
Fast Computation of Large-Scale Mixed Effects Models

Robin Yancey∗ Norm Matloff†

Abstract

This era of Big Data includes many applications of mixed effects modeling, such as large ge-

nomics studies, recommender systems, and salary prediction by micro-region and occupation. How-

ever, the time complexity for estimation in such models can grow as fast a n1.5. Even worse, the

computation may not fit into available memory, rendering estimation impossible. Parallel computa-

tion may be a remedy, using a model-specific algorithm, but here we present a generally applicable

approach to the problem, and show computational speedup on various real datasets.

Key Words: Mixed effect models, parallel computation, Big Data, recommender systems

1. Introduction

Algorithms to compute statistically equivalent results on parallel computing platforms are

required in a bast number of applications in Big Data. Platforms used for this type of com-

putation include multicore CPUs, GPUs, clusters, and the cloud. The parallel computation

term embarrassingly parallel, referring to algorithms that can be easily partitioned and then

simply recombined, unfortunately often does not apply in the case of statistical methodol-

ogy. Our solution to this is chunks averaging, which exploits the statistical properties of the

algorithm by simply averaging results of chunks. This is a technique that we call Software

Alchemy.

The Software Alchemy method (SA) [2] can be used to turn non-embarrassingly par-

allel algorithms into statistically equivalent embarrassingly parallel ones, with the equiva-

lence being in terms of equivalent standard errors. SA may also be used as a technique to

circumvent memory limitations such as RAM, GPU memory or object size (Section 4.3).

1.1 Background on Recommender Systems

Recommender Systems are used to attempt to predict users’ interests given a set of known

variables about them. Amazon’s product recommender is an example of this type of system,

because it uses information about past product purchases to match them to advertisements

of potential items of interest to shoppers [1]. Most of the examples of the application of SA

shown in the results section are recommender systems.

1.1.1 Data Format of Recommender Systems

The data is in standard format, consisting of (userID, movieID, rating) triples. Most users

have not rated most movies, and the goal is to complete the ratings matrix. This process is

called the matrix completion problem, and the general term for RS tools that combine user

and item data is collaborative filtering.

∗First author’s affiliation, University of California, Davis Dept. of Computer Science
†Second author’s affiliation, University of California, Davis Dept. of Computer Science

1101

1.1.2 Recommender Systems Mixed Effects Model

Equation 1 shows the general form of the mixed effects model. The mean overall item

rating has latent effects of each user α and item β, while ǫ is the error term. We also

can include a vector of known covariates. For example, if we apply this model to Netflix

movies then the users would be the people who have seen their movies, the items would be

the specific movie, while covariates could be the user’s age or gender.

Yij = µ+ γ′Xi + αi + βj + ǫij (1)

where:

µ is a fixed but unknown overall mean rating,

Xi is an optional known vector of covariates (e.g. age, gender) for user i, and β is a

vector of fixed but unknown linear regression coefficients,

αi is a latent effect for user i,
βj is a latent effect for item (movie) j, and

ǫij is an error term.

1.2 Software Alchemy Overview

Chunks averaging provides a very general method for parallelizing statistical algorithms.

For example, the ordinary logistic model could be applied to the data for each chunk, pro-

ducing estimated coefficients β̂ij , where j is the chunk number. The values β̂ij are averaged

over all chunks, yielding the final estimated coefficients β̂i. SA is asymptotically efficient,

i.e. yields the same standard errors as the (nonchunked) full estimator (Section 3).

2. Implementation

2.1 The partools Package

Our R partools package provides useful tools for fast parallel computation, so this was used

for the experiments discussed in section 3. Some of the important calls used to apply SA

to mixed effects models include setclsinfo(), and distribsplit(). setclsinfo() provides each

worker node with a unique ID that can be used to access a specific node or communicate

between nodes (with partools message passing ptME). distribsplit() splits a data frame

into even row chunks on each cluster node with the same name as the original data.

2.2 partools Software Alchemy Code Example

The code shown below is a full example of how SA can be applied to a mixed effects model.

Below we reduce computational time to predict whether a patient will miss an appointment

(see Section 3), using the R language and the R parallel and partools packages. We start

by simply creating a parallel cluster of 8 with the makeCluster() call, setting setclsinfo(),

and splitting up the data among chunks. Since in these experiments we measure how well

SA preserves accuracy, we partition into training and test sets, using a variable testidxs to

hold the indices of the latter. MLE computation is handled via the lme4 package.

The training set is split using distribsplit(). Each cluster node then holds enough data

samples to produce a Maximum Likelihood estimate for the overall data. Finally, when

models are called back from the cluster nodes, we can average their results to obtain a

model similar to the model that could be produced serially on one node (if time and memory

allowed). As shown in Section 3, the accuracy of the predictions and the variance of random

1102

Chunks Scatter Train Pred. Mean Abs. Pred. Error

full - 715.135s 285.150s 0.2968

2 1.326s 202.189s 111.490s 0.3047

4 3.000s 197.411s 45.137s 0.2916

8 7.973s 284.732s 38.029s 0.3046

Table 1: Generalized MLE Model, Missed Appointments Data

effects are also close to the serial version. Therefore, this can then be used for further

predictions on whether a patient misses an appointment.

l i b r a r y (p a r t o o l s)

c l s <− m a k e C l u s t e r (8)

s e t c l s i n f o (c l s)

t e s t i d x s <− sample (1 : nrow (d a t a) , 5 0 0 0 0)

d a t a t e s t <− d a t a [t e s t i d x s ,]

c l u s t e r E x p o r t (c l s , ’ d a t a t e s t ’)

d a t a t r a i n <− d a t a [− t e s t i d x s ,]

d i s t r i b s p l i t (c l s , ’ d a t a t r a i n ’ , s c r a m b l e =T))

c l u s t e r E v a l Q (c l s , l i b r a r y (lme4))

lmerou tC <− c l u s t e r E v a l Q (c l s , lmerou tC <− glmer (No . show ˜

(1 | Neighborhood / P a t i e n t I d) + Gender + Age + H y p e r t e n s i o n +

D i a b e t e s + Alcoho l i sm + Handicap + S c h o l a r s h i p ,

f a m i l y = b inomia l , d a t a = d a t a t r a i n))

p r e d i c t C <− c l u s t e r E v a l Q (c l s , p r e d i c t (lmeroutC , d a t a = d a t a t e s t ,

t y p e =” r e s p o n s e ” , a l l o w . new . l e v e l s = TRUE))

p r e d i c t C<−Reduce (’ + ’ , p r e d i c t C) / 8

3. Results and Analysis: Timings and Generated Model Parameters

3.1 Missed Appointments Data

As introduced above, the missed appointments data can be applied with SA. In this case we

have a random effect of a patient living in a certain location and fixed effects that include

gender, age, alcoholism, hypertension, diabetes, scholarship, and handicap. The following

R call can be used to predict whether an appointment is missed by a patient within a given

location. The base software used in the MLE context here is lme4.

g lmer (No . show ˜ (1 | Neighborhood / P a t i e n t I d) + Gender

+ Age + H y p e r t e n s i o n + D i a b e t e s + Alcoho l i sm + Handicap

+ S c h o l a r s h i p , f a m i l y = b inomia l , d a t a = d a t a T r a i n)

As shown in table 1, there is a super-linear speedup using a cluster of 2, an approx-

imately linear speed-up with a cluster of 4, and sub-linear speedup with a cluster of 8.

This is a significant improvement compared to serially training the model and computing

predictions. There is little additional computation and no loss in prediction accuracy.

Please, note that the scatter column is usually not required (due to the ”Leave it There”

philosophy.) This means that the data has already been distributed among cluster nodes to

save communication time, throughout the given application.

1103

The variance of the random effects is also small, especially in the case of a small cluster

size. Table 2 shows the variance of the random effects intercepts using SA, as well as the

absolute error versus of each effect versus serial for each size cluster.

Chunks PatientID Abs. Error

full 0.84016 -

2 0.88642 0.04626

4 0.79317 0.04699

8 0.77563 0.06453

Table 2: Variance of Random Effects, Missed Appointments Data MLE

Tables 3 and 4 shows the fixed effects generated by lme4 with data undistributed (row

1) vs a cluster of sizes 2, 4, and 8 in the remaining rows. We can see that although the

difference is slight, and there is no loss overall prediction accuracy, to maintain estimation

accuracy in a few of the fixed effects the cluster size should remain small.

Chunks Intercept Gender Age Hypertension

- -1.3905 -0.0360 -0.0065 -0.1084

2 -1.4010 -0.0395 -0.0065 -0.1002

4 -1.3975 -0.0537 -0.0070 -0.0937

8 -1.3657 -0.0428 -0.0068 -0.0910

Table 3: Fixed Effects, Missed Appointments Data MLE

3.2 Instructor Evaluation data

Similar to the patient and hospital data, we see a significant speedup in the Instructor Eval-

uation data, as shown in tables 5 and 6. Again, with a cluster size of two there is no loss

in prediction accuracy and the difference in the variance of random effects is within a few

percent.

g lmer (g l o u t <− glmer (y ˜ (1 | s) + (1 | d) + s t u d a g e + l e c t a g e

+ s e r v i c e , d a t a = d a t a t r a i n , f a m i l y = b i n o m i a l)

This Maximum Likelihood model is used to predict whether a student gives a given

instructor an positive rating or not, using as covariates number of years in school (studage),

amount of lecture time (lectage) and service-course status, as shown in the R call.

Chunks Diabetes Alcoholism Handicap Scholarship

- 0.0806 0.2877 -0.0636 0.1864

2 0.0678 0.2561 -0.0516 0.1962

4 0.0778 0.2005 -0.0383 0.2096

8 0.0773 0.1839 -0.0179 0.2052

Table 4: Fixed Effects, Missed Appointments Data MLE

1104

Chunks Scatter Train Pred. Mean Abs. Pred. Error

full - 220.435s 1.406s 0.3088

2 0.412s 114.405s 1.046s 0.3053

Table 5: Generalized MLE Model, Instructor Evaluation Data MLE

Chunks Student Abs. Error Instructor Abs. Error

full 0.2390 - 0.5544 -

2 0.2449 0.0059 0.5811 0.0267

Table 6: Variance of Random Effects, Instructor Evaluation Data MLE

3.3 1M MovieLens data

The Movie Lens data [4] is used for predicting the likelihood that a user will give a high

or low rating to a given movie (based on their ratings of other movies and other users’ rat-

ings.) Using MLE on 250K of the 1M MovieLens set, a data significant speedup occurred

between 20 and 50 threads (on a single multicore CPU). Interestingly, the more threads, the

more speedup occurred with only very small loss in accuracy, as shown in table 7. This is

especially useful when data is already distributed since there is not as much speedup when

taking into account the scattering of the data.

Chunks Scatter Train Mean Abs. Pred. Error

full - 115.786s 0.774

16 3.036 41.922s 0.796

20 3.216 30.429s 0.799

24 4.773 26.129s 0.805

28 5.254 20.446s 0.806

32 6.529 15.508s 0.814

40 7.822 13.738s 0.826

50 9.876 12.349s 0.828

Table 7: MLE Model, Movie Lens Data

The following table shows the variance of the random effects intercepts using SA, as

well as the absolute error of each effect versus serial for each size cluster (or the difference

in the latent effect term in the cluster model vs. serial model term). Accuracy is lesser here.

Chunks User Abs. Error MovieID Abs. Error

full 0.1251 - 0.3918 -

16 0.1414 0.0163 0.3227 0.0690

20 0.1435 0.0184 0.3163 0.0755

24 0.1442 0.0191 0.3068 0.0850

40 0.1534 0.0283 0.2980 0.0937

Table 8: Variance of Random Effects, Movie Lens Data MLE

1105

3.4 Book Crossings data

The results show a sub-linear speedup effect on the Book Crossings data [5]. In this recom-

mender system example we predict the rating a user gives to a certain book, based on their

ratings of other books and other users’ book ratings. This can then be used for the industry

to choose which books to advertise to a given user. Excellent results here, in both time and

accuracy.

Chunks Scatter Train Predict Mean Abs. Pred. Error

full - 1114.155 0.455 2.67

2 5.101 685.757 0.455 2.72

4 11.134 423.018 1.173 2.77

8 10.918 246.668 1.470 2.82

Table 9: MLE Model, Book Crossings Data

3.5 Book Crossings data (cluster)

When we ran the same test with the Book Crossings data on a real cluster of separate

machines we achieve super linear speedup. In this setting, speedup is again excellent,

though not as good as in the multicore case, due to network communication overhead.

chunks tot. time

2 247.818

4 156.461

8 190.602

Table 10: MLE Model, Book Crossings, Cluster

4. Theoretical Foundations

4.1 In What Settings Is Software Alchemy Fast?

To get an idea of where SA should do well, say we have an algorithm with time complexity

O(nc) for some constant c, and we have r processes. Then theoretically the speedup is

calculated as in Equation 2.

O[(n/r)c] = O(nc/rc) (2)

This means that a speedup of about rc is obtained using SA. If c > 1, we can achieve

super-linear speedup, a rarely seen outcome in the parallel computation world.

1106

4.2 Efficiency of Software Alchemy

The SA method is fully efficient if the sample parameter θ̂ can be shown to be approxi-

mately normally distributed. In this case it can be shown that the SA estimator based on θ̂
will have the same asymptotic variance as the original.

It is important to note that (in spite of this assumption of i.i.d. data) SA does accommo-

date fixed effects, as theory shows they may be considered random [2]. [3] demonstrates

how this theory could be adapted to the independent-but-not-identically-distributed cases

using Method of Moments estimators in mixed effects models (and exactly how one can

obtain essentially the same estimators if one treats the fixed effects as random.)

4.3 Memory Issues

Computation may not even fit into available memory, making direct, single-stage estimation

impossible. These constraints could include physical memory such insufficient RAM or

GPU memory, or software constaints such as the R languages maximum byte size for any

single object. The given algorithm’s auxiliary data generated during computation may

exceed the size of the input data. For example, support vector machine algorithm (SVM)

has a O(n3) time and has O(n2) space. When used on Big Data this exceeds the memory

in many moderately-sized machines common in machine learning (ML) applications

5. Conclusion

Software Alchemy is a method that is easy for statistics users in all research fields to imple-

ment. Additionally, it can be applied across a wide range of data sets and is generalizable

across many machine learning models. It is especially useful for highly computationally

intensive statistics models such as maximum likelihood estimation, and as shown in the

results section. we have verified the loss in prediction accuracy is small and difference in

fixed and random effects versus the serially produced model is also slight. Although one

may need to be somewhat cautious with clusters greater than 2 or 4, the loss in accuracy in

latent effects and prediction accuracy is nearly insignificant.

REFERENCES

1. Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com Recommendations: Item-to-Item Collab-

orative Filtering. IEEE Internet Computing 7, 1 (January 2003), 76-80.

2. Matloff, N. (2016). Software Alchemy: Turning Complex Statistical Computations into Embarrassingly-

Parallel Ones. Journal of Statistical Software, 71(4), 1 - 15. doi:http://dx.doi.org/10.18637/jss.v071.i04

3. Matloff, N. (2013). A New Framework for Random Effects Models, JSM 2016.

4. F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context.

ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages.

DOI=http://dx.doi.org/10.1145/2827872
5. Improving Recommendation Lists Through Topic Diversification, Cai-Nicolas Ziegler, Sean M. McNee,

Joseph A. Konstan, Georg Lausen; Proceedings of the 14th International World Wide Web Conference
(WWW ’05), May 10-14, 2005, Chiba, Japan.

1107

