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Abstract 

The Census Bureau is researching model-based synthetic person-level data that maintain 
many of the properties of the original American Community Survey (ACS) data while 
protecting individual privacy. Protecting the ACS while maintaining data quality presents 
particular challenges because of the ACS's sample weighting, the survey's large number of 
variables and the small geographies for which ACS data are desired. This paper discusses 
the reasons adapting existing differential privacy methods is difficult and describes the 
approaches we are investigating to protect the data, including tree-based methods for 
categorical or discrete variables and regression for continuous variables. 
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1. Privacy in The American Community Survey 

Federal statistical agencies often release data from official surveys and censuses under 
legal strictures requiring the protection of the identities and personal attributes of 
respondents. The means to this end often differ greatly among data products, due both to 
the nature of the particular information released and to the philosophy of privacy of the 
agency. The Census Bureau uses the term disclosure avoidance to describe methods and 
actions used to provide privacy to respondents. Disclosure avoidance methods historically 
and currently used at the Census Bureau include: removal of direct identifiers such as name 
and address, swapping of households with similar characteristics, and suppression of tables 
with small counts (Lauger, Wisniewski, & McKenna, 2014). 

The American Community Survey (ACS) is the largest demographic survey conducted by 
the Census Bureau. It collects information on individuals including demographics, 
relationships, schooling, occupation, and income, and on domiciles, including location, 
utility services, and unit value. The ACS is the basis for the distribution of approximately 
675 billion dollars of federal funding annually. 

The ACS has several types of data releases, including: 

• Profiles 
• Tables 
• Public-Use Microdata Samples (PUMS) 
• Summary files 
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Disclosure avoidance procedures affect both the internal data underlying these releases and 
the releases themselves: tables generated from swapped households may still fail to meet 
count thresholds for release, for instance. The Census Bureau is researching solutions for 
disclosure avoidance that involve the creation of underlying privatized data that can serve 
as a source for all public releases from the ACS, without the need for per-release 
protections. These methods have additional theoretical advantages over the current 
methods. One such method is model-based synthetic data. 

 

2. Model-Based Synthetic Data 

Model-based synthetic data is data generated from a model and a dataset such that certain 
statistical properties of the dataset remain while the record-level data itself changes 
(Raghunathan, Reiter, & Rubin, 2003). Often the model is a Bayesian model on the data 
and the synthetic data are predictions (draws) from the posterior predictive distribution of 
the model. In that instance, one may compute Bayesian or asymptotic frequentist properties 
of a given statistical output from the data. This is an improvement over methods such as 
swapping, where one cannot calculate such theoretical properties.  

In our research, we plan to generate what is called fully synthetic data for unweighted 
individuals in the ACS. To create fully synthetic data, we replace every variable for every 
respondent in the data with a prediction from a model (Drechsler, 2011). The extent to 
which that model captures the multivariate properties of the data determines which 
statistics will have the most quality after synthesis. Our goals are to generate a synthetic 
data set from which all other ACS data products may stem and to maximize the number of 
those products that maintain useful analytic properties. 

Ideally we would generate synthetic data from a multivariate density across all the ACS 
columns, but specifying such a distribution across the scores of ACS variables is untenable 
due to numerous issues, including dimensionality. An alternative approach is to specify a 
sequence of conditional distributions to generate the synthetic data, which offers a certain 
degree of flexibility over a fully multivariate specification. 

The theoretical workflow for generating fully synthetic data from conditional models is as 
follows: 

1. Define an unconditional model for an initial set of variables: 

𝑓𝑓(𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|Θ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

2. Define a conditional model for the next variable or set of variables: 

𝑓𝑓(𝑋𝑋𝑖𝑖|𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,Θ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,Θ𝑖𝑖) 

3. Define conditional models for the remaining variables (or sets of variables) in turn: 

𝑓𝑓�𝑋𝑋𝑗𝑗�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,Θ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑖𝑖 ,⋯ ,𝑋𝑋𝑗𝑗−1,Θ𝑖𝑖 ,⋯ ,Θ𝑗𝑗−1,Θ𝑗𝑗), 𝑗𝑗 ∈ {𝑖𝑖 + 1,⋯ , 𝑞𝑞}, 

where 𝑞𝑞 is the number of variables. 

4. Generate synthetic data sequentially via conditional posterior predictive 
distributions. 

 
2111



 
 

The product of the set of distributions yields a joint distribution on all the variables, and 
the set of conditional predictions thus constitutes a posterior prediction from this joint 
distribution. 

Using conditional models allows for easier adaptations to certain survey realities, such as 
question skip patterns and logical constraints, but specifying a full set of models for a 
survey with as many variables as the ACS is still not trivial. In regressions, for instance, 
issues such as multicollinearity can easily effect model fitting towards the end of the 
conditional chain. Given that most of the variables in the ACS are discrete, we use 
classification trees as our main discrete structural model to help avoid some of the inherent 
issues in conditional modeling. 

Classification trees perform a series of binary splits on a discrete data vector, choosing the 
split based upon a set of predictors (also called factors) and a homogeneity criterion 
(Breiman, Friedman, Olshen, & Stone, 1984). Typical algorithms for the fit are greedy, in 
that they always pick the split with the highest resultant homogeneity. As the algorithm 
continues to split the vector based on the predictors, a tree-like structure appears, with 
certain branches having more splits, ultimately reaching an end in nodes called leaves. The 
leaves then contain values of the vector that are more homogenous, in terms of the criterion, 
than the initial vector. 

Classification trees are useful in our research as they can cull a large set of possible 
predictors into a set with the strongest relationships to the variable under synthesis. This is 
particularly useful when synthesizing data within geographies, as the strength of the 
relationship among a given set of variables can vary widely geographically. The sword is 
two-sided, though, in that the tree may never split on variables with weaker relationships 
but that nonetheless impose logical restrictions on the variable under synthesis. 
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Figure 1: Structure of a Classification Tree 

The typical method of prediction for a tree is to pick the modal category found in a leaf. 
Since we wish to use trees within the context of synthetic data, we must have some 
stochastic method to obtain a prediction, ideally one that we can reasonably couch as 
simulating a posterior prediction. The method we use is to take a single draw from a 
Bayesian bootstrap within the leaf (Reiter J. , 2005), which functions as a multinomial 
model with a Dirichlet prior where the multinomial outcomes are the values within the leaf. 

 

5. ACS Public-Use Microdata Test Case 

As an example of using classification trees for synthetic data, we synthesize unweighted 
variables related to education from the 2014 ACS 1-year Public Use Microdata Sample 
(PUMS) for the state of Oregon. In particular, we synthesize: 

• School enrollment (SCH) 
• Grade level attending (SCHG) 
• Educational attainment (SCHL) 

These variables are useful for initial study for a number of reasons: they have strong 
relationships with one another, the strength of those relationships can vary substantially 
across other variables, they have strict logical requirements with other variables, and they 
are often coarsened for analysis. 

 We use these three variables as initial predictors/factors: 

• Sex (SEX) 
• Age (AGE) 
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• Relationship (RELP) 

Age in particular is strongly tied with education, and forms a set of logical requirements 
for school-age children. For our example, we will keep these initial predictors as observed 
so that we can isolate the effects of the classification tree synthesis of SCH, SCHG, and 
SCHL. Thus in this example we create column-partially synthetic data (Drechsler, 2011). 

To assess the accuracy of the synthesis, we generate 896 synthetic data sets and produce 
the following unweighted tables from each data set: 

• Sex by Age by Educational Attainment for the Population 18 Years and Over (T1) 
• School Enrollment by Level of School for the Population 3 Years and Over (T2) 

We compare each table to the original unweighted table from PUMS, using as a metric the 
proportion of total variation: 

𝜏𝜏 = 1 −
𝐿𝐿1

2𝑛𝑛
 

Here, 𝐿𝐿1 is the sum of the absolute cell deviations and 𝑛𝑛 is the total count in the table. If 
we consider a table cell count as a number of stones, and if we consider two tables having 
the same number of cells and same total number of stones, then τ is the proportion of stones 
that remain in place when changing one table into the other. A value of zero indicates that 
all the mass of the table has moved to a new cell. For the sake of analytics (but not 
necessarily privacy), we seek values of τ near 1. 

We then produce the same tables and metric for 4480 bootstrap samples of the PUMS and 
compare the distribution of τ between the synthetic and bootstrap tables: 

 

Figure 2: Distribution of Proportion of Total Variation 
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For both base tables, we can see that the synthetic tables have values of τ near one, 
indicating good data quality. For T1, the synthetic tables have a median τ slightly lower 
than the bootstrap tables, but whether the difference in meaningful is debatable. The results 
for T2 are even closer, and we see in fact that the synthetic tables have slightly higher 
quality than the bootstrap tables. This is wholly possible if we consider the nature of the 
data and the methods: the bootstrap data are simple random samples with replacement, 
while the synthetic data are essentially stratified on SEX, AGE and RELP, and the 
stratification may improve data quality enough to counteract the degradation from the 
synthesis. Again, how much these differences matter with such high values of τ is not clear. 

In addition to τ, we also considered the relative change in counts for the values of each 
variable across the synthetic tables. For educational attainment we found the following 
result for adults: 

 

Figure 3: Distribution of Relative Error of Synthetic Cell Counts for Educational 
Attainment 

We see that the largest errors in adult educational attainment occur for grades below high 
school, where the table is sparse. In such a case, the relationship between the variance 
added due to synthesis versus the variance due to sampling becomes important, especially 
for data users analyzing this population. 

For grade attending, we assessed the relative count changes for the population in school: 
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Figure 4: Distribution of Relative Error of Synthetic Cell Counts for Grade Level 
Attending 

 

We see that the most represented category, people in undergraduate studies, has the least 
variation in cell totals. This table has no small cells and so we do not see the larger relative 
errors that we saw for adult educational attainment. 

 

6. Formal Privacy 

Applying any disclosure avoidance method to a data release raises two immediate 
concerns: the effect on data quality and the effect on respondent privacy. For many 
disclosure avoidance methods, these effects are rarely quantified theoretically, especially 
the effect on privacy. Rather, heuristic arguments or ad-hoc quantification often form the 
justification for using these methods for public data releases. For instance, one can emulate 
an attempt by an attacker to link a particular external data set to a given data product in 
order to expose respondent participation or attributes, but a successful or unsuccessful link 
says nothing about the privacy of the release in relation to any other data the attacker might 
have. 

To overcome such limitations, the Census Bureau is researching and implementing 
definitions of privacy that are mathematically rigorous. A disclosure avoidance method 
that meets such a privacy definition can call upon the mathematical foundations of that 
definition to quantify the privacy (or privacy loss) of a data release made with the method. 
This quantification allows the expression of a meaningful, mathematical tradeoff between 
privacy and accuracy for any given accuracy metric. Such formal privacy methods, most 
notably differential privacy (Dwork & Roth, 2014), have other benefits, such as expressing 
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the privacy loss associated with multiple public data releases from the same underlying 
data, allowing the calculation of a privacy-loss ‘budget’ for those releases. Quantification 
of the tradeoff of the budget versus data accuracy also allows for meaningful graphical 
representations: 

 

Figure 5: Typical form of the tradeoff between privacy loss and accuracy 

Another tangible benefit of formal privacy methods is that many of them allow the public 
release of the method implementation, including algorithms, software, and parameters. 
This benefits not only data users in terms of transparency, but also the releasing agency by 
allowing public testing and verification. Ad-hoc methods often restrict the release of code 
and parameters due to uncertainty about the privacy implications. 

The Census Bureau is currently researching formally private methods to supersede current 
disclosure avoidance strategies for the American Community Survey, with the aim of 
producing an underlying privatized data set from which all other releases spring. Such a 
system takes advantage of another underlying feature of certain formal privacy methods: 
that summaries made solely from privatized data remain private (Dwork & Roth, 2014). 

A formally private ACS is an enticing concept, but the ACS poses significant challenges 
even for non-formally-private disclosure avoidance methods. Two of the largest hurdles 
are dimensionality and weighting. 

The Census Bureau is developing a formally private disclosure avoidance method for the 
2020 Census of Housing and Population (Leclerc, Clark, & Sexton, 2017). This method, 
like several common formally or differentially private methods, views the data as a 
frequency table rather than record-level microdata: we define a cell for each possible 
combination of the variables in the data and note the total number of respondents in each 
cell. We then add noise to the cell counts in such a way as to ensure privacy. Currently, the 
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frequency table under consideration has approximately 230,000 cells excluding geography. 
For the ACS, that number could increase by several orders of magnitude, which means that 
the method ultimately used for the 2020 Census may be computationally infeasible for the 
ACS. Even if computation were possible, dimensionality complicates privacy in other 
ways. While the ACS has a large sample, the total number of cells in a tabular 
representation of the data would certainly dwarf the sample size, and indeed the size of the 
sampling frame, resulting in a sparsely-filled table. Adding noise to a sparse table can 
easily result in large variances. In addition, if we require that all final cell counts be 
positive, which is the case if we wish to transform the table back into respondent-level 
records, the required rounding can introduce bias. 

The ACS releases data each year for the current collection year and for the five most recent 
collection years combined. Tabular estimates for the 5-year data contain geographies down 
to the block-group level. There are approximately 200,000 block groups, each containing 
around 600 to 3,000 individuals. Data users regularly combine results from various block 
groups to obtain estimates for coarser geographies not directly available in the ACS data 
releases. This use-case conflicts with the need for privacy, as the addition of such detailed 
geography can further serve as a source for dimensionality issues when viewing the data 
as a frequency table.  

Weighted surveys pose a number of issues for several disclosure avoidance methods, and 
the ACS is no exception. For formal privacy in particular, weighting interplays with the 
concept of sensitivity, which broadly means the amount of change one sees in a given 
summary of the data due to the addition or deletion of one respondent. The higher the 
sensitivity, the more privacy loss one can expect for a given accuracy. For weighted 
surveys, that sensitivity can be high if we consider the case of a person with maximal 
weight entering or leaving the survey, leading to a choice between too much privacy loss 
or too little accuracy. 
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Figure 6: Effect of sensitivity on the tradeoff between privacy loss and accuracy 

Other obstacles to a formally private ACS exist—household structure, data 
editing/cleanup, variance estimation—and can interact with dimensionality and weighting. 
The Census Bureau is researching methods to overcome these challenges. 

 
7. Conclusion 

Our example uses classification trees to produce synthetic data for three variables in the 
American Community Survey Public-Use Microdata Sample. We see promising results for 
accuracy on these variables in certain tables, but results for single variables make an 
important point: that the suitability of a given synthetic data method depends greatly on the 
analyses data users expect to perform (Reiter J. P., 2005). Our research will test 
classification trees and other synthetic data models on internal ACS data as a means to 
replace certain disclosure avoidance methods currently in use. Many obstacles to a final 
production synthetic data method remain unconquered: synthesis of geography, the effect 
of weighting, maintenance of household-level relationships. But research into these and 
other issues can only help in the effort to bring better privacy methods to surveys and 
censuses. 

Governments, academic institutions, businesses, and individuals depend upon surveys such 
as the ACS for timely and accurate data for making decisions. Disclosure avoidance 
methods have the potential to change such decisions. But those same groups of data users 
are also respondents, and statistical agencies have not only an ethical but sometimes a legal 
obligation to protect respondents from unwanted identification and attribution. Disclosure 
avoidance methods have to potential to provide the necessary protections. Negotiating the 
tradeoff between accuracy and privacy should be of foremost concern to any agency 
releasing information, not just data, about respondents. Formal privacy methods provide a 
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mathematical means of quantifying the tradeoff, but as research into their use for large 
sample surveys continues, other methods can help bridge the gap between formal privacy 
and older methods lacking meaningful guarantees for privacy and analytics. 
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