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Abstract 

It is well-known that a trial could end up with different conclusions due to difference in the selected 
clinical centers. However, the impact of center effects on trial endpoints is not studied adequately. We 
quantify the impact of center effects on Objective Response Rate (ORR) in early oncology single-arm 
trials, which are conducted at multiple small and heterogeneous centers. Based on the variance formula 
for ORR we derived after adjusting the center effects, we provide guidance on minimizing the center 
effects during the trial design stage, by considering how many centers to be selected, how to distribute 
patients among centers and how to set a center enrollment cap for a trial. The conclusion can be applied 
directly to the clinical trials with binary endpoints other than ORR and also shed light on clinical trials 
with different endpoints. 

Key words: Multi-centre trials, center effects, between-center variation, clinical center selection, 
enrollment cap  

1. Background

Clinical trials often recruit participants from multiple clinical centers to expedite the enrollment and 
enhance the generalizability of results by including a wider range of population groups. Due to factors 
such as differing patient characteristics, methods of measuring or recording data, processes of care, or 
training of staff, patient outcomes sometimes vary by center [1-3]. Therefore, the conclusion of a trial 
could be difference due to difference in the selected centers. Because of this, many trials attempt to 
minimize the impact of any between-center variations on the trial results, either during the design stage 
(by stratifying on center in the randomization process), or during analysis stage (by accounting for center 
effects in the analysis model) [2]. Though randomization stratified by center can reduce the center effects, 
it is not clear how much center effects can be reduced. In addition, it is not applicable to single-arm trials. 
There are numerous methods proposed in the literature to account for the center effects in the analysis 
stage. However, adjusting for center effects in the model can often be problematic, particularly when 
there are a large number of centers compared to the overall sample size. In trials with binary endpoints, 
too few patients or events per center can lead to biased estimates [4] or inflated type I error rate for some 
analysis methods [5].  

In this article, we will investigate the impact of center effects in single-arm early oncology trials, in which 
objective response rate (ORR) is the primary binary endpoint. In early oncology trials, it is common that 
only one or two patients are enrolled in certain clinical centers. Therefore, analysis models accounting for 
center effects could cause problem and are not often used. Instead, Clopper-Pearson confidence interval 
(CI) [6, 7] is used for ORR in early oncology trials.
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Figures 1 and 2 show the ORR of each clinical center from two early oncology trials. The radius of the 
circle is proportional to the number of subjects enrolled in each center. The ORR varies across centers in 
both trials, even for centers with relative more subjects. For example, in Figure 1, the ORRs of clinical 
centers 12 and 13 are less than 20%, while the ORRs of clinical centers 14 and 15 are around 35%.  

Figure 1: ORR by clinical center from example trial 1 

Figure 2: ORR by clinical center from example trial 2 

We estimated the between-center standard deviation (SD) and coefficient of variance (CV) in ORR from 
nine early oncology trials using generalized linear mixed model, as provided in Table 1. The between-
center coefficient of variance estimates vary from 0% to 43.9%.   

From above real trial examples, we noticed that the center effects could potentially be very large. 
However, how significantly the center effects could impact the ORR estimate? Can we reduce the center 
effects in the design stage in the single-arm trials? Will the statistical inference be valid after minimizing 
the center effects? We try to answer these questions in the article. 
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The rest of the article is organized as follows. In section 2, we derive the ORR variance formula after 
adjusting the center effects. A simulation study is performed in Section 3 to evaluate the confidence 
interval coverage using the derived ORR variance formula. In Section 4, we provide guidance on 
minimizing the center effects in the design stage, including how many centers to be selected, how to 
distribute patients among centers and how to set a center enrollment cap in a trial. We conclude this 
article with a brief discussion in Section 5. 

Table 1: Between-center SD and CV estimates in ORR from Nine Trials 

Example 
Trials 

Number 
of 

Centers 

Number 
of 

responses 

Number 
of 

subjects 

ORR 
Estimate* 

Between-
center SD 
in ORR* 

Between-
center CV in 

ORR 

Trial 1 15 41 173 23.1% 5.7% 24.7% 
Trial 2 36 71 356 21.2% 9.3% 43.9% 
Trial 3 52 30 259 10.9% 4.4% 40.4% 
Trial 4 10 15 25 60.0% 0.0% 0.0% 
Trial 5 18 8 31 25.7% 3.3% 12.8% 
Trial 6 9 4 38 13.2% 0.0% 0.0% 
Trial 7 26 27 101 27.8% 10.1% 36.3% 
Trial 8 29 10 55 18.1% 2.2% 12.2% 
Trial 9 16 34 193 18.2% 6.5% 35.7% 
* Estimated from generalized linear mixed model using PROC Glimmix with clinical
center as a random effect.

SD: Standard Deviation; CV: Coefficient of Variation. 

2. Variance and confidence interval of ORR after adjusting center effects

Consider an early stage single-arm oncology trial with 𝐾𝐾 clinical centers and 𝑁𝑁 subjects. Let 𝑛𝑛𝑘𝑘 be the 
number of subjects enrolled at Center 𝑘𝑘, where 𝑘𝑘 = 1,2, … ,𝐾𝐾, and ∑ 𝑛𝑛𝑘𝑘 = 𝑁𝑁𝐾𝐾

𝑘𝑘=1 . Let 𝑃𝑃 be the true ORR 
of the treatment and 𝑃𝑃𝑘𝑘 be the true ORR at Center 𝑘𝑘. 𝜎𝜎 represents the between-center standard deviation 
in ORR. It is reasonable to assume 𝑃𝑃𝑘𝑘 = 𝑃𝑃 + 𝜀𝜀, where 𝜀𝜀 is a random variable with 𝐸𝐸(𝜀𝜀) = 0 and 
𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀) = 𝜎𝜎2. Thus, 𝐸𝐸(𝑃𝑃𝑘𝑘) = 𝑃𝑃 and 𝑉𝑉𝑉𝑉𝑉𝑉( 𝑃𝑃𝑘𝑘) = 𝜎𝜎2. Let 𝑅𝑅𝑘𝑘𝑘𝑘 denote the response of subject 𝑖𝑖 at Center 𝑘𝑘 
(𝑅𝑅𝑘𝑘𝑘𝑘 = 1 means responder; otherwise 𝑅𝑅𝑘𝑘𝑘𝑘 = 0) and 𝑅𝑅𝑘𝑘𝑘𝑘|𝑃𝑃𝑘𝑘   ~ 𝐵𝐵𝐵𝐵𝑉𝑉𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖(𝑃𝑃𝑘𝑘). Let 𝑌𝑌𝑘𝑘 denote the total 
number of responses at Center 𝑘𝑘, 𝑌𝑌𝑘𝑘 = ∑ 𝑅𝑅𝑘𝑘𝑘𝑘

𝑛𝑛𝑘𝑘
𝑘𝑘=1  and 𝑌𝑌𝑘𝑘|𝑃𝑃𝑘𝑘  ~ 𝐵𝐵𝑖𝑖𝑛𝑛𝐵𝐵𝐵𝐵𝑖𝑖𝑉𝑉𝐵𝐵(𝑛𝑛𝑘𝑘 ,𝑃𝑃𝑘𝑘).  The true ORR (𝑃𝑃) is 

estimated as 𝑃𝑃� = ∑ 𝑌𝑌𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝑁𝑁

.  

The variance of ORR estimate after adjusting center effects can be written as 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃�� = 𝑃𝑃�(1−𝑃𝑃�)
𝑁𝑁

+ �∑ 𝑛𝑛𝑘𝑘
2𝐾𝐾

𝑘𝑘=1 −𝑁𝑁�
𝑁𝑁2

𝜎𝜎2.            (1) 
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The derivation of Equation (1) is provided in the Appendix. The variance of ORR contains two parts, one 

part (𝑃𝑃
�(1−𝑃𝑃�)
𝑁𝑁

) is from the binomial distribution and the other part (�∑ 𝑛𝑛𝑘𝑘
2𝐾𝐾

𝑘𝑘=1 −𝑁𝑁�
𝑁𝑁2 𝜎𝜎2) is from the between-

center variation. For Equation (1), when 𝑃𝑃� and 𝑁𝑁 are fixed, it is easy to prove that 

• the variance of ORR is the largest with 𝐾𝐾 = 1 and  𝑛𝑛𝑘𝑘 = 𝑁𝑁, which means that all subjects are
enrolled in one center;

• the variance of ORR is the smallest with 𝐾𝐾 = 𝑁𝑁 and  𝑛𝑛𝑘𝑘 = 1, which means that each center
enrolls only 1 subject and there are 𝑁𝑁 centers.;

• if number of centers 𝐾𝐾 is fixed, the variance of ORR is minimized when 𝑛𝑛𝑘𝑘 is the same across 𝐾𝐾
centers and Equation (1) can be simplified as

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃�� =
𝑃𝑃��1 − 𝑃𝑃��

𝑁𝑁
−

1
𝑁𝑁
𝜎𝜎2 +

1
𝐾𝐾
𝜎𝜎2. 

From Equation (1), we can construct ORR CI using the extended Clopper-Pearson method [8] or normal 
approximation when the sample size is large. The extended Clopper-Pearson CI was proposed for over-
dispersed binary data, when the binary data (such as ORR) shows more variation than estimated by the 

binomial distribution (e.g.,  𝑃𝑃
�(1−𝑃𝑃�)
𝑁𝑁

) [8]. Let 𝜆𝜆 denote the variance inflation factor, which can be estimated 
as 

�̂�𝜆 = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃�)/(𝑃𝑃�(1 − 𝑃𝑃�)/𝑁𝑁) 

and, per definition, an estimate of the effective sample size is 𝑁𝑁/𝜆𝜆. The extended Clopper-Pearson 
100(1− 𝛼𝛼)%  CI of 𝑃𝑃� after adjusting the center effects is  

(  1 − 𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝐵𝐵𝑛𝑛𝐵𝐵(𝛼𝛼
2

,𝑁𝑁−𝑌𝑌
𝜆𝜆

, 𝑌𝑌
𝜆𝜆

+ 1),  1 − 𝐵𝐵𝐵𝐵𝐵𝐵𝑉𝑉𝐵𝐵𝑛𝑛𝐵𝐵(1 − 𝛼𝛼
2

,𝑁𝑁−𝑌𝑌
𝜆𝜆

+ 1, 𝑌𝑌
𝜆𝜆

)  ), 

where 𝑌𝑌 is the total number of responses in the trial and 𝑌𝑌 = ∑ 𝑌𝑌𝑘𝑘𝐾𝐾
𝑘𝑘=1 . 

The 100(1 − 𝛼𝛼)%  Wald CI of 𝑃𝑃� after adjusting the center effects based on asymptotic normality is 

�̂�𝑝 ± 𝑧𝑧𝛼𝛼 2⁄ �𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃�), 

where 𝑧𝑧𝛼𝛼 2⁄  denote the 1 − 𝛼𝛼 2⁄  quantile of the standard normal distribution. 

The concept of ‘effective sample size’ is well-known within the survey sampling community. Although it 
lacks a unique definition in the statistical literation, effective sample size is generally used as a measure of 
the equivalent number of independent samples [8]. In the next section, We evaluate the ORR confidence 
interval coverage accounting for center effects using simulations. 
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3. Simulation study

3.1 Simulation Set-up 

In the simulation studies, we consider single-arm oncology trials with 50 or 200 subjects. For illustration 
purpose, the true ORR is set as 20% and between-center SD is set as 7%. Thus, the between-center CV is 
35%, which is reasonable based on the nine example trials as described in Section 1. In each of the 
simulated trials, subjects are evenly allocated to 1, 2, 5, 10, 20, 25 or 50 clinical centers. As we discussed 
in Section 2, when the number of clinical centers is fixed, the variance of ORR is the smallest if subjects 
are equally allocated across centers. Therefore, the CI coverage in our simulation represents the optimal 
coverage that we can achieve in a real trial with the same number of clinical centers.   

3.2 Simulation Results 

Results based on 10,000 simulations are presented in Table 2. The 95% CI of ORR are calculated using 
six methods,  

• Clopper-Pearson CI and Wald CI without adjusting center effect,
• extended Clopper-Pearson CI and Wald CI accounting for center effects with true between-center

SD (𝜎𝜎) from simulation set-up,
• extended Clopper-Pearson CI and Wald CI accounting for center effects with between-center SD

estimated from the generalized linear mixed model.

In general, the coverages of CIs accounting for center effects become closer to the nominal coverage 
(95%), comparing to the CIs without adjusting center effects. When there is only one clinical center in a 
trial, the coverages of CIs accounting for center effects are the same as CIs without adjusting center 
effects, as the between-center SD cannot be estimated with one clinical center. If the true between-center 
SD is known, the coverages of CIs (shaded in gray) are always close to 95%. When there are less than 5 
clinical centers in a trial with 50 subjects, or less than 20 clinical centers in a trial with 200 subjects, the 
coverages of CIs accounting for center effects with estimated between-center SD are lower than the 
coverages of CIs using the true between-center SD, which means the between-center SD is 
underestimated when there is a limited number of clinical centers in a trial. 

Clopper-Pearson CI is known as a conservative method, as the coverage level is usually higher than the 
nominal level. However, when there are less than 5 clinical centers in a trial with 50 subjects, and less 
than 20 centers in a trial with 200 subjects, the coverages of Clopper-Pearson CIs are less than 95%. 
Therefore, if a trial has a limited number of clinical centers, Clopper-Pearson CI could become less 
conservative. However, when there are 10 or more clinical centers in a trial with 50 subjects, or more than 
50 clinical centers in a trial with 200 subjects, the coverages of Clopper-Pearson CIs become close to 95%. 
This suggests that increasing the number of clinical centers can reduce the impact of the center effects, so 
that Clopper-Pearson CI can provide valid statistical inference on ORR. 
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Table 2:  95% ORR Confidence Interval Coverage 

Sample 
Size 

No. of 
Clinical 
Centers 

Clopper-
Pearson 

CI 

Extended Clopper-
Pearson CI Wald CI 

With 
estimated 
between-

center SD* 

With true 
between-
center SD 

Without 
adjusting 

center 
effects 

With 
estimated 
between-

center SD* 

With true 
between-
center SD 

50 1 82.0% 82.0% 96.3% 76.7% 76.7% 94.7% 
2 89.3% 92.7% 96.0% 85.2% 89.8% 95.6% 
5 93.8% 95.7% 96.1% 90.7% 93.2% 95.5% 

10 95.3% 96.7% 96.5% 92.4% 93.4% 92.4% 
25 96.2% 96.3% 96.2% 93.9% 94.1% 93.9% 
50 96.5% 96.5% 96.5% 94.3% 94.3% 94.3% 

200 1 56.6% 56.6% 95.1% 53.2% 53.2% 95.2% 
2 69.6% 84.0% 95.3% 66.9% 81.1% 94.9% 
5 81.7% 91.1% 94.9% 80.2% 89.5% 94.5% 

10 87.9% 93.2% 95.1% 87.1% 91.9% 93.7% 
20 91.1% 92.7% 95.6% 90.9% 92.1% 94.5% 
50 93.1% 93.2% 94.5% 92.9% 92.8% 93.8% 

P(True ORR)=20%; σ (Between-center SD in ORR) =7%. 
*Estimated from generalized linear mixed model using PROC Glimmix with center as a random
effect.

4. Application to Trial Design

In this section, we discuss how to minimize the center effects in the trial design stage using a hypothetic 
trial with 50 subjects and a true ORR of 20%. We mainly focus on three aspects: how many centers 
should a trial have, how to allocate subjects across centers, and how to set up a center enrollment cap.   

4.1 How many centers should a trial have? 

Figure 3 shows the association between the relative effective sample size (defined as effective sample 
size/number of subjects enrolled*100) and number of clinical centers. When the between-center SD in 
ORR is 7%, the relative effective sample size increases from 40% to 89% with number of centers 
increasing from 1 to 10. The relative effective sample size is higher when the between-center SD is 
smaller. Similarly to Section 3, we assume that subjects are evenly distributed among the clinical centers 
in this figure. For a trial with 50 subjects, we should consider to have at least 10 centers, to achieve 
around 90% efficiency in sample size. When the number of centers becomes more than 10, the relative 
effective sample size becomes more stable and there is no much gain in the relative effective sample size. 
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Figure 3: Relative Effective sample size 

4.2 How to allocate subjects across centers? 

Table 3 illustrates the relative effective sample size with different enrollment in each center. The optimal 
enrollment of the trial is 50 centers with one subject in each center, which has 100% relative effective 
sample size. However, this is the ideal scenario and it is not likely to be applied in a real trial. Another 
extreme case is having one center with all 50 subjects enrolled in this center, which results in the largest 
ORR variance and the relative effective sample size is small, e.g. only 40%.  

When a trial has ten centers with five subjects in each center as recommended in Section 4.1, the relative 
effective sample size is 89% and it seems to be acceptable and feasible. However, if three of the ten 
centers enroll most of subjects (39 subjects), the relative effective sample size reduces to 77%, which is 
similar to the relative effective sample size of the five centers with 8-12 subjects per center. Note that 
when there are 4-6 subjects in each of the ten centers, the relative sample size decreases slightly (from 
89.1% to 88.7%) comparing to a trial with five subjects in each of the ten centers. This gives us some 
flexibility in the enrollment. In summary, if there are a sufficient number of centers with patients relative 
balanced across the centers, the impact of center effects on ORR could be relative small. 

Table 3: Effective sample size with different enrollment in each center 

Number of 
Centers Enrollment in each center SD of 𝑃𝑃�

Effective 
Sample Size 

Relative Effective 
Sample Size (%) 

50 (1,1,…1) 0.057 50 100.0 
1 50 0.090 20 40.0 

10 (5,5…,5) 0.060 45 89.1 
10 (1, 1, 1, 1, 2, 2, 3, 13, 12, 14) 0.064 39 77.3 
10 (4,4,4,5,5,5,5,6,6,6) 0.060 44 88.7 
5 (8,9,10,11,12) 0.064 39 78.0 

N (Sample size)=50, P(True ORR)=20%, σ (Between-center SD in ORR) =7%. 
SD: Standard Deviation. 
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4.3 How to set an enrollment cap for clinical centers? 

Another question of interest is the enrollment cap of clinical centers. It is common that in a trial, a couple 
of centers (we call them ‘super centers’) can enroll much more subjects than other centers. Therefore, 
setting an enrollment cap can avoid extreme enrollment for these super centers. Table 4 provides the 
relative effective sample size for different enrollment caps in a trial with ten clinical centers. An 
enrollment cap of 50% can give at most 71% relative effective sample size, while an enrollment cap of 30% 
can have at most 84% relative effective sample size. 

Table 4: Enrollment cap for clinical centers 

Number 
of Centers 

Enrollment of each 
center 

SD of 
𝑃𝑃�

Effective 
Sample Size 

Relative Effective 
Sample Size 

Enrollment 
Cap 

10 (2,2,3,3,3,3,3,3,3,25) 0.067 36 71.6 50% 

10 (4,4,4,3,3,3,3,3,3,20) 0.064 39 78.3 40% 

10 (4,4,4,4,4,4,4,4,3,15) 0.062 42 84.0 30% 

10 (5,5,5,5,5,5,5,5,5,5) 0.060 45 89.1 10% 
N (Sample size)=50, P(True ORR)=20%, σ (Between-center SD in ORR) =7%. 
SD: Standard Deviation. 

5. Conclusion and Discussion

Though center effects are well-recognized in clinical trial, the degrees of impacts on the trial results are 
not well studied. In this article, we derive a mathematic formula to evaluate the impact of the center 
effects on the ORR estimates in oncology trials. When there are large center effects, it could significantly 
impact the efficiency of a trial and Clopper-Pearson confidence interval becomes less conservative. We 
further provide some guidance to minimize the center effects at the trial design stage. For a single-arm 
oncology trial with 50 subjects, if there are ten centers (depending on perceived between-center 
variability) with patients relative balanced across the centers, the impact of center effects on ORR could 
be relative small and Clopper-Pearson CI could become appropriate. When equally allocation is not 
possible, we should consider adding an enrollment cap to avoid too many participants in the super centers. 

Statisticians are seldom consulted at the trial design stage for the topics such as clinical center selection, 
number of patients per center or recruitment cap per center, as these are more like operational questions. 
This article provides some statistical insights on these topics by illustrating these insights through early 
oncology trials. Statisticians should take this opportunity to involve further in the trial design or setup, e.g. 
contributing to the operational topics on clinical center selection, number of patients per center or 
recruitment cap per center. The conclusions in this article can be directly applied to the clinical trials with 
the binary endpoints other than ORR. Similar ideas are under consideration for clinical trials with control 
arm or with continuous endpoints. 
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Appendix 

The derivation of Equation (1) is described below.  

Variance of Rki (the response of subjects i at Center k) is 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑘𝑘𝑘𝑘) = 𝐸𝐸�𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑘𝑘𝑘𝑘|𝑃𝑃𝑘𝑘)� + 𝑉𝑉𝑉𝑉𝑉𝑉�𝐸𝐸(𝑅𝑅𝑘𝑘𝑘𝑘|𝑃𝑃𝑘𝑘)� 

 = 𝐸𝐸�𝑃𝑃𝑘𝑘(1− 𝑃𝑃𝑘𝑘)� + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑘𝑘) = 𝑃𝑃 − 𝐸𝐸�𝑃𝑃𝑘𝑘2� + 𝜎𝜎2 

         = 𝑃𝑃 − (𝑃𝑃2 + 𝜎𝜎2) + 𝜎𝜎2 = 𝑃𝑃(1 − 𝑃𝑃), 

and the correlation between Rki and Rkj (the response of subjects j at Center k) is 

𝐶𝐶𝐵𝐵𝐵𝐵�𝑅𝑅𝑘𝑘𝑘𝑘,𝑅𝑅𝑘𝑘𝑘𝑘� = 𝐸𝐸 �𝐶𝐶𝐵𝐵𝐵𝐵�𝑅𝑅𝑘𝑘𝑘𝑘,𝑅𝑅𝑘𝑘𝑘𝑘�𝑃𝑃𝑘𝑘�� + 𝐶𝐶𝐵𝐵𝐵𝐵 �𝐸𝐸(𝑅𝑅𝑘𝑘𝑘𝑘|𝑃𝑃𝑘𝑘),𝐸𝐸�𝑅𝑅𝑘𝑘𝑘𝑘�𝑃𝑃𝑘𝑘�� 

 = 0 + 𝐶𝐶𝐵𝐵𝐵𝐵�𝑃𝑃𝑘𝑘 ,  𝑃𝑃𝑘𝑘� = 𝜎𝜎2. 

So we can have 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌𝑘𝑘) = 𝑉𝑉𝑉𝑉𝑉𝑉��𝑅𝑅𝑘𝑘𝑘𝑘

𝑛𝑛𝑘𝑘

𝑘𝑘=1

� = 𝑛𝑛𝑘𝑘𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑘𝑘𝑘𝑘) + 2 �𝑛𝑛𝑘𝑘2 �𝐶𝐶𝐵𝐵𝐵𝐵�𝑅𝑅𝑘𝑘𝑘𝑘,  𝑅𝑅𝑘𝑘𝑘𝑘�

 = 𝑛𝑛𝑘𝑘𝑃𝑃(1 − 𝑃𝑃) + 𝑛𝑛𝑘𝑘(𝑛𝑛𝑘𝑘 − 1)𝜎𝜎2. 

Therefore, 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃�� = 𝑉𝑉𝑉𝑉𝑉𝑉 �
∑ 𝑌𝑌𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝑁𝑁 � =

1
𝑁𝑁2 𝑉𝑉𝑉𝑉𝑉𝑉 ��𝑌𝑌𝑘𝑘

𝐾𝐾

𝑘𝑘=1

� 

 =
1
𝑁𝑁2�(𝑛𝑛𝑘𝑘𝑃𝑃(1 − 𝑃𝑃) + 𝑛𝑛𝑘𝑘(𝑛𝑛𝑘𝑘 − 1)𝜎𝜎2)

𝐾𝐾

𝑘𝑘=1

 

= 𝑃𝑃(1−𝑃𝑃)
𝑁𝑁

+ �∑ 𝑛𝑛𝑘𝑘
2𝐾𝐾

𝑘𝑘=1 −𝑁𝑁�
𝑁𝑁2 𝜎𝜎2. 
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