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Abstract
We consider detection of multiple changes in the distribution of periodic and autocorrelated data.

We show that periodicity and autocorrelation degrade existing change detection methods since they
blur the changes that these procedures aim to discover. To account for periodicity we transform the
sequence of vector observations by embedding them in matrices and thereby producing a sequence
of i.i.d. matrix observations. We propose methods of testing the equality of matrix distribution
functions and offer change detection algorithms that can be applied to matrix observations. In
particular, we use the E-divisive algorithm and apply clustering methods to a sample of observation
matrices. Methods that ignore the periodicity have very low statistical power to detect changes in the
mean or the variance of periodic data when the periodic effects overwhelm the actual changes, while
the proposed methods detect such changes with high power. We illustrate the proposed methods by
detecting changes in the total revenue for accounting, tax preparation, bookkeeping, and payroll
services, provided by US Bureau of the Census.
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1. Introduction

The goal of this paper to detect changes in the distribution of periodic data. Change point
analysis concerns detection of changes in the distribution of the observations that are or-
dered by time or location. Suppose {Yi}Ti=1 is a sequence of independent random vectors
in <d with probability distribution functions Fi. The change point problem tests the null
hypothesis, H0 : F1 = F2 = . . . = FT against the alternative

Ha : F1 = . . . = Fη1 6= Fη1+1 = . . . = Fη2 6= Fη2+1 = · · · = Fηs 6= Fηs+1 . . . = FT

where 1 < η1 < η2 < . . . < ηs < T are the respective unknown locations of change points
and s is the unknown number of change points.

Investigators often assume that Fi have a common parametric family indexed by a (vec-
tor) valued parameter θ. Chen and Gupta (2012) present a lucid account of change point
analysis and consider several distributions and models, including parametric, nonparamet-
ric, regression, times series, sequential, and Bayesian, among others. The goal of any
change point analysis is twofold. One needs to detect if there are any significant changes
and then to locate the change point(s). We consider the retrospective models that assume all
observations in the sequence are available initially for detection of multiple change points.
Change point methods finds numerous applications in stock market analysis, speech recog-
nition, quality control, climate change, traffic accident rate, geological and genetics obser-
vations, among others. There has been considerable interest and progress in extending the
methods of change point detection to multivariate data using both discrete and continuous
distributions.

In financial analysis, Ross (2013) comments that the abnormal shifts in stock market
is always worthy of detection. Medical condition monitoring involves trend detection in
physiological variables such as heart rate and electroencephalogram for specific medical
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issues. Bosc et al (2003) use magnetic resonance imaging to detect multiple sclerosis le-
sion evolution. Maboudou-Tchao and Hawkins (2013) develop a detection method for
multivariate normally distributed data. Kim (1996) discusses the likelihood ratio test and
proposes a method to detect a change in mean when observations are not independent.
When a complaint of discrimination is made, an employer may respond by hiring more mi-
norities. Freidlin and Gastwirth (2000) proposed cumulative-sum based procedures for the
analysis of hiring data following the hypergeometric distribution. Applications are abun-
dant in image analysis to detect abrupt events such as security breaches from video-based
surveillance (Radke, 2005) and detection of credit card fraud (Bolton and Hand, 2002).

One can view change point detection as a process to partition the observation sequence
into homogeneous adjacent segments. The observations within each segment are assumed
unchanged. For example, Harnish et al. (2009) modify agglomerative clustering algorithms
with a time-ordered constraint to locate the change points. Bahrampour et al. (2011) iden-
tify the change points by a weighted and constrained k–means clustering algorithm. Many
investigators assume that the observations in each segment are independently and identi-
cally distributed (i.i.d) and tests for change points from models that have i.i.d errors are by
now well understood. However, in many applications with periodic data, consideration of
seasonal effects prompts us to modify the i.i.d. assumption of the identical segments. For
example, the temperature of a region is a typical periodic observation affected by seasons.
Hence, the distributions are allowed to vary within a fixed period of time. If we ignore
the periodicity of the observations and apply the change detection procedures directly, the
periodic effect will blur the changes we aim to detect. If one analyzes monthly temperature
data to detect changes without considering the periodicity of the observations (different
seasons), the changes in temperatures across years can be overwhelmed by the changes
between seasons. Consequently, such change points are less likely to be detected. More
details about the influence of periodicity are given in Section 5. To address these shortcom-
ings, we combine the observations into blocks and compare the resulting blocks in order to
account for the periodic effects.

Change detection methods are usually based on homogeneity tests. For example, Lung-
Yut-Fong et al. (2011) use rank statistic to estimate change points. In order to perform the
analysis on the blocks of observations, we offer a test of equality of distribution functions
for matrix distributions. Our method generalizes the work of Szekely and Rizzo (2004),
Baringhaus and Franz (2004), and Biswas and Ghosh (2014) on the equality of vector dis-
tribution functions to the equality of matrix distribution functions. The proposed method
extends the change detection algorithms that are often applied to vector observations to ma-
trix observations. Matteson and James (2014) propose a change detection algorithm based
on the energy statistic of Szekely and Rizzo (2004). In particular, we use the E-divisive
algorithm of Matteson and James (2014) and apply clustering methods to our basic data
structure, which is a sample of observation matrices. Note that the assumption of indepen-
dence still holds in this paper, which is necessary for derivations and proofs. The main
strategy is to embed non-identical vectors in matrices and thereby producing a sequence of
i.i.d. matrix observations.

A random matrix is a matrix whose entries are random variables. When the observa-
tions are drawn over time or in a sequence of repeated experiments, we can arrange the
observations in a sequence of random matrices. For example, Banerjee et al. (2015) ar-
ranges a sequence of multivariate normal observations into well separated blocks of time
in order to detect the change in the correlation structure. A change in the correlation ma-
trix of the multivariate normal distribution is reflected in a change of the correlation matrix
associated with each block. To model random matrices, many matrix-valued (discrete and
continuous) distributions are presented in the literature. Gupta and Nagar (1999) discuss

 
219



matrix variate distributions systematically and present examples for matrix variate normal,
Wishart, Dirichlet, and elliptical distributions, among others. Lovison (2006) proposes a
matrix-valued Bernoulli distribution with extensions for categorical matrix data based on
log-linear representation.

Using the proposed homogeneity test for change-point detection in matrices, a sequence
of matrix observations is segmented into homogeneous groups by the change points. The
change points are detected by optimizing the test statistic over the candidate positions of the
segment boundaries. Conducting a homogeneity test on every possible segment (even after
considering time constraints) is time consuming, especially when the number of change
points are large. Work of Barry and Hartigan (1992, 1993) on product partition models
and Loschi and Cruz (2005) on computing the probability of a change are particularly rele-
vant in this direction. Vostrikova (1981) proposes binary segmentation procedure to detect
the number of change points and their locations in a multidimensional random process.
Matteson and James (2014) consider the change point problem as a constrained clustering
problem and perform hierarchical divisive and agglomerative algorithms to determine the
total number of change points and their locations. In this paper, we will use the hierarchical
clustering algorithm for multiple change point detection when considering a sequence of
matrix observations.

Assessing the significance of a candidate change point requires finding the null distri-
bution of the optimized statistic. Since we optimize the test statistic with respect to the
candidate positions, the null distribution of the optimized statistic is different from the
null distribution of the test statistic for homogeneity test. In this direction, Yao and Davis
(1986) obtain the asymptotic null distribution of the optimization based on the properties
of Brownian bridge. Lung-Yut-Fong et al. (2011) use Monte Carlo experiments to obtain
asymptotic p-value of the test for change points. Matteson and James (2014) determine the
statistical significance of a change point based on permutation testing. In this paper, we
also use permutation method to obtain the null distribution of the optimized test statistic.

The article is organized as follows. We discuss the methodology that transforms a
periodic, but independent sequence of vectors into i.i.d. matrices in Section 2. In Section 3,
we discuss tests for the homogeneity of two matrix variate distributions. In Section 4, we
propose algorithms for detecting multiple change points based on the proposed statistics.
A simulation study compares the proposed method with other change detection algorithms
under three scenarios in Section 5. In Section 6, we use the proposed methods to detect
changes in a real periodic data set. We provide summary and recommendations in the last
Section. The proofs appear in the Appendix.

2. Transforming a Periodic Sequence

A sequence of independent random vectors {Yt}Tt=1 is m-periodic if there is a positive
integer m such that for any integer t ∈ [1,m], the random vectors Yt,Yt+m,Yt+2m, · · ·
are i.i.d distributed. For example, suppose m = 2, the sequence Y1,Y3,Y5 · · · are i.i.d
distributed and Y2,Y4,Y6 · · · are also i.i.d distributed. However, Y1 and Y2 are inde-
pendent but not identical. To maintain complete periods, we assume that T is a multiple
of m. Let F be the joint distribution of {Yt}Tt=1. A change point problem for a periodic
sequence considers whether the joint distribution F changes over time.

Consider a single hypothesized change point location τ . Let {Yt}Tt=1 ∈ <d be an
independent sequence of time-ordered vectors and suppose Aτ = {Y1, · · · ,Yτ} and
Bτ = {Yτ+1, · · · ,YT } are two independent m-periodic random sequences with joint
distribution functions F and G, respectively. We test the hypothesis H0 : F = G verses
Ha : F 6= G. If H0 is rejected, we conclude that there is a change point at τ , otherwise,
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the changes only come from periodic effects, which are expected. Note that the marginal
distributions of the vectors are not identical, even when no change point is detected.

A naive approach to handle periodic data is to obtain the weighted average of each
period and regard the weighted averages as i.i.d observations. However, this reduction re-
sults in lose of information and the conclusions are influenced by the method of calculating
the weighted averages. Another possible approach is to adjust the series for seasonality
before checking for change points. However, the estimates of the seasonal parameters are
biased when the mean shift due to the change point is large and ignored (Lund et al, 2007).
To sidestep these difficulties one may transfer an m-periodic independent sequence of ob-
servations to an identical and independent sequence of observations. To achieve this, we
combine the observations (vectors) into blocks (matrices). Each block contains the obser-
vations within the period.

Let Qj = [Y(j−1)m+1, · · · ,Ymj ], for j = 1 · · · , n, where n = T/m is the number of
matrices. If the number of the vectors is not a multiple of m, the remaining observations
form the entries of last matrix. The index of Yi and the index of corresponding matrix Qj
have the relationship j = d ime. With matrices, the periodicity is contained within blocks.
Since we use blocks as the basic data structure, we assume that the change point does not
exist within the blocks. After the arrangement of the vectors into matrices, we use the
change detection methods where the observations are matrices. Therefore, under the null
hypothesis of no change point, the observation matrices remain identical.

3. Homogeneity of Two Matrix Distributions

Maa, et al. (1996) construct a theoretical foundation for the use of the interpoint distances
in comparison of high-dimensional data sets and show that the equality of the distributions
of within and between sample interpoint vector distances is equivalent to F = G for both
discrete and continuous observations. Szekely and Rizzo (2004) and Baringhaus and Franz
(2004) propose a distance statistic for testing the homogeneity of vector distributions. We
extend their work to matrix-valued distributions using matrix norms.

Let Q1, · · · , Qτ , Qτ+1 · · · , Qn be an independent sequence of d × m random ma-
trices such that Aτ = {Q1, · · · , Qτ} follow matrix-valued distribution F and Bτ =
{Qτ+1, · · · , Qn} follow matrix-valued distribution G. We assume that τ is known and
are interested in testing the null hypothesis H ′0 : F = G against the alternative H ′a :
F 6= G. The Frobenius norm for a d × m matrix A = (aij) is defined as ‖A‖Fr=
(
∑d

i=1

∑m
j=1 a

2
ij)

1/2, where aij is the element in the ith row and jth column. The squared
Frobenius norm is monotonically increasing function of the eigenvalues of a square matrix
and invariant to orthogonal transformations. We use ‖u‖Eu to denote the Euclidean norm
for a vector u = (u1, · · · , ud), i.e. ‖u‖Eu= (

∑d
i=1 u

2
i )

1/2. Thus, the Frobenius norm is
the Euclidean norm on the space of matrices <dm.

Theorem 1. Let A1, A2, B1, B2 be independent d×m random matrices. Suppose A1, A2

are i.i.d from F , and B1, B2 are i.i.d from G. If the expectations E‖A1‖Fr and E‖B1‖Fr
are finite, we have

2E‖A1 −B1‖Fr−E‖A1 −A2‖Fr−E‖B1 −B2‖Fr≥ 0,

with equality holding if and only if F = G.

Let µFG = E‖A1 − B1‖Fr, µFF = E‖A1 − A2‖Fr, and µGG = E‖B1 − B2‖Fr.
Theorem 1 shows that instead of testing H ′0 : F = G, we can consider an equivalent null
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hypothesisH ′0 : 2µFG−µFF−µGG = 0 against the alternativeH ′a : 2µFG−µFF−µGG >
0. We estimate µFG, µFF and µGG by

µ̂
(τ)
FF =

(
τ

2

)−1 τ−1∑
i=1

τ∑
j=i+1

‖Qi −Qj‖Fr, (1)

µ̂
(τ)
GG =

(
n− τ

2

)−1 n−1∑
i=τ+1

n∑
j=i+1

‖Qi −Qj‖Fr, (2)

µ̂
(τ)
FG = (τ(n− τ))−1

τ∑
i=1

n∑
j=τ+1

‖Qi −Qj‖Fr. (3)

Thus, a statistic for testing H ′0 : F = G is

L1(Aτ ,Bτ ) = 2µ̂
(τ)
FG − µ̂

(τ)
FF − µ̂

(τ)
GG, (4)

and we reject the null hypothesis for large values of L1(Aτ ,Bτ ). The limiting distribution
of L1(Aτ ,Bτ ) is shown in the following theorem.

Theorem 2. Suppose Aτ = {Q1, · · · , Qτ} and Bτ = {Qτ+1, · · · , Qn} are two sets of
independent observations from matrix-valued distributions F . As min(τ, n − τ) → ∞,
the statistic n · L1(Aτ ,Bτ ) is asymptotically distributed as

∑∞
i=1 λi(Z

2
i − 1), where the

constants λi depend on F and Z2
i are independent χ2

1 random variables.

Biswas and Ghosh (2014) derive necessary and sufficient conditions for the equality of
vector-valued distributions. The next theorem extends their result to matrix distributions
and shows that two matrix distributions are equal if and only if the mean Frobenius inter-
norm of the within and between distances are equal.

Theorem 3. Let A1, A2, B1, B2 be independent d×m random matrices. Suppose A1, A2

are identically distributed with the matrix-valued distribution F , and B1, B2 are identi-
cally distributed with the matrix-valued distribution G. If the expectations E‖A1‖Fr and
E‖B1‖Fr are finite, we have µFF = µGG = µFG if and only if F = G.

Based on Theorem 3, we propose L2(Aτ ,Bτ ) for testing equality of matrix-valued
distributions where

L2(Aτ ,Bτ ) = (µ̂
(τ)
FF − µ̂

(τ)
FG)2 + (µ̂

(τ)
GG − µ̂

(τ)
FG)2, (5)

with µ̂(τ)FF , µ̂
(τ)
FG, and µ̂(τ)GG defined by equation (1)-(3). The limiting distribution ofL2(Aτ ,Bτ )

is given in Theorem 4.

Theorem 4. Suppose Aτ = {Q1, · · · , Qτ} and Bτ = {Qτ+1, · · · , Qn} are two sets of
independent observations from matrix-valued distributions F andG, respectively. Suppose
τ/n → λ for some λ ∈ (0, 1) as n → ∞. The statistic n · L2(Aτ ,Bτ ) is asymptotically
distributed as 2σ2

0
λ(1−λ)χ

2
1, where σ20 = V ar[E(‖Q1 −Q2‖Fr|Q1)].

4. Detection of Change Points

4.1 Detection of a Single Change Point

We now consider the setting in which the position of the potential change points are un-
known. We first assume that there is only one change point. Let L(τ) be the statistic
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used, which can be L1(τ) or L2(τ) defined in equations (4) and (5), respectively. Suppose
Q1, · · · , Qn ∈ <d×m is an independent sequence of matrix-valued observations, a single
change point τ̂ is estimated with

τ̂ = arg max
τ

L(τ). (6)

In practice, calculating L(τ) for every change candidate directly from the observa-
tions might be computationally expensive, especially when dimension and/or sample size
is large. We propose the following computing forms for L1(τ) and L2(τ).

Lemma 1. Let {Qi}ni=1 be a sequence of matrix observations and suppose µ̂(τ)FF , µ̂
(τ)
GG, µ̂

(τ)
FG,

µ̂
(τ+1)
FF , µ̂

(τ+1)
GG and µ̂(τ+1)

FG are defined by equations (1)-(3). One can compute µ̂(τ+1)
FF , µ̂

(τ+1)
GG

and µ̂(τ+1)
FG based on µ̂(τ)FF , µ̂(τ)GG, and µ̂(τ)FG using

µ̂
(τ+1)
FF =

τ − 1

τ + 1
µ̂
(τ)
FF +

1(
τ+1
2

) τ∑
i=1

‖Qi −Qτ+1‖Fr, (7)

µ̂
(τ+1)
GG =

n− τ
n− τ − 2

µ̂
(τ)
GG −

1(
n−τ−1

2

) n∑
i=τ+2

‖Qi −Qτ+1‖Fr, (8)

µ̂
(τ+1)
FG =

1

k
{τ(n− τ)µ̂

(τ)
FG −

τ∑
i=1

‖Qi −Qτ+1‖Fr+
n∑

i=τ+2

‖Qi −Qτ+1‖Fr} (9)

where k = (τ + 1)(n− τ − 1).

Therefore, we only need to compute the distance between Qτ+1 and other points for
updating the statistics L1(τ + 1) and L2(τ + 1). This short-cut form is of immense com-
putational advantage since computing Frobenius norms are expensive, especially when d
and/or m are large.

4.2 Detection of Multiple Change Points

Suppose that there are s change points in the sequence of matrix observations {Qi}ni=1.
We denote them as τ1 < · · · < τs. Matteson and James (2014) propose two hierarchical
methods to estimate the locations of all the change points.

The change points can partition the observation sequence into s + 1 adjacent clusters.
A cluster is defined as c(τ1, τ2) = {Qi | τ1 ≤ i ≤ τ2} where τ1 < τ2. The observations
within each cluster must remain consecutive in time order. Two clusters c1(τ1, τ2) and
c2(τ3, τ4) where τ2 ≤ τ3 are adjacent if τ3 = τ2 + 1. In order to find the locations of the
change points, we consider clustering the observation matrices into s+1 disjoint sets using
various clustering algorithms and treat the starting observation of each cluster as a change
point candidate. Hence, clustering is performed under time ordered constraints.

Kaufman and Rousseeuw (2009) describe divisive and agglomerative algorithms for hi-
erarchical clustering. Divisive methods partition a single large cluster into smaller clusters.
Suppose k − 1 change points have been detected and partition the observation sequence
into k > 2 clusters C1, · · · ,Ck. Given these clusters, we apply the procedure for finding
a single change point to the observations within each of the k clusters. Let L(τ̂∗i ) be the
criterion for the change point candidate τ̂∗i obtained from cluster Ci. The kth change point
τ̂k is estimated with

τ̂k = arg max
i∈{1,··· ,k}

L(τ̂∗i ).
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Starting with n individual clusters, agglomerative algorithm build new clusters by
merging the closest clusters at each stage until one cluster remains. We can use L1 or
L2 in equations (4) and (5) as measures of the dissimilarity or distance (linkage function)
between two clusters. Suppose we have k ordered clusters as {C1, · · · ,Ck}. For adjacent
clusters Ci = {Qh+1, Qh+2, · · · , Qh+t} and Ci+1 = {Qh+t+1, Qh+t+2, · · · , Qh+t+r},
the linkages based on L1 and L2 are

D1(Ci,Ci+1) = 2µ̂(i,i+1) − µ̂(i,i) − µ̂(i+1,i+1), (10)

D2(Ci,Ci+1) = (µ̂(i,i) − µ̂(i,i+1))
2 + (µ̂(i+1,i+1) − µ̂(i,i+1))

2, (11)

where

µ̂(i,i) =

(
t

2

)−1 t−1∑
α=1

t∑
β=α+1

‖Qh+α −Qh+β‖Fr,

µ̂(i+1,i+1) =

(
r

2

)−1 r−1∑
α=1

r∑
β=α+1

‖Qh+t+α −Qh+t+β‖Fr,

µ̂(i,i+1) = (tr)−1
t∑

α=1

r∑
β=1

‖Qh+α −Qh+t+β‖Fr,

and Qh+1 is the first matrix observation of Ci, t and r are the number of observations of
Ci and Ci+1, respectively. For clusters that are not adjacent, the linkages are set to infinity.
We merge the clusters with minimum linkage and find k − 1 clusters or k change points.
We continue the process until the number of clusters reach s. Since we set the linkage
between distant clusters to infinity, only adjacent clusters can be merged. Therefore, the
observations in the updated clusters remain consecutive in time order.

We will next show that once two clusters merge, the distances between the new cluster
and other clusters can be computed from existing values. Suppose A = {Ai}n1

i=1,B =
{Bi}n2

i=1,C = {Ci}n3
i=1 are three clusters of matrices. The average inter matrix distances

are

µ̂AA =

(
n1
2

)−1 n1−1∑
i=1

n1∑
j=i+1

‖Ai −Aj‖Fr,

µ̂BB =

(
n2
2

)−1 n2−1∑
i=1

n2∑
j=i+1

‖Bi −Bj‖Fr,

µ̂AB = (n1n2)
−1

n1∑
i=1

n2∑
j=1

‖Ai −Bj‖Fr,

µ̂CC =

(
n3
2

)−1 n3−1∑
i=1

n3∑
j=i+1

‖Ci − Cj‖Fr,

µ̂AC = (n1n3)
−1

n1∑
i=1

n2∑
j=1

‖Ai − Cj‖Fr,

µ̂BC = (n2n3)
−1

n2∑
i=1

n3∑
j=1

‖Bi − Cj‖Fr.

Suppose clusters A and B are adjacent and merge to form a new cluster K . Let N =
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(n1 + n2)(n1 + n2 − 1), the updated inter matrix distance are

µ̂KK =

(
n1 + n+ 2

2

)−1 n1−1∑
i=1

n1∑
j=i+1

‖Ai −Aj‖Fr+
n2−1∑
i=1

n2∑
j=i+1

‖Bi −Bj‖Fr+
n1∑
i=1

n2∑
j=1

‖Ai −Bj‖Fr,

=
1

N
{n1(n1 − 1)µ̂AA + n2(n2 − 1)µ̂BB + n1n2µ̂AB}

µ̂KC = ((n1 + n2)n3)
−1

n3∑
j=1

(

n1∑
i=1

‖Ai − Cj‖Fr+
n2∑
i=1

‖Bi − Cj‖Fr),

=
n1

(n1 + n2)
µ̂AC +

n2
(n1 + n2)

µ̂BC .

Hence, if the clusters K and C are adjacent, the linkages between them is

D1(K ,C ) =2µ̂KC − µ̂KK − µ̂CC

=
2n1

(n1 + n2)
µ̂AC +

2n2
(n1 + n2)

µ̂BC −
n1(n1 − 1)

N
µ̂AA −

n2(n2 − 1)

N
µ̂BB

− n1n2
N

µ̂AB − µ̂CC

D2(K ,C ) =(µ̂KC − µ̂KK)2 + (µ̂KC − µ̂CC)2

=(
n1

n1 + n2
µ̂AC +

n2
n1 + n2

µ̂BC −
n1(n1 − 1)

N
µ̂AA −

n2(n2 − 1)

N
µ̂BB

− n1n2
N

µ̂AB)2 + (
n1

n1 + n2
µ̂AC +

n2
n1 + n2

µ̂BC − µ̂CC)2

Therefore, we do not need to store the original data after the initialization of the cluster
linkage. After each merge, the linkage between the new cluster and its adjacent clusters
can be computed efficiently. This method provides computational and storage advantages.

4.3 Discovering the Significance of Change Points

The previous sections have proposed a procedure for estimating the locations of the change
points. We use a permutation method to determine the significance of a change point.
Suppose that k − 1 change points have been estimated, resulting in k clusters, and τ̂k is
the newly proposed change point candidate with test statistic L(τ̂k). To determine whether
τ̂k is significant, one needs to obtain the behavior of L(τ̂k) under the null hypothesis that
the observations in the clusters separated by τ̂k are homogeneous. The null distribution is
different from that in homogeneity test due to the optimization in equation (6). A possible
calibration approach relies on permutation tests.

Under the null hypothesis that τ̂k is not a change point, we conduct a permutation test
as follows. Consider the cluster where τ̂k locates, we reorder the observations within the
cluster under block constrain and construct a new sequence. The units that are reordered
are matrices instead of vectors. The new sequence will still be periodic with same period
size. We then apply the single change detection method described in section 4.1 to the new
sequence, and denote the test statistic by L(r)(τ̂k) for the rth permutation. When the null
hypothesis of no additional change points is true, the distribution of L(r)(τ̂k) is the same as
the distribution of L(τ̂k). Thus, we can obtain the empirical distribution of L(τ̂k) based on
the values of the statistics L(r)(τ̂k).

The permutation test will result in exact critical values if we consider all possible per-
mutations. However, unless the sample size is small, this is not computationally feasible.
Instead, we obtain an approximate value by performing a sequence of R random permuta-
tions. The critical value cα is approximated using the (1 − α)th quantile of the sequence
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{L(r)(τ̂k)}Rr=1. If the test statistic L(τ̂k) is larger than the critical value cα, we say that the
change point τ̂k is significant.

5. Simulation

In this section, we present simulation results that compare the statistics L1 and L2 with
E-divisive method (Matteson and James, 2014), Bayesian method (Erdman and Emerson,
2007), regression model (Zeileis et.al., 2001), and empirical distribution function method
(Kojadinovic, 2017).

Barry and Hartigan (1993) propose the product partition models for change point prob-
lems. This Bayesian methodology assigns probability distributions to the change points
and the parameters of each cluster. The point that maximizes the posterior probability is
considered as a change candidate. If the posterior probability of a change candidate reaches
a specified threshold, then it is labeled a change point. Erdman and Emerson (2007) have
implemented this method in the R package bcp. We refer to this method as Bayesian.

The R package strucchange is used for testing structural changes in linear regression
models. The package is constructed by Zeileis et. al. (2001) and contains tools for both
online and offline change points detection. A change point location is estimated when it
minimizes the residual sum of square of the regression model, and BIC is used for multiple
change points detection. We refer to this method as Regression.

The R package npcp provides non-parametric CUSUM tests for detecting changes in
possibly serially dependent univariate or multivariate observations. Kojadinovic (2017)
implemented this routine based on the works from Holmes et. al. (2013), Bucher and
Kojadinovic (2016), and Bucher et. al. (2017). We refer to this method as Empirical.

The detection procedures are performed for periodic sequences under two scenarios: 1)
change in the mean and 2) change in the variance. The period of the sequences is m = 2
and the effect of periodicity is a shift of the mean. Each simulation applies the change point
detection methods to 1000 independent replicates. Within these simulations, we consider
hypotheses of changes in the mean and changes in the variance of periodic sequences. Sup-
pose {Xt}n1

t=1 and {Yt}n2
t=1 are observations drawn from bivariate normal distributions. We

choose different mean vectors and covariance matrices for different simulation scenarios.

5.1 Change in Mean for Periodic Sequence

Consider the scenario that the changes only occur in the mean of the periodic sequence. The
covariance matrices of {Xt}n1

t=1 and {Yt}n2
t=1 are the same, denoted as Σ, while the means

are different. Specifically, the means of X1,X3, · · · ,Xn1−1 are µ1 = (0, 0)′, whereas the
means of X2,X4, · · · ,Xn1 are µ1 + ξ = (ξ, ξ)′, the means of Y1,Y3, · · · ,Yn2−1 are
µ2 = (µ2, µ2)

′, and the means of Y2,Y4, · · · ,Yn2 are µ2 + ξ = (µ2 + ξ, µ2 + ξ)′. In the
simulations, the measure of periodic effect varies in ξ ∈ {0, 10, 100} and there are three
different choices of µ2 in {0, 1, 10}. The sample sizes are n1 = n2 = 50. The covariance
matrix Σ is the identity matrix.

Consider the null hypothesis of no change points. Table 1 reports the probability of
rejecting the null hypothesis, which is the type-I error when µ2 = 0 and power when
µ2 ≥ 0. When there is no periodic effect (ξ = 0), all methods have similar type-I errors
close to the nominal-level of 0.05. When periodic effect is small, the power of E-divisive
method is slightly larger than L1 and L2. Bayesian method seems biased at the power falls
below the nominal level. Regression method shows low power when the mean difference is
small, while the Empirical method performs similarly to L1 and L2. When periodic effect
exists, the E-divisive method seldom rejects the null hypothesis. When sample size is
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Table 1: The probability of rejecting the null hypothesis of no change when the change
occurs in the mean. The sample sizes are n1 = n2 = 50.

ξ µ2 L1 L2 E-divisive Bayesian Regression Empirical
0 0 0.051 0.041 0.057 0 0.032 0.034

0.5 0.733 0.138 0.854 0.001 0.494 0.711
1 1 0.918 1 0.008 0.979 0.821
10 1 1 1 1 1 1

10 0 0.051 0.043 0 0 0 0
0.5 0.710 0.133 0 0 0 0
1 1 0.911 0.001 0 0 0
10 1 1 1 0.107 1 0.367

100 0 0.049 0.052 0 0 0 0
0.5 0.730 0.154 0 0 0 0
1 1 0.925 0 0 0 0
10 1 1 0.445 0 0 0.104

Table 2: The power of different methods for detecting change of the mean of periodic data
when µ2 = 0.5 with different sample sizes.

ξ n1 = n2 L1 L2 E-divisive Bayesian Regression Empirical
0 50 0.750 0.151 0.868 0.001 0.472 0.689

80 0.929 0.207 0.980 0 0.672 0.929
100 0.976 0.278 0.994 0.001 0.737 0.961
120 0.992 0.360 0.999 0 0.827 0.990

10 50 0.747 0.125 0 0 0 0
80 0.941 0.246 0 0 0 0.002
100 0.971 0.290 0 0 0 0.021
120 0.994 0.391 0 0 0 0.011

n1 = n2 = 50, this method only reject 44.5% of the time, even though the mean difference
µ2 − µ1 is as large as 10. Bayesian, Regression and empirical methods perform worse and
have nearly no power when the periodic effect is large. When µ2 ≥ 0, L1 performs better
than L2, especially when the mean difference of the two samples is small. In addition,
increasing of periodic effect (ξ) has little impact on the performance of L1 and L2.

Table 2 shows the power of different methods when sample size changes. The mean
difference is µ2 = 0.5 and the sample sizes vary in n1 = n2 ∈ {50, 80, 100, 120}. In
addition, we consider both cases when there is no periodic effect (ξ = 0) or there is periodic
effect (ξ = 10). In Table 2, we can see that if there is no periodic effect, E-divisive method
performs better than L1 and L2. However, this gap is narrowed when the sample sizes n1
and n2 increase. This is reasonable because combining vectors into matrices decreases the
sample size, which will degrade permutation methods, especially when the origin sample
size is not large. The Empirical method performs similarly to L1 and works better when
sample size increases. The Bayesian, L2, and Regression methods do not perform well
when the mean difference is as small as 0.5. When periodic effect occurs (ξ > 0), L1

performs the best. Moreover, increasing the sample size improves the performance of L1

and L2.
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Table 3: The probability of rejecting the null hypothesis of no change when the change
occurs in variance and n1 = n2 = 50.

ξ σ L1 L2 E-divisive Bayesian Regression Empirical
0 1 0.048 0.058 0.051 0 0.032 0.038

3 0.708 0.893 0.701 0.108 0.058 0.153
4 0.942 0.991 0.962 0.211 0.074 0.231
5 0.988 0.997 0.993 0.369 0.080 0.363

10 1 0.051 0.037 0 0 0 0
3 0.733 0.896 0 0 0 0
4 0.927 0.982 0 0 0 0
5 0.982 0.998 0 0 0 0

100 1 0.045 0.043 0 0 0 0
3 0.706 0.912 0 0 0 0
4 0.951 0.994 0 0 0 0
5 0.990 0.998 0 0 0 0

5.2 Change in Variance for Periodic Sequence

We consider the scenario where unexpected changes occur in the variance of the periodic
sequence, while the expected periodic changes are still a shift of the mean. Thus, the means
of X1,X3, · · · ,Xn1−1 and Y1,Y3, · · · ,Yn2−1 are the same as µ1 = (0, 0)′, whereas the
means of X2,X4, · · · ,Xn1 and Y2,Y4, · · · ,Yn2 are µ1 + ξ = (ξ, ξ)′. The covariance
matrices of {Xt}n1

t=1 are Σ, while the covariance matrices of {Yt}n2
t=1 are σΣ. For the

simulations, the measure of periodic effect varies in ξ ∈ {0, 10, 100}. The matrix Σ is
identity matrix and we consider different choice of σ in {1, 3, 4, 5}. The sample sizes are
considered as n1 = n2 = 50.

Table 3 reports the type-I error under the null hypothesis of no change and the power
when the alternative hypothesis is change in the variance of the periodic sequence. When
there is periodic effect (ξ = 0), all three statistics maintain their nominal-level. Moreover,
the statisticL2 shows more power than all other methods. Bayesian, Regression and Empir-
ical method seldom detect the variance change even when no periodic effect occurs. When
there is periodic effect (ξ > 0), the existing methods do not reject the null hypothesis of
homogeneity at all whereas L1 and L2 show very good detection power. The power of L2

is larger than L1, especially when the variance changes are small.
Table 4 displays the power for detecting variance changes by these methods, with in-

creasing sample size. The sample sizes vary in n1 = n2 ∈ {50, 80, 100, 120}. Clearly, L2

perform better than all other methods even when there is no periodic effect. This is because
the statistic proposed by Biswas and Ghosh (2014) is more sensitive for variance difference
than the statistic proposed by Szekely and Rizzo (2004) and Baringhaus and Franz (2004).
In addition, both L1 and L2 performs better when the sample size increases.

5.3 Autocorrelation Effects

We have thus far considered the effects of periodicity on the existing change detection
methods with time series data. In practice, the observations are not only influenced by
periodic effects, but they are also correlated. In this section, we consider the performance of
the proposed methods when the observations are correlated. To isolate and study the effects
of autocorrelation, we assume no periodicity. Hence, the distributions of the observations
are identical if no changes occur. The dependence structure we consider is assumed exists
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Table 4: The power of different methods for detecting variance change of periodic data
when σ = 3 with different sample size

ξ n1 = n2 L1 L2 E-divisive Bayesian Regression Empirical
0 50 0.685 0.882 0.714 0.080 0.073 0.125

80 0.933 0.999 0.960 0.089 0.044 0.287
100 0.989 1 0.997 0.101 0.041 0.451
120 0.994 1 0.995 0.116 0.030 0.583

10 50 0.712 0.917 0 0 0 0
80 0.946 0.998 0 0 0 0
100 0.982 1 0 0 0 0
120 0.993 1 0 0 0 0

only within specific time periods. For example, suppose observations are gathered hourly
and we are interested in daily changes in the mean. While hourly observations within a day
are correlated, the observations of the next day are assumed to be independent of those of
the previous days.

Consider a sequence of observations Y1, · · · ,Ym,Ym+1, · · · ,Y2m, · · · ,Yn, where
n/m is an integer. We assume that the correlations occur within Ykm+1, · · · ,Y(k+1)m,
for k = 0, · · · , nm − 1. Let Ak+1 = [Ykm+1, · · · ,Y(k+1)m] be the matrix constructed by
correlated observations. The observation sequence Y1, · · · ,Yn is then transformed into
the block sequence A1, · · · , An/m. The observations in different blocks are independent.
Since we only consider the effect of the correlations, the observations within each block
are identically distributed, i.e. the marginal distribution of Ykm+1, · · · ,Y(k+1)m are the
same for k = 0, · · · , nm − 1.

The matrix normal is by far the most studied matrix-valued distribution and is com-
monly used in applications. Gupta and Nagar (1999) give the definition of matrix normal
distributions with the notationsMN (M,Σ,Ψ), where M is the expected value, Σ is the
covariance of the variables, and Ψ is the covariance of the observation vectors. Since the
marginal distributions of the observations (columns) in each block (matrix) are the same,
the expected matrix M should be under the constrain that the entries are the same within
each row. The type of dependence considered is constant correlations, e.g. Ψ is an m×m
matrix with 1s on the main diagonal and ψ on the off-diagonal. The observations are inde-
pendent if and only if ψ = 0.

Suppose the changes happen in the mean vector. Each simulation applies the change
point detection methods to 1000 independent replicates and computes the probability of
detecting the change. Within these simulations, the observations are generated by blocks
(matrices). Suppose {Ai}n1i=1 are drawn from matrix normal distributionMN (M1,Σ,Ψ),
and {Bi}n2i=1 are drawn from matrix normal distributionMN (M2,Σ,Ψ). The dimension
and the block size are set as d = 2 andm = 4, correspondingly. The Σ is d×d identity ma-
trix, while the Ψ is am×m constant correlation matrix where ψ varies in {0, 0.1, 0.3, 0.5}.
The block sample sizes are n1 = n2 = 25. The entries of M1 are the same as µ1 = 0,
while M2 is filled by µ2 that varies in {0, 0.5, 1}.

Consider the null hypothesis of no change points. Table 5 reports the probability of
rejecting the null hypothesis, which is the type-I error when µ2 = 0 and power when
µ2 ≥ 0. When the observations are independent (ψ = 0), most methods have similar type-
I errors, close to the nominal-level of 0.05. The power of L1, E-divisive and Empirical
methods are competitive in this case. When the observations are not independent (ψ > 0),
the E-divisive method has large type-I errors. When ψ = 0.1, E-divisive method’s type-I
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Table 5: The probability of rejecting the null hypothesis of no change point when the
changes occur in the mean and the matrix Ψ has constant correlation ψ.

ψ µ2 L1 L2 E-divisive Bayesian Regression Empirical
0 0 0.049 0.027 0.054 0 0.022 0.034

0.5 0.952 0.440 0.945 0 0.745 0.977
1 1 0.917 1 0.015 1 0.984

0.1 0 0.045 0.041 0.203 0.005 0.058 0.046
0.5 0.925 0.398 0.937 0.006 0.770 0.943
1 0.999 0.829 1 0.019 0.999 0.978

0.3 0 0.046 0.043 0.53 0.279 0.223 0.047
0.5 0.841 0.325 0.966 0.243 0.787 0.813
1 0.988 0.681 1 0.183 0.998 0.944

0.5 0 0.043 0.052 0.858 0.908 0.364 0.042
0.5 0.780 0.252 0.991 0.899 0.823 0.661
1 0.942 0.518 1 0.858 0.997 0.926

error is as large as 0.203. The power values are dubious when a method does not maintain
its nominal level at µ2 = 0. The L1, L2 and Empirical methods still have nominal type-
I error around 0.05. The L1 and Empirical methods also have competitive powers when
correlations occur. The Bayesian method does not work well when the mean difference is
small.

6. Application

We illustrate the proposed methods for detecting changes to the total revenue for account-
ing, tax preparation, bookkeeping, and payroll services in a data set provided by US Bureau
of the Census. The data is recorded quarterly from 2004 to 2017, and is displayed in Figure
1. The periodicity of the series can clearly be seen from the plot. Within a year, the revenue
is the highest in the first quarter and the lowest in the third or fourth quarter because nearly
all tax-related activities happen in the first quarter of the year. We would like to analyze the
data to determine whether the revenue changes across years and detect any change point.
We used E-divisive method (Matteson and James, 2014) with significance level α = 0.05,
and this method did not detect any change point.

We used the proposed L1 and L2 methods of periodic change point detection with
period size m = 4, R = 500 permutations and α = 0.05 . Both methods estimate a
significant change point in the 4th quarter of 2012. The change point appears with a vertical
line in Figure 1. The detected change point is significant with a p-value of less than 0.001
when using either L1 or L2 methods. We also apply Bayesian, Regression, and Empirical
methods to the data set. Bayesian model can not detect any change point in the data set. The
maximum value of the posterior probability is only 0.582. The regression model detects
three change points located in 1st quarter of 2007, 1st quarter of 2012, and 1st quarter
of 2015. The BIC of this separation reaches the minimum value 1126. Moreover, the
empirical model detects the change point in the 1st quarter of 2012 with p-value less than
0.001.

The change point in 4th quarter of 2012 corresponds to the American Taxpayer Relief
Act of 2012, passed by the United States Congress on January 1, 2013. This Act gives
higher tax rate at upper income levels and establishes caps on tax deductions and credits
for those taxpayers at upper income levels. Consequently, people or companies at upper
income levels sought more elaborate and extensive tax services in order to cushion the
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Figure 1: Total Revenue for Accounting, Tax Preparation, Bookkeeping, and Payroll Ser-
vices. (Source: https://fred.stlouisfed.org/series/REV5412TAXABL144QNSA)

impact from the Act. As a result, the revenue for accounting, tax preparation, bookkeeping,
and payroll services increased from the 4th quarter of 2012. Examination of the related
metadata does not reveal any clear reasons for the changes in 2007 and 2015 detect by
regression method. This example supports our findings from the simulation study and
provides a cautionary note on the routine application of change point detection methods
when the underlying assumptions are not satisfied.

7. Summary and Recommendations

We have proposed methods of detecting multiple change points in periodic data. Pop-
ular methods of change detection are designed to work with independent and identically
distributed vectors of observations. When seasonal effects or autocorrelations exist in the
observed vectors, they can no longer be identically distributed. Ignoring the periodic effects
will blur the changes that detection procedures aim to discover. To take the periodic effect
into account while maintaining iid data structure, we transform the sequence of observa-
tion vectors by embedding them in matrices. We propose methods of testing the equality of
matrix distribution functions, generalizing the work of Szekely and Rizzo (2004), Baring-
haus and Franz (2004), and Biswas and Ghosh (2014) on the equality of vector distribution
functions to the equality of matrix distribution functions. The proposed methods extend
the change detection algorithms that are often applied to vector observations to matrix ob-
servations. We also obtain short-cut computing formulas based on the Frobenius norms to
accelerate the detection process.

For multiple change point detection, we use hierarchical divisive and agglomerative al-
gorithms. We derive a combinatorial solution for the linkage function of the agglomerative
algorithm. To determine the significance of a newly proposed change point, we use permu-
tation permutations under block constrain. We compare the proposed detection methods
with an existing one that ignores the periodicity. A simulation study considers detection of
changes in the mean and the variance of autocorrelated or periodic data. The results show
that detection methods that ignore the periodicity of the data have very low statistical power
to detect changes in the mean or the variance when periodic effects overwhelm the actual
changes, while our methods detect such changes with high power. The proposed methods
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perform well with autocorrelated observations.
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A. Appendix:

The following Proposition defines a projection method for vectorization of matrices. The
proof of the Proposition when m = 1 appears in Baringhaus and Franz (2004).

Proposition 1. Suppose u ∈ <dm is a d-dimensional vector and let Sdm−1 be the surface
of the unit sphere in <dm. The Euclidean norm of u can be represent as

‖u‖Eu= γdm

∫
Sdm−1

|a′u|dµ(a),

where µ is the uniform distribution on Sdm−1, and

γdm =

√
π(dm− 1)Γ((dm− 1)/2)

2Γ(dm/2)
.

Proof of Theorem 1

Proof. To simplify notation, we use µFF , µGG and µFG to represent the expected value of
inter-norm within or between two distribution:

µFF = E‖A1 −A2‖Fr, µGG = E‖B1 −B2‖Fr, µFG = E‖A1 −B1‖Fr. (12)

Let vec(·) be an operator that maps a matrix to a vector by stacking the columns of the
matrix on top of one another. Let u1 = vec(A1), u2 = vec(A2), v1 = vec(B1) and
v2 = vec(B2).

Based on Proposition 1, one can show that

‖u1 − u2‖Eu= γdm

∫
Sdm−1

|a′(u1 − u2)|dµ(a),

where µ is the uniform distribution on Sdm−1 = {x ∈ <dm : ‖x‖Eu= 1}, the surface of
the unit sphere in <dm and γdm in Proposition 1. Similarly, we have

‖v1 − v2‖Eu = γdm

∫
Sdm−1

|a′(v1 − v2)|dµ(a),

‖u1 − v1‖Eu = γdm

∫
Sdm−1

|a′(u1 − v1)|dµ(a).

Following Baringhaus and Franz (2004), one can show that for each a ∈ Sdm−1,

2E|a′(u1 − v1)| − E|a′(u1 − v2)| − E|a′(v1 − v2)| ≥ 0. (13)

The equality holds if and only if the distribution of a′u1 and a′v1 coincide. Integrating
with respect to µ on both sides of inequality (13), we have

2E‖u1 − v1‖Eu−E‖u1 − u2‖Eu−E‖v1 − v2‖Eu≥ 0. (14)
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The equality holds if and only if for almost all a ∈ Sdm−1, the distribution of a′u1 and a′v1
coincide. Since for each t ∈ <, the function E(eita

′u1) and E(eita
′v1) are continuous, the

equality in (14) holds if and only if u1 and v1 have the same Fourier transform, or F = G.
By the definition of Frobenius and Euclidean norms, we have

µFF = E‖A1 −A2‖Fr= E‖u1 − u2‖Eu,
µGG = E‖B1 −B2‖Fr= E‖v1 − v2‖Eu,
µFG = E‖A1 −B1‖Fr= E‖u1 − v1‖Eu.

Thus, we have 2µFG − µFF − µGG ≥ 0, and the equality holds if and only if F =
G.

Proof of Theorem 2

Proof. We use {A1, · · · , An1} to represent {Q1, · · · , Qτ}, and {B1, · · · , Bn2} to repre-
sent {Qτ+1, · · · , Qn}, where n1 = τ, n2 = n− τ . Let h(Ai, Aj ;Bp, Bq) be a real-valued
function such that

h(Ai, Aj ;Bp, Bq) = ‖Ai −Bp‖Fr+‖Aj −Bq‖Fr+‖Ai −Aj‖Fr+‖Bp −Bq‖Fr. (15)

It is clear that h is symmetric within each argument (Ai, Aj) and (Bp, Bq). One can show
that L1 is the U -statistic corresponding to the kernel function h. That is,

L1 =

(
n1
2

)−1(n2
2

)−1 n1∑
i=1

n1−1∑
i=1

n1∑
j=i+1

n2−1∑
p=1

n2∑
q=p+1

h(Ai, Aj ;Bp, Bq). (16)

If the distribution F and G are identical, by Theorem 1, we have E(h(A1, A2;B1, B2)) =
0. In addition, since E[A1, A2;B1, B2|A1 = A1, B1 = B1] = 0 for almost all matrix
realization (A1,B1), L1 is a degenerate kernel U-statistic. The asymptotic distribution of
L1 can be inferred from the work of Hoeffding (1948) for the case k = 1, which shows that
n · L1 has a non-degenerate limiting distribution

∑∞
i=1 λi(Z

2
i − 1) where the constants λi

depend on F and Z2
i are independent χ2

1 random variables.

Proof of Theorem 3

Proof. If µFF = µGG = µFG, we have 2µFG−µFF −µGG = 0, which implies F = G by
Theorem 1. Suppose F = G, the distributions of A1, A2, B1 and B2 are equal. Therefore,
the distributions of ‖A1−A2‖Fr, ‖B1−B2‖Fr and ‖A1−B1‖Fr are also equal, implying
the fact that µFF = µGG = µFG.

Proof of Theorem 4

Proof. Following the work of Biswas and Ghosh (2014) for vector distributions, note that
n · L2(τ) can be expressed as

n · L2(τ) =
1

2
([
√
n(µ̂

(τ)
FF − µ̂

(τ)
GG)]2 + [

√
nL1(τ)]2),

where µ̂(τ)FF and µ̂(τ)GG are given in equations (1)-(3). From Theorem 2, we have nL1(τ) =

Op(1), and hence
√
nL1(τ)

p→ 0, as n→∞.
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Let µFF = E‖Q1 −Q2‖Fr and µGG = E‖Qτ+1 −Qτ+2‖Fr. Under null hypothesis,
we have µFF = µGG, and hence

√
n(µ̂

(τ)
FF − µ̂

(τ)
GG) =

√
n[(µ̂

(τ)
FF −µFF )− (µ̂

(τ)
GG−µGG)].

Note that

µ̂
(τ)
FF − µFF =

(
τ

2

)−1 τ−1∑
i=1

τ∑
j=i+1

(‖Qi −Qj‖Fr−µFF )

is a U-statistic with symmetric kernel function h(Qi, Qj) = ‖Qi − Qj‖Fr−µFF . There-
fore, we have

R1 =
√
τ(µ̂

(τ)
FF − µFF )

d→ N(0, 4σ20),

where σ20 = V ar[E(‖Q1 −Q2‖Fr|Q1)]. Similarly, we have

R2 =
√
n− τ(µ̂

(τ)
GG − µGG)

d→ N(0, 4σ20).

Since µ̂(τ)FF and µ̂(τ)GG are independent, one can show

√
n(µ̂

(τ)
FF − µ̂

(τ)
GG) =

√
n/τR1 −

√
n/(n− τ)R2

d→ N(0, (
1

λ
+

1

1− λ
)4σ20).

Therefore, as min(τ, n− τ)→∞, we obtain

n · L2(τ) =
1

2
([
√
n(µ̂

(τ)
FF − µ̂

(τ)
GG)]2 + [

√
nL1(τ)]2)

d→ 2σ20
λ(1− λ)

χ2
1.

Proof of Lemma 1

Proof. Using equations (1)-(3) for µ̂(τ+1)
FF , µ̂

(τ+1)
GG and µ̂

(τ+1)
FG , that define the Frobenius

inter-norm of the within and between matrices, we obtain

µ̂
(τ+1)
FF =

(
τ + 1

2

)−1 τ∑
i=1

τ+1∑
j=i+1

‖Qi −Qj‖Fr

=

(
τ + 1

2

)−1 τ−1∑
i=1

τ∑
j=i+1

‖Qi −Qj‖Fr+
τ∑
i=1

‖Qi −Qτ+1‖Fr

=

(
τ
2

)(
τ+1
2

) µ̂(τ)FF +
1(
τ+1
2

) τ∑
i=1

‖Qi −Qτ+1‖Fr,

=
τ − 1

τ + 1
µ̂
(τ)
FF +

1(
τ+1
2

) τ∑
i=1

‖Qi −Qτ+1‖Fr,

µ̂
(τ+1)
GG =

(
n− τ − 1

2

)−1 n−1∑
i=τ+2

n∑
j=i+1

‖Qi −Qj‖Fr,

=

(
n− τ − 1

2

)−1
(

n−1∑
i=τ+1

n∑
j=i+1

‖Qi −Qj‖Fr−
n∑

i=τ+2

‖Qi −Qτ+1‖Fr)

=

(
n−τ
2

)(
n−τ−1

2

) µ̂(τ)GG −
1(

n−τ−1
2

) n∑
i=τ+2

‖Qi −Qτ+1‖Fr,

=
n− τ

n− τ − 2
µ̂
(τ)
GG −

1(
n−τ−1

2

) n∑
i=τ+2

‖Qi −Qτ+1‖Fr,
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µ̂
(τ+1)
FG =

1

k

τ+1∑
i=1

n∑
j=τ+2

‖Qi −Qj‖Fr

=
1

k
{
τ∑
i=1

n∑
j=τ+1

‖Qi −Qj‖Fr−
τ∑
i=1

‖Qi −Qτ+1‖Fr+
n∑

i=τ+2

‖Qi −Qτ+1‖Fr}

=
1

k
{τ(n− τ)µ̂

(τ)
FG −

τ∑
i=1

‖Qi −Qτ+1‖Fr+
n∑

i=τ+2

‖Qi −Qτ+1‖Fr}
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