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Abstract 
In a longitudinal study it is often of interest to study individual differences by estimating 
the rate of change in the response variable for each subject. If the data is modeled using a 
linear mixed-effects model that includes fixed and random effects for time, a subject 
specific rate of change can be obtained as the derivative of the model function with respect 
to time and can be estimated using the fixed and random effects for time. However, due to 
shrinkage these subject-specific rates can appear to have much less variability than might 
be anticipated to be clinically useful. Conversely, if regression models are fit to each 
subject’s data the resulting rates have too much variability due to the small number of 
observations for each subject as well as the within subject error. The goal of this talk is to 
combine these two estimates to obtain a better estimate of subject specific rates of change. 
This is accomplished by taking a weighted average of the two estimates using weights 
proportional to the reciprocal of the variances. Various approaches are investigated on how 
to implement this strategy and are illustrated using longitudinal data from the Baltimore 
Longitudinal Study on Aging. 
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1. Introduction 

Data from longitudinal studies are used to describe trends over time in the subjects being 
studied. In addition to obtaining average trajectories and rates of change for all subjects in 
the study, it is also desirable to understand individual variability or differences by obtaining 
subject-specific trajectories and rates of change. 

Linear mixed-effects (LME) models have become a standard statistical model for analyzing 
the repeated-measures data that derives from longitudinal studies (Laird and Ware, 1982; 
Morrell, Pearson, and Brant, 1997; Verbeke and Molenberghs, 2000; Gueorguieva and 
Krystal, 2004; Morrell, Brant, and Ferrucci, 2009). These models handle unbalanced data 
while including any relevant explanatory variables that need to be taken into account. The 
models contain both fixed- and random-effects. The fixed effects allow for the estimation 
of population average trajectories and rates of change while the inclusion of the subject-
specific random effects enables the variability in these quantities among subjects to be 
investigated. The estimates of the subject-specific random effects are shrinkage estimators 
as the estimates for each individual “borrow strength” from the other subjects in the study 
to obtain “better” subject-specific estimates resulting in subject-specific estimates that are 
shrunken towards to overall mean. The amount of shrinkage depends on the amount of data 
for the subject and the relative between and within subject error variances. Singer and 
Willett (2003) discuss the estimation of subject specific rates of change. They consider 
three possibilities: population average rates of change, estimates obtained from subject-
specific regressions, and the shrinkage estimates described above. 

Due to the shrinkage, the subject specific rates of change can appear to have too little 
variability compared to what one might expect to be of use in a clinical setting. On the 
other hand, if linear regression models are fit to each subject’s data individually, there will 
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be too much variability due to the small number of observations for each subject. The goal 
of this paper is to propose and study an alternative strategy to obtaining subject-specific 
rates of change. The proposed estimate is a weighted average of the LME estimate and the 
regression estimate. The weights used are proportional to the inverse of the variances of 
each of the estimates (Hartung, Knapp and Sinha, 2008). A number of strategies are 
compared and evaluated on how to combine the two estimates. 

The remainder of the paper is organized as follows. Section 2 describes the linear mixed 
effects model and its rate of change. Section three indicates how to combine the estimates 
of rates of change from the LME model with estimates from subject-specific regressions. 
Section 4 uses an example to illustrate the proposed approaches and section 5 draws 
conclusions from the study.  

2. Linear Mixed-Effects Model 

For subject i, the model is 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝜀𝑖, 𝑖 = 1,… ,𝑚 

where yi is the ni×1 vector of the response variable for subject i, Xi is the design matrix of 
fixed effects covariates, β is the p×1 vector of regression parameters for the fixed-effects, 
Zi is the design matrix of random effects, bi is the q×1 vector of subject-specific random 
effects, and εi is the error term. Further, 𝑏𝑖~𝑁(0, 𝐷), 𝜀𝑖~𝑁(0, 𝜎2𝐼), and bi and εi are 
independent. Once the fixed-effects parameter vector, β, is estimated, the individual 
random effects are calculated as: 

𝑏̂𝑖 = 𝐷𝑍𝑖
𝑇𝑉𝑖

−1(𝑦𝑖 − 𝑋𝑖𝛽̂) 

where 𝑉𝑖 = 𝑍𝑖𝐷𝑍𝑖𝑇 + 𝜎2𝐼. As is well known, these estimates are shrinkage estimates and 
they “borrow strength” from the rest of the data to obtain “better” estimates than obtaining 
estimates from each individual’s data separately.  

However, these individual estimates of rates of change may be shrunken too much (in that 
they have too little variability relative to what one might expect, even accounting for the 
variation in level and rate of change among individuals). To attempt to ameliorate this 
problem, we propose to estimate the individual rates of change by a weighted average of 
two estimates: the estimates from the LME model and the estimates from a subject-specific 
regression (this will, of course, require the subject to have at least two observations). 

To set the stage, let the LME model be: 

𝑦̂𝑖,𝐿𝑀𝐸 = 𝛽̂0 + 𝑏̂𝑖0 + (𝛽̂1 + 𝑏̂𝑖1)𝑇𝑖𝑚𝑒. 

This model has only a single Time term. For the purposes of this discussion, without loss 
of generality, we can ignore other terms unrelated to Time in the model as they will not 
affect the rate of change with respect to Time. The estimated rate of change for subject i 
is: 

 𝑅𝑎𝑡𝑒̂𝑖,𝐿𝑀𝐸 = (𝛽̂1 + 𝑏̂𝑖1). (1a) 

However, the LME model may contain an interaction term of the entry age (EAge) with 
Time. This allows the rate of change to increase/decrease linearly with the EAge. For 
example, suppose 

𝑦̂𝑖,𝐿𝑀𝐸 = 𝛽̂0 + 𝑏̂𝑖0 + (𝛽̂1 + 𝑏̂𝑖1)𝑇𝑖𝑚𝑒 + 𝛽̂2𝐸𝐴𝑔𝑒 + 𝛽̂3𝐸𝐴𝑔𝑒 × 𝑇𝑖𝑚𝑒. 
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In this case the estimated rate of change for subject i is: 

 𝑅𝑎𝑡𝑒̂𝑖,𝐿𝑀𝐸 = (𝛽̂1 + 𝑏̂𝑖1)  + 𝛽̂3𝐸𝐴𝑔𝑒. (1b) 

3.1 Combining Rate of Change Estimates 

Let the usual ordinary least squares regression model for the data from only subject i be: 

𝑦̂𝑖,𝑂𝐿𝑆 = 𝜃0 + 𝜃1𝑖𝑇𝑖𝑚𝑒 

with rate of change for subject i given by 

 𝑅𝑎𝑡𝑒̂𝑖,𝑂𝐿𝑆 = 𝜃1𝑖 (2) 

We propose combining the two estimated rates of change ((1a) or (1b) with (2)) by using 
the inverse of the variances of each of the estimates (Hartung, Knapp and Sinha, 2008). 
The LME and regression rate estimates have standard errors that can be obtained from the 
LME (proc mixed) and Regression outputs in SAS. The standard error of the rate estimate 
from the LME model (1a) is given by  

 𝑆𝐸(𝑅𝑎𝑡𝑒̂𝑖, 𝐿𝑀𝐸) =  √𝑆𝐸(𝛽̂1)
2
+ 𝑆𝐸(𝑏̂𝑖1)

2
+ 2 × 𝐶𝑜𝑣(𝛽̂1, 𝑏̂𝑖1).  

The standard error of (1b) would include terms involving the covariance of the two fixed-
effects parameter estimates, 𝛽̂1 and 𝛽̂3 with each other and with the estimated random 
effect, 𝑏̂𝑖1. To evaluate this expression the covariance between the fixed and random effects 
of Time is required. It turns out that this covariance is small and can be omitted without 
much effect on the standard errors. Here we include the covariance term by employing the 
estimate statement in proc mixed in SAS to obtain the correct standard error for (1a) (see 
solution posted at http://support.sas.com/kb/37/109.html).  

To combine the two estimates, 𝑅𝑎𝑡𝑒̂𝑖,𝐿𝑀𝐸 and 𝑅𝑎𝑡𝑒̂𝑖,𝑂𝐿𝑆 a weighted average is used:  

 𝑅𝑎𝑡𝑒̂𝑖,𝐶𝑜𝑚𝑏 = 𝜆𝑖 𝑅𝑎𝑡𝑒̂𝑖,𝐿𝑀𝐸 + (1 − 𝜆𝑖) 𝑅𝑎𝑡𝑒̂𝑖,𝑂𝐿𝑆 (3) 

where we need to determine the weights, λi. A good choice is to use the reciprocal of the 
variances of the two estimates to obtain the weights as this will minimize the variance of 
the resulting weighted average (Hartung, Knapp, and Sinha, 2008). Then the estimate with 
the smaller variance (SE) will be weighted more heavily. That is: 

 𝜆𝑖 = 

1
𝑉𝑎𝑟(𝑅𝑎𝑡𝑒̂𝑖,𝐿𝑀𝐸)
⁄

1
𝑉𝑎𝑟(𝑅𝑎𝑡𝑒̂𝑖,𝐿𝑀𝐸)
⁄ +1

𝑉𝑎𝑟(𝑅𝑎𝑡𝑒̂𝑖,𝑂𝐿𝑆)
⁄

 (4) 

where the variances are the squares of the standard errors (SEs) of the estimates discussed 
above.  

3.2 Simple Example Illustrating the Shrinkage 

For purposes of illustration, we use a simple example in which we assume that each subject 
has two observations at times 0 and t. The model we consider for this example is: 

𝑦𝑖 = (𝛽1 + 𝑏𝑖1)𝑇 + 𝜀𝑖 
This is a simple regression model through the origin. We assume that 𝜀𝑖~𝑁(0, 𝜎2) and 
𝑏𝑖1~𝑁(0, 𝜎𝑇

2). 
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Then 𝑋𝑖 = 𝑍𝑖 = (
0
𝑡
). Using the formulae from Laird and Ware (1982) (see below) yields 

the following. 

𝑉𝑖 = (
𝜎2 0
0 𝜎2

) + (
0
𝑡
) 𝜎𝑇

2(0 𝑡) = (
𝜎2 0
0 𝜎2 + 𝑡2𝜎𝑇

2) 

and  

𝑊𝑖 = (
1/𝜎2 0

0 1/(𝜎2 + 𝑡2𝜎𝑇
2)
). 

So  

𝛽̂ = (∑
𝑡2

𝜎2 + 𝑡2𝜎𝑇
2

𝑚

𝑖=1

)

−1

∑
𝑡𝑦𝑖2

𝜎2 + 𝑡2𝜎𝑇
2

𝑚

𝑖=1

= (
𝜎2 + 𝑡2𝜎𝑇

2

𝑚𝑡2
)(

𝑡

𝜎2 + 𝑡2𝜎𝑇
2)∑𝑦𝑖2

𝑚

𝑖=1

=
1

𝑡
𝑦̅2. 

The estimated average slope is just the slope from the origin to the mean at the second time 
point. Since the line is being forced through the origin, the observation at the first time 
point plays no part in the estimation of the slope. Next 

𝑏̂𝑖 = 𝜎𝑇
2(0 𝑡)(

1

𝜎2
0

0 1/(𝜎2 + 𝑡2𝜎𝑇
2)
)((

𝑦𝑖1
𝑦𝑖2
) − (

0
𝑡
)
1

𝑡
𝑦̅2)

= 𝜎𝑇
2 (0

𝑡

𝜎2 + 𝑡2𝜎𝑇
2) (

𝑦𝑖1
𝑦𝑖2 − 𝑦̅2

) =
𝑡𝜎𝑇
2

𝜎2 + 𝑡2𝜎𝑇
2
(𝑦𝑖2 − 𝑦̅2)

=
𝑇

𝜎2

𝜎𝑇
2 + 𝑡

2

(𝑦𝑖2 − 𝑦̅2) . 

Consequently, the estimated slope for the ith subject from the mixed-effects model is: 

𝛽̂ + 𝑏̂𝑖 =
𝑦̅2
𝑡
+

𝑡

𝜎2

𝜎𝑇
2 + 𝑡

2

(𝑦𝑖2 − 𝑦̅2) =

(

 
1

𝜎2

𝑡2𝜎𝑇
2 + 1)

 
𝑦𝑖2
𝑡
+

(

 1 −
1

𝜎2

𝑡2𝜎𝑇
2 + 1)

 
𝑦̅2
𝑡
. 

This is a weighted average of the slope from the origin for the ith subject, 𝑦𝑖2
𝑡

, and the mean 

slope, 𝑦̅2
𝑡
= 𝛽̂. When the error variance, σ2, is large relative to the between subject variance 

in the slopes, 𝜎𝑇2, then the observed data gets less weight and the overall mean slope gets 
more weight – and conversely. 
Now, when we take a weighted average of this estimate and the LS estimate from the 
data, we obtain 

𝜆

(

 
 

(

 
1

𝜎2

𝑡2𝜎𝑇
2 + 1)

 
𝑦𝑖2
𝑇
+

(

 1 −
1

𝜎2

𝑡2𝜎𝑇
2 + 1)

 
𝑦̅2
𝑡

)

 
 
+ (1 − 𝜆)

𝑦𝑖2
𝑡

=

(

 
 
𝜆

(

 
1

𝜎2

𝑡2𝜎𝑇
2 + 1)

 + (1 − 𝜆)

)

 
 𝑦𝑖2
𝑡
+ 𝜆

(

 1 −
1

𝜎2

𝑡2𝜎𝑇
2 + 1)

 
𝑦̅2
𝑡
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so that the observed data is weighted even more heavily and there will be less shrinkage 
towards the overall mean slope. 
3.3 Combining Rate of Change Estimates - Continued 

There are some limitations to the approach presented above in §3.1. For the regression 
approach a subject must have at least two observations to obtain an estimate of their rate 
of change and at least three observations to be able to obtain an estimate of the standard 
error. In addition, if a subject has three or more observations that are exactly linear, the 
standard error will be 0. Consequently, the approach, as stated, cannot obtain combined 
estimates for subjects with only two observations or with more observations that are 
colinear. We seek to address this limitation in a number of ways. There are three main 
categories of approaches to obtaining the weights, each with two sub-approaches. The two 
sub-approaches address (a) working directly with the 𝜆𝑖 (4) and (b) working with each of 
the standard errors on the right-hand side of (4). The main approaches are: 

1. (a) Average the weights for all subjects or  
(b) average the two standard errors and use these averages to compute the weights as 
in (4). 
In this case all subjects will have the same weight, regardless of the number of 
observations available for each subject.  

2. The weights are associated with the amount of data for each subject. Compute the mean 
weight and mean of the standard errors for each number of observations, ni. Then fit 
linear regression models:  
(a) to the mean weight vs. number of observations or  
(b) separate regressions of the means of the standard errors vs. number of observations.  
Use predictions from the regressions to obtain the weights. Here the weight usually 
declines with number of observations so that the weight given to the regression 
estimate (2) increases as the amount of data for the subject increases. 

3. Model:  
(a) the individual weights as a function of number of observations or 
(b) each of the individual standard errors as a function of number of observations.  
Use predictions from the regressions to obtain the weights. As in 2, above, the 
regression estimate usually gets more weight as the amount of data for the subject 
increases. 

These three approaches allow for the computation of a combined rate in cases that were 
not possible using (4), i.e when a subject has only two observations or when the subject’s 
data is exactly linear. Including the LME rate, equations (1a) or (1b), the subject-specific 
regression rates (2), and the weighted version given in (4), this results in 9 different 
estimates to consider and compare. 

4. Example 

The example uses data from the Baltimore Longitudinal Study of Aging (BLSA) (Shock 
et. al, 1984). The BLSA is an ongoing multidisciplinary longitudinal study that began in 
1958. Participants return to Baltimore at about 2-year intervals and undergo testing and 
measurement on numerous factors. Here we apply the methods presented above to glucose.  

The data set consists of 3202 observations on 1266 participants (an average of 2.5 
observations per participant, maximum of 9 observations). The fixed-effects parameter 
estimates in the LME model for glucose are given in Table 1. The final model includes 
random effects for intercept, Time, and Time2. Here we are considering the rate of change 
in glucose at the initial visit. Consequently, the Time2 term is eliminated from the estimate 
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of the rate of change. The average rate of change at the initial visit is given by -0.4504. 
However, the random effect variance is Var(bi1) = 4.2484. This suggests that there will be 
substantial between subject variability in the subject specific rates of change and while, on 
average, there is a 0.45 initial decline in glucose per year, we will expect many subjects to 
exhibit increases in their glucose level. Figure 1 compares the estimated rates of change 
computed from the LME model using (1a) with the rates computed by linear regression. 
The regression estimates exhibit many more extreme outliers and a variability about twice 
as large (IQRRegression = 1.81 vs. IQRLME = 0.95). Next, equation (4) is used to obtain the 
weights which are applied to obtain the combined estimate.  

Table 1. Fixed-effects terms in the final LME model for glucose. 

Effect Estimate Standard Error t Value Pr > |t| 
Intercept 60.6485 6.1366 9.88 <.0001 
EAge 0.9849 0.2022 4.87 <.0001 
EAge2 -0.00767 0.001623 -4.73 <.0001 
Time -0.4504 0.1313 -3.43 0.0006 
Time2 0.01702 0.009079 1.88 0.0613 
Gender 5.2408 0.8265 6.34 <.0001 

 

 
Figure 1. Comparative boxplots of subject-specific rates of change of glucose at initial 

visit. 

Approach 1: Average of weights or SEs. 

In this approach, all individuals have the same weight regardless of their number of visits. 
In addition, subjects with 2 visits or more visits for whom we could not previously obtain 
a weight, now will be included. The mean of all weights computed by (4) is 0.267. When 
the averages of the standard errors are used to obtain a common “average” weight for all 
subjects, the result is 0.307 (mean(SELME) = 1.686 and mean(SERegression) = 1.122). 
Counterintuitively, note that while the regression estimates of rates of change are more 
variable over the subjects in the study than the LME estimates, the standard errors of these 
estimates of the rates of change tend to be smaller, on average, for the regression estimates 
of the rates of change than for the LME estimates of individual rates of change. 
Consequently, more weight is given to the regression estimates than to the LME estimates. 
Averaging the individual SEs leads to more weight being given to the LME rates than 
averaging the individual weights in (4).  
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Approach 2: Model average of weights or SEs as a function of number of visits. 

In this approach all individuals with the same number of visits will have the same weights. 

The model for the average of the weights is 𝜆̂ = 0.3525 − 0.0222 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠 (R2 = 0.91). 
Since the association of the weights with the number of visits is negative, as expected the 
weight given to the subjects’ regression estimates (2) increases with the number of visits. 
Note also that in this example all weights will be less than 0.5 resulting in more weight 
being given to the regression rate estimates than to the LME rates. See Figure 2.  

 
Figure 2. Regression model for the average weight by number of visits. 

When the standard errors are plotted against the number of visits curvature is observed. 
Consequently, quadratic models are fit to the standard errors as a function of number of 
visits. This gives: 

 𝑆𝐸̂𝐿𝑀𝐸 = 2.0777 − 0.1558 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠 + 0.00907 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠2 (R2 = 0.995) and 

𝑆𝐸̂𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 2.111 − 0.3255 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠 + 0.01762 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠
2 (R2 = 0.977) 

Figure 3 provides a comparison. As above, modeling the average SEs rather than the actual 
weights, themselves, leads to more weight being given to the LME rates (as opposed to 
modeling the weights, themselves) except when the sample size exceeds 7. From about 6 
visits, the two approaches give almost identical results. 

Approach 3: Model individual weights or SEs as a function of number of visits. 

The model using each individual’s weights is 𝜆̂ = 0.3745 − 0.0267 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠 (R2 = 
0.017, P = 0.0028). This is very similar to modeling the average weights. Modeling the 
individual SEs gives: 

𝑆𝐸̂𝐿𝑀𝐸 = 1.959 − 0.0844 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠 (R2 = 0.503, P < 0.0001) and 

𝑆𝐸̂𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1.713 − 0.149 × 𝑁𝑉𝑖𝑠𝑖𝑡𝑠 (R2 = 0.023, P = 0.0005). 

Figure 3 provides a comparison of the weights from all of the approaches. Modeling each 
individual’s SEs leads to more weight being given to the LME rates except when the 
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sample size exceeds 8. Finally, note that the regression weights using individual weights 
or SEs are similar to the weights obtained from the averages (Figure 3). 

 
Figure 3. Comparing the weights across the six estimation approaches. 

 
The individual rates from approaches 1 – 3 give very similar results. In particular, their 
standard deviations all lie between the rates computed from the LME model alone and the 
original weighted version and the regression estimates (Figure 4, Table 2). Among these, 
in what follows we restrict our attention to the one with the smallest (2b – regression of 
average standard errors as a function of sample size) and largest (1a – mean of all weights) 
standard deviations. 

 
Figure 4. Boxplot Comparisons of the individual rates of change from the nine 

approaches to estimating the weights. 
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Table 2. Descriptive statistics of estimated individual rates for the nine approaches to 
estimating the weights (ordered by standard deviations). 

 
Method N Mean Std Dev 
(1a) 

(4) 

2b. 

3b. 

3a. 

1b. 

2a. 

1a. 

(2) 

LME 

Weights 

Reg – Ave SEs 

Reg – Indiv SEs 

Reg – Indiv Wgts 

Average SEs 

Reg Ave Wgts 

Average Weights 

Regression 
 

865 

527 

865 

865 

865 

865 

865 

865 

865 
 

-0.4709 

-0.3432 

-0.3539 

-0.3513 

-0.3411 

-0.3443 

-0.3397 

-0.3370 

-0.2883 
 

1.1788 

1.4632 

2.5775 

2.6699 

2.8553 

2.8849 

2.8918 

3.0047 

3.8196 
 

 
Next these rates were summarized separately by the number of repeated observations from 
which the regression estimate is obtained i.e. the number of observations for each 
participant. Figure 5 plots the standard deviations as a function of number of visits. The 
standard deviations converge by about 5 visits. The LME and weighted average approach 
have consistently lower standard deviations for fewer number of visits.  

 
Figure 5. Standard deviation of estimated rates of change by number of visits. 

 
5. Conclusions 

The goal of this study was to obtain estimates of the rates of change for each individual in 
a longitudinal study. Estimates from separate regression will rely on only a few 
observations for each participant and requires that subjects have at least two observations. 
In contrast, estimates based on LME models can obtain estimates for all subjects. These 
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estimates borrow strength from other subjects’ data to obtain “better” estimates that are 
shrunken towards the overall average rate of change. However, in applications it appears 
that these shrinkage estimates may be shrunken too much to be of clinical use. We have 
proposed a weighted average of the regression and LME estimates of the rates of change. 
In addition, we have also proposed several versions of the weighted estimate. When the 
weights are obtained using the reciprocal of the variances of the two estimates (4), the new 
rates tend to have a standard deviation quite close to that of the rates obtained from the 
LME model. Next, when the weights are obtained from regression models of the standard 
errors, the standard deviations of the rates tend to be closer to the rates based on (4) and 
the LME model. The standard deviation of the rates based on regressions of the actual 
weights, has still more variability. Finally, using the average of the weights for all subjects 
tends to have a standard deviation that is closer to the standard deviation of the rates based 
on the regression models for each individual. In summary the standard deviations of the 
rates can approximately be ordered as: 

LME; (Equation 4); (2b, 3b); (2a, 3a); (1a, b); Individual Regressions. 

A researcher will need to choose how much shrinkage is desired. Avoiding too much 
variability in the final rates suggests that Equation 3 with weights calculated using (4) or 
regression models based the standard errors might be good choices. 

Funding: 
This research was supported in part by the Intramural Research Program of the NIH, 
National Institute on Aging. 

References: 

Gueorguieva R and Krystal JH. Move over ANOVA:  progress in analyzing repeated-
measures data and its reflection in papers in the Archives of General Psychiatry. Arch Gen 
Psychiatry 2004;61:310-317. 

Joachim Hartung; Guido Knapp; Bimal K. Sinha (2008). Statistical meta-analysis with 
applications. John Wiley & Sons. 

Laird NM, Ware JH. (1982) "Random-effects models for longitudinal data." Biometrics. 
38(4):963-74. 

Morrell CH, Brant LJ, Ferrucci L. (2009). Model Choice Can Obscure Results in 
Longitudinal Studies. J Gerontol A Biol Sci Med Sci, 64A:215–222. 

Morrell CH, Pearson JD, and Brant LJ. (1997) “Linear transformations of linear mixed-
effects models.”  Am Stat, 51:338-343. 

Shock NW, Greulich RC, Andres R, Arenberg D, Costa PT, Lakatta EG, Tobin JD. Normal 
human aging: The Baltimore Longitudinal Study of Aging (NIH Publication No. 84-2450), 
Washington, DC:  U.S. Government Printing Office; 1984. 

Singer JD and Willett JB (2003) Applied Longitudinal Analysis: Modeling Change and 
Event Occurrence. Oxford University Press.  

Verbeke, G. and Molenberghs, G., (2000). Linear Mixed Models for Longitudinal Data. 
New York: Springer. 

 

 
890




