x(r ), …; x(n). The 𝑝𝑡ℎ sample quantile 
𝑄𝑝 is the observation with rank 𝑟 =  𝑝(𝑛 +  1). In case of non-integer 𝑟 values, quantiles 
are obtained by linear interpolation. 
 
2.1.2 Harrell-Davis Method 

Harrell-Davis method (6) is based on a linear combination of the order statistics using 
difference between two incomplete beta functions as weight. The 𝑝𝑡ℎ percent sample 
quantile is expressed as  
 

𝑄𝑝 = ∑ 𝑊𝑛,𝑖 𝑋(𝑖)

𝑛

𝑖=1

 

Where 

𝑊𝑛,𝑖 =
1

𝛽((𝑛 + 1)𝑝, (𝑛 + 1)(1− 𝑝))
∫ 𝑦(𝑛+1)𝑝(1 − 𝑦)(𝑛+1)(1−𝑝)−1

𝑑𝑦

𝑖
𝑛⁄

(𝑖−1)
𝑛⁄

 

= 𝐼𝑖
𝑛⁄ [𝑝(𝑛 + 1),(1 − 𝑝)(𝑛 + 1)] − 𝐼(𝑖−1)

𝑛⁄
[𝑝(𝑛 + 1), (1 − 𝑝)(𝑛 + 1)] 

 

Here 𝐼𝑥(𝑎,𝑏)denotes the incomplete beta function.  

 
2.1.3 Robust Method 

This method uses robust estimates (8) of location and scale with iterative bi-weight 
approach. The (1 − 𝛼 2⁄ )100 % bi-weight reference interval for a symmetric distribution 
is 

𝑇𝑏𝑖 (𝐶1)± 𝑡𝑛−1(1 − 𝛼/2)√𝑆𝑇
2(𝐶1) + 𝑆𝑏𝑖

2 (𝐶2) 

Where 𝑇𝑏𝑖 (𝐶1) is the bi-weight location estimator with tuning constant 𝐶1,  𝑡𝑛−1(1 − 𝛼/2) 
is the quantile from Students t-distribution with n-1 degrees of freedom,  𝑆𝑇

2(𝐶1)  is the bi-
weight estimator of the variability of 𝑇𝑏𝑖  and 𝑆𝑏𝑖

2 (𝐶2) is the bi-weight estimator of the 
spread with tuning constant 𝐶2.  For observations 𝑥1 ,𝑥2, … , 𝑥𝑛 the bi-weight estimator of 
location 𝑇𝑏𝑖 is defined as the solution to the equation 

∑ 𝛹(𝑢𝑖 )

𝑛

𝑖=1

= 0 

where 
𝑢𝑖 = (𝑥𝑖 − 𝑇𝑏𝑖 )/𝑐𝑠𝑏𝑖 
𝛹(𝑢𝑖)  = 𝑢𝑖 𝑤(𝑢𝑖 ) 

                          𝑤(𝑢) =  (1 −  𝑢2)2; |𝑢|  <  1 
                        =  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
𝑠𝑏𝑖 is a bi-weight estimate of spread and 𝑐 is a tuning constant. Solving the above yields 

𝑇𝑏𝑖 =
∑ 𝑤(𝑢𝑖)𝑥𝑖

∑ 𝑤(𝑢𝑖)
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 𝑇𝑏𝑖 is computed by iteration, using the above formula, with median as initial value and 
initial estimate of spread is median absolute deviation (MAD) divided by 0.6745. 𝑇𝑏𝑖 is 
updated until change in consecutive iterative values are negligible (<0.001). 
 
 

3. Simulations 

 
To compare the three methods, a simulation using different distributions type – Gaussian, 
right skewed, left skewed and a heavy tailed symmetric distribution were performed. A 
random sample of size 240 were generated from each of the distributions - Symmetric - 
Normal(9.63,1.2) Distribution, Right Skewed-Gamma(1,2) distribution, Left Skewed- 
Beta(5,1) Distribution, Heavy Tailed- t distribution with 2 degrees of freedom. 
 
A sample size of 240 was fixed for estimating the percentiles -2.5th, 5th, 95th, and 97.5th.by 
the three methods (Nonparametric, Harrell-Davis, and Robust). Each type of distribution 
mentioned above were simulated 1000 times with a sample size of 240 and from each 
simulation, estimates of 2.5th, 5th, 95th, and 97.5th were generated. The bias of these 
estimates was checked against the actual values from these distributions in a box plot. 
Figures 1 through 4 are the side by side box plots of the three methods for the distributions 
of 2.5th, 5th, 95th, and 97.5th percentiles for the 1000 simulations of sample size 240 from 
each of the four distribution types.  
 
 

 
 

 
Figure 1: Estimated percentiles from Gaussian (N(9.63,1.2)) distribution  by the three 
methods with the true percentile represented by the red horizontal line. 
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Figure 2: Estimated percentiles from Gamma (1,2) distribution by the three methods with 
the true percentile represented by the red horizontal line. 
 
 
 

 
 
 
Figure 3: Estimated percentiles from Beta(5,1) distribution by three methods with the true 
percentile represented by the red horizontal line. 
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Figure 4: Estimated percentiles from t(2) distribution  by the three methods with the true 
percentile represented by the red horizontal line. 
 
 
Further to compare the estimated percentiles (2.5th, 5th, 95th, 97.5th) from the three 
methods, for four different distributions of reference values, the root mean square error of 
each of the estimated percentiles were compared for varying sample sizes. 1000 
simulations for each of the four distributions types Symmetric - Normal(9.63,1.2) 
Distribution, Right Skewed-Gamma(1,2) distribution, Left Skewed- Beta(5,1) 
Distribution, Heavy Tailed- t distribution with 2 degrees of freedom , were generated for 
varying sample sizes from 50,80,120, 240, and 720, and the four percentiles 2.5th, 5th, 95th, 
97.5th by each method were generated.  The root mean square error (RMSE) was 
calculated using  

𝑅𝑀𝑆𝐸 = √𝐵𝑖𝑎𝑠2 + 𝑆𝑇𝐷 2 
 
Where the bias is the difference of the mean of the estimated percentiles the 1000 
simulations for each distribution type minus the true value of the percentile for that 
distribution and the standard deviation is the standard deviation of the 1000 estimated 
percentiles for each distribution. The figures 5 through 8 plot the RMSE against the sample 
size for the three methods by each of the four distribution type. 
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Figure 5: RMSE for estimated percentiles by sample size (N(9.63, 1.2)) 
 
 

 
Figure 6: RMSE for estimated percentiles by sample size (Gamma(1,2)) 
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Figure 7: RMSE for estimated percentiles by sample size (Beta(5,1)) 
 
 

 
Figure 8: RMSE for estimated percentiles by sample size (t(2)) 
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4. Coverage Probability 

 
Coverage probability of 95% confidence intervals at 2.5th and 97.5th percentiles by the three 
methods fixing sample size at 146 were further evaluated to assess the performance of the 
confidence intervals for the three methods for each of the four distribution types evaluated 
in the presentation. The sample size of 146 was selected based on width of the 95% 
confidence interval of nonparametric estimate of 2.5th percentile. 

 

 
 
 

5. Conclusions 

 
Reference database for In Vivo diagnostic devices often involve multiple parameter 
measurements per individual and these databases constitutes of measurements from 
reference individuals, also referred to as reference values. 
 
Three statistical methods- nonparametric, Harrell-Davis and the Robust method, were 
compared with different distributions of reference values. In particular four distributions 
types - Symmetric - Normal(9.63,1.2) Distribution, Right Skewed-Gamma(1,2) 
distribution, Left Skewed- Beta(5,1) Distribution, Heavy Tailed- t distribution with 2 
degrees of freedom, were used to compare the effect on the estimates of the reference limits 
by the three methods by evaluating bias, root mean square error by varying sample size 
and the coverage probability of the 95% confidence interval of the estimated reference 
limits.  
 
Based on the simulations, the box plots (Figure 1) show robust method is more efficient if 
the underlying distribution of reference values is normal (or Gaussian) and provides a 
savings in sample size (Figure 5). However, if the distribution deviates from normality, the 
non-parametric method and Harrell-Davis provides an unbiased estimate of the reference 
limits (Figures 2-4).  Evaluations based on RMSE indicate that Robust method results in a 
savings in sample size if the underlying distribution of reference values is normal. 
However, for non-normal distribution, the nonparametric method provides better overall 
estimate of the reference limits based on the evaluation of RMSE (Figures 6-8). 
 
The coverage probability of the 95% confidence intervals of the reference limits by the 
three methods also show better coverage for non-parametric method. 

Table 1: Coverage probability of 95% confidence interval for the percentiles generated 
by the three methods. 

 
 Nonparametric Harrell-Davis Robust 
 2.5th  97.5th  2.5th  97.5th  2.5th  97.5th  
Normal 
Distribution 

0.94 0.93 0.90 0.90 0.94 0.93 

t Distribution 0.95 0.94 0.91 0.91 0.81 0.82 
Gamma 
Distribution 

0.95 0.94 0.91 0.89 0.00 0.25 

Beta 
Distribution 

0.93 0.93 0.90 0.91 0.37 0.00 
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