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Abstract
The closure and the partitioning principles have been used to build various multiple testing proce-

dures in the past three decades. The essence of these two principles is based on parameter space
partitioning. In this article, we propose a novel approach coined the covering principle from the
perspective of rejection region coverage in the sample space. The covering principle divides the
whole family of null hypotheses into a few overlapped subsets when there is a priority of making
decisions for hypothesis testing. We have proven that the multiple testing procedure constructed by
the covering principle strongly controls the familywise error rate as long as the multiple tests for
each subset strongly control the type I error. The covering principle are applied to two real clinical
trials to illustrate how to construct multiple testing procedures. It is also shown that the proposed
method can reject more null hypotheses and gain some power in some scenarios compared to the
graphical approaches.

Key Words: Familywise error rate, multiple hypotheses testing, closed test principle, partitioning
principle, covering principle, gate-keeping

1. Introduction

The key issue in the multiple hypotheses testing is to strongly control the familywise error
rate (Hochberg & Tamhane, 1987). Two important principles: the closure principle (Marcus
et al. 1976) and the partitioning principle (Finner & Strassburger, 2002; Sonnemann, 2008),
are widely used to construct various multiple test procedures that can strongly control the
familywise error rate. A strong control of the familywise error rate for multiple hypothe-
ses testing procedures is mandated by the regulatory agencies in all confirmatory clinical
trials (Food & Drug Administration, 2002; Committee for Proprietary Medicinal Products,
2002).

First, a common way to handle the multiplicity issue is to cut the spending of the over-
all significance level α as it does in Bonferroni procedure and its modifications (Holm,
1979; Hochberg, 1988; Hommel, 1988; Li et al., 2017). Second, when the multiple study
objectives exhibit a hierarchical structure which is usually divided into primary, secondary
objectives in the clinical trials, the gate-keeping procedures are used to deal with the multi-
plicity issue (Dmitrienko et al. 2003; Dmitrienko & Tamhane 2007; Dmitrienko, Tamhane,
Liu & Wiens 2008; Dmitrienko, Tamhane & Wiens 2008; Dmitrienko & Tamhane 2013).
Recently, Bretz et al. (2009) introduced a graphical approach to construct multiple hy-
potheses testing procedures. Many multiple hypotheses testing procedures, such as Holm’s
(Holm 1979), the fixed sequence (Maurer et al. 1995; Westfall & Krishen 2001) and the
fallback (Wiens 2003; Wiens & Dmitrienko 2005) procedures as well as gate-keeping pro-
cedures can be illustrated by the weighted and directed graphs. The graphical approach
facilitates easy communication with medical doctors and clinicians and becomes very pop-
ular in clinical trials with the help of ”gMCP” package in R programming language. (Bretz,
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Posch, Glimm, Klinglmueller, Maurer & Rohmeyer 2011; Bretz, Maurer & Hommel 2011;
Bretz et al. 2014).

In this article, we introduce a novel principle termed the covering principle for the con-
struction of the multiple testing procedures from the perspective of the sample space. It is
different from both the closed test and the partitioning principles which work in the param-
eter space. The covering principle analyzes the rejection regions in the sample space based
on the priorities of the decisions for testing the null hypotheses and divides the whole fam-
ily of null hypotheses into a few overlapped sub-families, for which any multiple testing
procedure can be used. The special contributions of this article include: (a) proposing a
novel method to solve multiple hypotheses testing problems in the sample space; (b) prov-
ing a theoretical result that a multiple hypotheses testing procedure based on the proposed
covering principle strongly control the familywise error rate for the whole family of hy-
potheses if each multiple hypotheses testing procedure on each subset can strongly control
the familywise error rate.

Before we formally introduce the covering principle in Section 2, let us consider a
simple motivating problem to understand the rationale of the proposed method.

Example 1: Suppose that there are three families F1, F2, F3 in a simple serial gate-
keeping problem and each family has only one null hypothesis, denoted as H1, H2 and H3,
respectively, with the corresponding rejection regions R1, R2 and R3 in the sample space.
Assume that the order of testing hypotheses is H1 the first, H2 the second, and H3 the last,
i.e. H1 → H2 → H3. The sequential order of testing hypotheses is illustrated as a decision
flowchart in Figure 1(a). The hypothesis H1 is called the ”gate-keeper” of H2, meaning that
H2 will not be tested unless H1 has been tested and rejected. Let us think reversely, if we
know H2 is rejected, then it implies that H1 has already been tested and rejected because of
the order of hypothesis testing and decision making.

Logically speaking, the rejection of H2 indicates that H1 has been tested and rejected.
That means the rejection region R2 must be within R1 in the sample space. For the similar
reason, the rejection region R3 of the hypothesis H3 also must be within R2. Therefore,
from the analysis of the order in testing null hypotheses and the decision making process,
the relationship among rejection regions is depicted as R3 ⊆ R2 ⊆ R1 and visualized
by a Venn diagram in Figure 1(b). Imagine that we have an observed sample at hand. If
the value of the test statistic from the sample falls in the rejection region R3, then H3 is
rejected. Since R3 ⊆ R2 ⊆ R1, consequently, both H1 and H2 must be also rejected. It
is worth noting that the relationship of rejection regions is an abstract logical relation. H1

could be related to an endpoint with a continuous measurement while H2 might correspond
to a binary outcome and H3 could be associated with a time-to-event endpoint. We will
re-visit this example after the covering principle is introduced in Section 2.

The article is organized as follows. Section 2 presents mathematical notations and
introduces the theorem of the covering principle formally. In Section 3, we apply the
covering principle to two real clinical trials to illustrate the use of the proposed principle.
Section 4 is the discussion and closing remarks of using the covering principle. Finally,
we prove that the multiple hypotheses testing procedures based on the covering principle
strongly control the familywise error rate for the whole family in the Appendix.

2. The Covering Principle

Denote N = {1, 2, . . . , n} as the index set of a family of n null hypotheses H1, H2, . . . , Hn

with the corresponding test functions φ = {φ1, φ2, . . . , φn} and rejection regions R1, R2, . . . ,
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Figure 1: (a) Decision Flowchart (b) Venn Diagram of Rejection Regions of Example 1

Rn . Each φi (i = 1, 2, . . . , n) is an elementary test function, where

φi =

{
1, if Hi is rejected
0, if Hi is accepted.

For ∅ 6= S ⊆ N , let 8α(S) denote the set of all α-level multiple tests for the family of
null hypotheses with an index set S, where 0 < α < 1. If φ = {φi : i ∈ S} ∈ 8α(S),
then it indicates the multiple test φ strongly controls the familywise error rate on S at the
significance level α. For a group of elementary test functions φi , i ∈ S, define

min
i∈S

φi =

{
1, if ∀i ∈ S, φi = 1
0, otherwise.

and

max
i∈S

φi =

{
1, if ∃i ∈ S, φi = 1
0, otherwise.

For any two elementary test functions φ1 and φ2, denote φ1 ≤ φ2 if {φ1 = 1} implies
{φ2 = 1}. Equivalently say, the rejection of H1 implies the rejection of H2. In terms of the
rejection regions, it means R1 ⊆ R2.

Theorem 1 (Covering principle). Suppose ∅ 6= I ⊂ N, ∅ 6= J ⊂ N, I ∩ J = ∅, and⋃
i∈I Ri ⊆

⋃
j∈J R j . Denote

φ j
= {φ

j
i : i ∈ N \ j},∀ j ∈ J. (1)

φ I
= {φ I

i : i ∈ N \ I }. (2)

where φ j denote an arbitrary multiple test which does not include the test function of the
j th hypothesis H j , j ∈ J . Each φ j consists of n − 1 elementary test functions φ j

i , i ∈
N \ j . Similarly, φ I denote a multiple test which does not include those test functions
of hypotheses whose indices are in I . φ I consists of n − |I | elementary test functions
φ I

i , i ∈ N \ I . Define a test function ψi as follows:

ψi =

min(min
j∈J

φ
j
i , φ

I
i ), if i ∈ N \ I

min(min
j∈J

φ
j
i ,max

j∈J
ψ j ), if i ∈ I .

(3)

If φ j
∈ 8α(N \ j), ∀ j ∈ J and φ I

∈ 8α(N \ I ), then {ψi : i ∈ N } ∈ 8α(N ).

 
1265



The following is an explanation of Theorem 1. Suppose that there exist two nonempty
index sets I ⊂ N and J ⊂ N , I ∩ J = ∅, i.e. these two sets of hypotheses {H j , j ∈ J }, and
{Hi , i ∈ I }, are not overlapped. Furthermore, there are orders when these hypotheses are
tested. In order for Hi , to be tested, at least one of the hypothesis H j , must be tested and
rejected first. For example, the hypotheses H j could be related to the primary endpoints and
Hi could be related to the secondary endpoints in clinical trials. For parallel gate-keeping,
if a null hypothesis on a secondary endpoint is rejected, then at least one hypothesis on
one of primary endpoints already has been rejected. If this is the case, we say the set of
hypotheses {H j , j ∈ J }, dominates the set of hypotheses {Hi , i ∈ I }. In other words, there
is a dominance relationship between two sets of hypotheses {Hi , i ∈ I }, and {H j , j ∈ J }.
From the perspective of hypotheses testing in the sample space, the dominance relationship
between two sets of hypotheses: {Hi , i ∈ I } and {H j , j ∈ J } can be defined by the logical
relationship among their rejection regions:

⋃
i∈I Ri ⊆

⋃
j∈J R j . Furthermore, H j , j ∈ J

is called a dominant hypothesis and Hi , i ∈ I is a dominated hypothesis.
It may seem that the definition of ψi in Equation (3) is circular. In fact, domains for the

index i are mutually exclusive. For the first part of the definition of the test function ψi , a
hypothesis Hi , i ∈ N \ I , could be either one of hypotheses H j , j ∈ J , which dominate
Hi , i ∈ I , or one of non-constraint hypotheses. A non-constraint hypothesis is the one that
has no dominance relationship with other hypotheses. The first part of ψi defines a test
function to reject any hypothesis Hi whose index is not in I . That is, Hi , i ∈ N \ I , will be
rejected if it is rejected in all subsets which contain it.

The second part ofψi in Equation (3) defines a test function for those hypotheses whose
indices are within I . The set of hypotheses {Hi , i ∈ I }, are dominated by the set of hy-
potheses {H j , j ∈ J }. In order for a hypothesis Hi , i ∈ I , to be rejected, not only at least
one H j , j ∈ J , must be rejected first, but also Hi , i ∈ I , must be rejected in all subsets
which contain it.

Then, the covering principle in Theorem 1 states that the original whole family of n
null hypotheses can be decomposed into |J | + 1 subsets with index sets N \ j,∀ j ∈ J
and N \ I . In other words, the original multiple testing problem on the family of n null
hypotheses with the index set N can be divided into |J | + 1 multiple testing problems.
The corresponding multiple tests are φ I with the index set N \ I and φ j with index sets
N \ j,∀ j ∈ J . Each subset has fewer null hypotheses than the original family and can
be tested using any multiple testing procedure. The multiple testing procedure built on
this divide-and-conquer strategy strongly controls the familywise error rate for the whole
family at the significance level α if the multiple tests φ I and φ j can control their familywise
error rate at the significance level α for their corresponding subsets. Finally, the decision
rule for each individual hypothesis can be reached by summarizing the results as follows:

Step 1. A dominant or a non-constraint hypothesis, Hi , i ∈ N \ I , will be rejected if Hi

is rejected in all decomposed subsets in which Hi is contained.
Step 2.A dominated hypothesis, Hi , i ∈ I , will be rejected if at least one of its dominant

hypotheses H j , j ∈ J , is rejected first. In addition, Hi must be also rejected in all subsets
in which Hi is contained.

Let us continue Example 1 to illustrate how to use Theorem 1 to decompose a family
of hypotheses into subsets. In this example, there are three null hypotheses, denoted by
their indices N = {1, 2, 3}. Based on the sequential order of testing null hypotheses,
H1 → H2 → H3, the rejection regions exhibit the following coverage relations: R3 ⊆ R2,
R2 ⊆ R1, R3 ⊆ R1 as shown by a Venn diagram in Figure 1(b). H1 dominates H2 and
H2 dominates H3. Consequently, H1 dominates H3 through H2 indirectly. There are three
dominance relations among these hypotheses.

Now let us apply the covering principle to this example to build a multiple hypotheses
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testing procedure. First, according to the relationship: R3 ⊆ R2, J = {2}, I = {3},
the whole family of null hypotheses {H1, H2, H3} can be divided into two subsets: N \
I = {1, 2} and N \ j = {1, 3}. In addition, because R2 ⊆ R1, the subset {H1, H2} can
be further decomposed into two subsets {H1} and {H2} by using the covering principle
again. Similarly, the subset {H1, H3} is decomposed into {H1} and {H3} by using R3 ⊆ R1.
Combining the results, we have three distinct subsets: {H1}, {H2} and {H3}. In this example
readers may see that the covering principle is used iteratively as long as there is a dominance
relation in a subset. The dimension of the original set of null hypotheses is reduced to 1
from 3.

The decision rule for each individual hypothesis is as follows. The null hypothesis H1

will be rejected if it is tested and rejected at the α-level. In order for H2 to be rejected,
the null hypothesis H1 must be rejected first, followed by H2 being rejected in the test of
H2 at the α-level. In order for H3 to be rejected, both null hypothesis H1 and H2 must
be rejected first and H3 is also rejected in the test of H3 at the α-level. Interestingly, the
multiple testing procedure constructed by using our method is equivalent to the fixed se-
quence procedure (Maurer et al. 1995; Westfall & Krishen 2001), which is well-known for
strongly controlling the familywise error rate. In general, it can be extended in the case of
n null hypotheses.

The novelty of the covering principle is that it works on the coverage relation of rejec-
tion regions in the sample space. The covering principle performs a sample space analysis
using the union of rejection regions in contrast to the closed test principle using the intersec-
tion of hypotheses in the parameter space. By using the dominance relationship, the whole
family of null hypotheses is decomposed into a few overlapped subsets and the decompo-
sition reduces the dimension of the multiple testing problem. After the decomposition, any
α-level multiple hypotheses testing procedure can be used to test hypotheses in these sub-
sets. The decision on an individual hypothesis is made by consolidating the testing results
from each subset. Simply speaking, in order for an individual hypothesis Hi , i ∈ N , to
be rejected, not only one of its precedent and dominant hypotheses in the hierarchy of the
hypotheses must be rejected first, but it must also be rejected in all subsets which contain
Hi . The covering principle extends the closed test principle to a family of hypotheses with
the priority of importance when making decisions.

3. Applications to Two Real Clinical Trials

3.1 Example from Gate-Keeping Problem

Example 2: For illustration purposes, let us consider a simple parallel gate-keeping prob-
lem. Cummings et al. (1999) studied breast cancers in post-menopausal women in a clin-
ical trial. The study has two primary endpoints: the incidence of vertebral fractures and
the incidence of breast cancer, and one secondary endpoint: the incidence of non-vertebral
fractures. Each primary endpoint will result in an independent regulatory claim if the treat-
ment effect on any one of two primary endpoints is effective. Denote H1 and H2 as the
null hypotheses on the two primary endpoints, respectively, and H3 on the secondary end-
point. The test on the secondary endpoint can only be carried out if at least one of the
null hypotheses {H1, H2} relating to two primary endpoints is rejected. In terms of gate-
keeping approach, the two primary endpoints serve as the gatekeepers. The order of testing
hypotheses can be displayed as a decision flowchart in Figure 2(a).

Let R1, R2 and R3 denote three rejection regions in the sample space corresponding
to tests on null hypotheses H1, H2 and H3, respectively. Because the hypothesis on the
secondary endpoint can not be tested and rejected unless one of two hypotheses on two
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primary endpoints has been rejected, so logically speaking, the rejection of H3 implies that
at least one of H1 and H2 has already been rejected. In terms of the rejection region in
the sample space, R3 must be covered by the union of rejection regions R1 and R2. It can
be denoted as R3 ⊆ R1 ∪ R2. Imagine that we have a sample at hand. If the value of the
test statistic from this sample falls in the rejection region R3, then H3 is rejected. Since
R3 ⊆ R1 ∪ R2, consequently, either H1 or H2, or both must be also rejected depending on
where the value of the test statistic falls. Following the analysis of the decision flowchart,
the coverage relation of rejection regions among R1, R2 and R3 can be visualized by a Venn
diagram as shown in Figure 2(b).

Figure 2: (a) Decision Flowchart (b) Venn Diagram of Rejection Regions of Example 2

H1 and H2 dominate H3, i.e. R3 ⊆ R1 ∪ R2, so J = {1, 2} and I = {3}. According
to the covering principle, the whole family of 3 null hypotheses {H1, H2, H3} are then
decomposed into three subsets: N \ I = {1, 2}, N \ 1 = {2, 3} and N \ 2 = {1, 3}. The null
hypothesis H1 will be rejected if it is rejected in all subsets which include H1: {H1, H2} and
{H1, H3}; similarly for H2. However, in order for H3 to be rejected, not only must either
H1 or H2 be rejected first because H3 is dominated by H1 and H2, but H3 is also rejected
in all subsets including H3: {H2, H3} and {H1, H3}. Suppose that observed p-values for
three hypotheses: p1 = 0.024, p2 = 0.06, p3 = 0.003 and the significance level α = 0.05,
Holm’s procedure is used for testing all subsets for the sake of simplicity. Then, H1 will be
rejected in both subsets: {H1, H2} and {H1, H3}; similarly for H3 in subsets: {H1, H3} and
{H2, H3}; But H2 can not be rejected in both subsets: {H1, H2} and {H2, H3}. Finally, we
consolidate the results from each subset and make conclusions on an individual hypothesis
as follows: (a) The hypothesis H1 on the primary endpoint is rejected because it has been
rejected in both subsets: {H1, H2} and {H1, H3}; (b) The hypothesis H2 on the primary
endpoint can not been rejected; (c) The hypothesis H3 on the secondary endpoint is also
rejected because not only has it been rejected in both subsets: {H1, H3} and {H2, H3}, but
also the hypothesis H1 on the primary endpoint has been rejected.

3.2 Example from Graphical Approach

Example 3: Bretz et al. (2009) demonstrated a case study for multiple sclerosis by using
the graphical approach. This trial compares two dose levels of a new treatment with a
control for three hierarchical endpoints. Denote six hypotheses on different dose levels and
different endpoints as Hi j , where i = 1 for the high dose level and i = 2 for the low dose
level, and j = 1, 2, 3 for the primary, secondary and tertiary endpoint, respectively. The
primary endpoint is the annualized relapse rate and the secondary endpoint is the number
of lesions in the brain. The tertiary endpoint is the disability progression. A few graphical
strategies were discussed in their paper. Only two main common graphical strategies are
shown here in Figure 3. The left graph in Figure 3 divided six hypotheses into two groups
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according to two dose levels: {H11, H12, H13} and {H21, H22, H23}. The endpoints in each
group were tested in a fixed sequence at α/2 level. If three hypotheses in one group were
rejected, then the local significance level can be transfered to the tests in the other group,
meaning that the fixed sequence tests for the other group can be carried out at the α-level.
For the left graph, you can start with testing the primary endpoint for either dose level.

Figure 3: Visualization of two different Graphical Strategies of Example 3

The right graph in Figure 3 puts more weight on the precedent hypothesis in the hier-
archy of hypotheses. The local significance level after a rejection of one hypothesis was
split into two parts. One part was distributed to the precedent hypothesis in the other group
which has not been rejected. The second part was re-allocated to the subsequent hypothesis
in the same group.

For illustration purposes, consider Scenario 1: assume that the significance level α for
the test is 0.05 and observed p-values are p11 = p12 = p13 = 0.024, p21 = p22 = p23 =

0.04. According to the left graph, all six hypotheses will be rejected. However, if the right
graph is used, only H11 can be rejected.

It is apparent that different testing graphs could lead to different testing results. If one
has sufficient prior knowledge on the testing problem, then the graphical approach can use
such knowledge to set its weights and initial α allocations. However, such types of prior
knowledge are not always available. Therefore, the determination of initial allocations of
significance level and transition weights is a challenging problem. The proposed covering
principle may help users avoid or at least alleviate such problem.

Now let us apply the covering principle to Example 3.
Step 1. Construct the coverage relations among rejection regions. Based on the dom-

inance relations among hypotheses on primary, secondary, and tertiary endpoints and the
decision-making flowchart in Figure 4(a), the coverage relations of rejection regions are
constructed: R13 ⊆ R12 ⊆ R11, R23 ⊆ R22 ⊆ R21 as shown in Figure 4(b).

Step 2. Decompose the family of 6 hypotheses into 9 subsets as follows:
The family of six null hypotheses {H11, H12, H13, H21, H22, H23} is decomposed into

nine subsets containing only two hypotheses each: {H11, H21}, {H11, H22} , {H11, H23},
{H12, H21}, {H12, H22}, {H12, H23}, {H13, H21}, {H13, H22}, and {H13, H23}. The original 6-
dimension multiple testing problem is now reduced into nine 2-dimension multiple testing
problems.
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Step 3. Test each hypothesis Hi in each subset in which Hi is contained. For purposes
of simplicity and illustration, Holm’s procedure are used for all nine subsets. All six hy-
potheses are rejected in their respective subsets according to the p-values given in Scenario
1.

Figure 4: (a) Decision Flowchart (b) Venn Diagram of Rejection Regions of Example 3

Step 4. Consolidate results from each subset to make conclusions on each hypothesis.
The decision rule for each individual hypothesis is as follows:

(4a) H11 is rejected since it is rejected in the decomposed subsets containing H11:
{H11, H21}, {H11, H22}, and {H11, H23}. H21 is also rejected due to similar reason.

(4b) H12 is rejected because the dominant hypothesis H11 in its upper level has been re-
jected in (4a) and H12 is also rejected in the decomposed subsets containing H12: {H12, H22},
{H12, H23}, and {H12, H21}. H22 is rejected due to similar reason.

(4c) H13 is rejected because both dominant hypotheses H11 and H12 its upper levels
have been rejected already in (4a) and (4b), and H13 is also rejected in the decomposed
subsets containing H13: {H13, H23}, {H13, H21}, and {H13, H22}. H23 is rejected due to
similar reason.

In conclusion, all six hypotheses in Scenario 1 are rejected by the multiple testing
procedure built on the covering principle.

Now let us consider Scenario 2. Suppose observed p-values: p11 = 0.0374, p12 =

0.024, p13 = 0.024, p21 = 0.024, p22 = 0.04, p23 = 0.024. According to the graphical
procedures in Figure 3, the left graph only rejects H21; the right graph rejects H11, H12 and
H21.

The covering principle rejects all six hypotheses if Holm’s procedure is used in three
subsets: {H11, H21}, {H12, H22}, {H13, H23} and the fixed sequence procedure is used in
the remaining six subsets: {H11, H22}, {H11, H23}, {H12, H21}, {H12, H23}, {H13, H21},
{H13, H22}.

Readers might have observed that different multiple testing procedures could be em-
ployed to the different subsets. In Scenario 1, Holm’s procedure is utilized for all nine
subsets universally for simplicity. However, in Scenario 2, Holm’s procedure is used for
the subset containing hypotheses from same tier. The fixed sequence procedure is used
for subsets with hypotheses from different tiers. The different choices between multiple
hypotheses testing procedures for different subsets leave the flexibility for practitioners to
develop a tailored multiple testing procedure. This type of choices may also increase the
power of tests in practice.
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4. Discussion and Closing Remarks

The covering principle provides a new approach and may play an important role in solving
multiple hypotheses testing problems in which there are constraints/orders among null hy-
potheses. The covering principle can be viewed as an extension and generalization to the
popular closed test principle and the partitioning principle in some sense. The constraints
or pre-specified orders of testing hypotheses and making decisions can be described by the
dominance relations between hypotheses and specified by the coverage relations among
rejection regions in the sample space. The dominance/coverage relations are used to de-
compose a family of n null hypotheses into a few overlapped subsets. The process of
decomposition continues in a subset as long as there exists a dominance relation within the
subset. After the decomposition, the closed test principle and the partitioning principle can
be applied to these decomposed subsets.

The merit of the decomposition is twofold. First, it reduces the dimension of the multi-
ple testing problems since each subset has fewer hypotheses. Testing multiple hypotheses
is easier in lower dimensions. Second, each decomposed subset forms a “new family” of
null hypotheses. Any α-level multiple testing procedure can be used for testing hypotheses
in each subset. Users may choose different multiple test procedures for different decom-
posed subsets according to different situations. In Example 3, Holm’s procedure is chosen
for subsets with hypotheses from same tier, whereas a fixed sequence procedure is used for
subsets with hypotheses from different tiers. The choice of a multiple testing procedure for
a particular subset might depend on the circumstances in practice. In fact, a Hochberg’s
procedure (1988) could be used for the subset {H11, H21} if there is a positive correlation
between the test statistics of the two hypotheses. The flexibility of choosing different mul-
tiple testing procedures for different subsets may facilitate users in practice and improve
testing power in some situations.

5. Appendix

5.1 Proof of Theorem 1

By the results (Finner & Strassburger (2002),Eq.(2.2) on p. 1197; Sonnemann (2008),
Eq.(3.4) on p. 645), we have {ψi : i ∈ N } ∈ 8α(N ) if and only if ∀∅ 6= S ⊆ N ,
∀θ ∈ ∩i∈S Hi , Pθ (max

i∈S
ψi = 1) ≤ α. For ∀∅ 6= S ⊆ N , consider two cases of the

relationship between S and J .
Case I: J 6⊆ S. There exists a j0 ∈ J such that j0 6∈ S, then S ⊆ N \ j0. By the

definition of ψi in equation (3), ψi ≤ min
j∈J

φ
j
i , ∀i ∈ N , we have ψi ≤ φ

j0
i , j0 6= i ∈ N .

Therefore, max
i∈S

ψi ≤ max
i∈S

φ
j0
i . By the assumption of Theorem 1, {φ j0

i : i ∈ N \ j0} ∈

8α(N \ j0), and S ⊆ N \ j0, hence ∀θ ∈ ∩i∈S Hi , Pθ (max
i∈S

φ
j0
i = 1) ≤ α. Therefore,

Pθ (max
i∈S

ψi = 1) ≤ Pθ (max
i∈S

φ
j0
i = 1) ≤ α.

Case II: J ⊆ S.
If S ∩ I = ∅, then S = S \ I , hence max

i∈S
ψi = max

i∈S\I
ψi .

If S ∩ I 6= ∅, by the definition of ψi in equation (3), ψi ≤ max
j∈J

ψ j , i ∈ I , and since

∀i ∈ S ∩ I ⊆ I , hence max
i∈S∩I

ψi ≤ max
j∈J

ψ j . Because J ⊆ S and I ∩ J = ∅, then

J ⊆ S \ I . Since S = (S ∩ I ) ∪ (S \ I ), we have max
i∈S

ψi = max(max
i∈S∩I

ψi ,max
i∈S\I

ψi )

≤ max(max
j∈J

ψ j ,max
i∈S\I

ψi ) = max
i∈S\I

ψi . But S \ I ⊆ S, hence max
i∈S

ψi ≥ max
i∈S\I

ψi . Therefore
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max
i∈S

ψi = max
i∈S\I

ψi .

Similarly, by the definition of ψi in equation (3), ψi ≤ φ I
i , i ∈ N \ I , and since

∀i ∈ S \ I ⊆ N \ I , hence max
i∈S\I

ψi ≤ max
i∈S\I

φ I
i . By the assumption of Theorem 1, {φ I

i : i ∈

N \ I } ∈ 8α(N \ I ), and S\ I ⊆ N \ I , then ∀θ ∈
⋂

i∈S\I

Hi , Pθ (max
i∈S\I

φ I
i = 1) ≤ α. Therefore

∀θ ∈
⋂
i∈S

Hi ⊆
⋂

i∈S\I

Hi , Pθ (max
i∈S

ψi = 1) = Pθ (max
i∈S\I

ψi = 1) ≤ Pθ (max
i∈S\I

φ I
i = 1) ≤ α.

Combining Case I and II above, we have ∀∅ 6= S ⊆ N , ∀θ ∈
⋂
i∈S

Hi , Pθ (max
i∈S

ψi =

1) ≤ α, therefore {ψi : i ∈ N } ∈ 8α(N ).
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