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Abstract
Estimating conditional variance functions is of great importance in practice. A nonparametric

method is proposed to estimate conditional variance functions with correlated noise. In this method,
polynomial splines are used to approximate the transfer function and the conditional variance func-
tion, while the noise is assumed to follow an Autoregressive-Moving Average (ARMA) process. It
is shown via simulations that the estimators proposed in this paper possess the “oracle” property,
i.e., any one of the three components in this model (the ARMA parameters, the conditional variance
function, and the transfer function) can be estimated as if the other two components are known.
Additionally, it is shown that for time series data, it is necessary to model the serial correlation in
the noise to achieve optimal efficiency in the nonparametric estimation of both the transfer function
and the conditional variance function. By using polynomial splines, this method is not only flexi-
ble but also computationally efficient compared with other nonparametric smoothing methods. The
asymptotic properties of the estimators are discussed. The usefulness of this model is illustrated
through a real data example.

Key Words: Regression, nonparametric/semiparametric smoothing, Time series analysis, Finan-
cial statistics

1. Introduction

Time-varying conditional variance is an important feature of time series data. In many ap-
plications, the assumption that the conditional variance is time-invariant does not hold. In
such cases, the time-dependence of the conditional variance function must be taken into
consideration in order to obtain correct inferences. The conditional variance function it-
self sometimes is of interest, for example, in finance, volatility plays a curial role in asset
pricing. The modeling of conditional variance has gained much attention in the past a
few decades, and some parametric models have been developed, for examples, the ARCH
model (Engle 1982) , the GARCH model (Bollerslev 1986)Tsay (1987) , the CIR model by
Cox, Ingersoll and Ross (1985) , the CKLS model by Chan, Karolyi, Longstaff and Sanders
(1992) , Cao and Tsay (1992) Harvey, Ruiz and Shephard (1994) , Alizadeh, Brandt and
Diebold (2002) , Anderson, Bollerslev, Diebold and Labys (2001a & b) , and Bai, Rus-
sell, and Tiao (2003) . Parametric models require strong assumptions about the functional
forms of the unknown functions to be estimated, however these assumptions are some-
times difficult to justify, especially when the underlying functions are highly nonlinear. On
the other hand, nonparametric smoothing methods take a data-driven approach to explore
the appropriate functional forms of the underlying functions, therefore require very little
assumption regarding the functional forms. Because of their data-driven nature, nonpara-
metric smoothing methods are very flexible and are suitable to explore complex, highly
nonlinear relationships. Nonparametric smoothing methods are typically computationally
intensive, but the recent advances in computer technology made it more realistic to use
them to model conditional variance functions. Some of the representative work in this area
include Conley, Hansen, Luttmer, and Scheinkman (1997) , Fan and Yao (1998) Dahl and
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Levine (2006) , Yuan and Wahba (2004) . In this paper, we assume that the conditional
variance function and the transfer function are unknown, smooth functions of the indepen-
dent variable(s). Polynomial splines are used to approximate both the transfer function
and the conditional variance function. The main motivation to use polynomial splines is
they are computationally more efficient than other nonparametric smoothing methods such
as the local polynomial, while retaining the typical flexibility of nonparametric smoothing
methods. The paper is organized as follows: the model and the estimation procedures are
described in Section 2. Extensive simulation scenarios are used to study the properties of
the proposed estimators, some of the simulation results are presented in Section 3. The
observations made in the simulations lead to a discussion of the properties of the proposed
estimators in Section 4. The model is applied on a real-life example and the results are
summarized in Section 5. Section 6 concludes the paper with a brief summary and discus-
sions.

2. The Model and Estimation Procedures

The problem considered in this paper is represented by the following model

Yt = f(Xt) + σ(Xt)et, (1)

wheref(·) andσ(·) are unknown, smooth functions.{X} and{et} are jointly stationary.
Our main objective is to estimate the conditional variance functionσ2(·). The innovation
process{et} is assumed to follow a stationaryAutoregressive-Moving Averageprocess of
ordersp andq (henceforth the ARMA(p, q) process, see Box and Jenkins (1976) , i.e.,

et −
p∑

i=1

φiet−i = εt −
q∑

j=1

θjεt−j ,

where E(εt|Xt = x) = 0, Var(εt|Xt = x) = 1. Let φ(L) = 1 − ∑p
i=1 φiL

i, and
θ(L) = 1−∑q

j=1 θjL
j , whereL is the lag operator defined asLiYt = Yt−i, model (1) can

be re-parameterized as
φ(L)

θ(L)

[
Yt − f(Xt)

]
= σ(Xt)εt.

f(·), σ(·), and the ARMA parameters can be estimated jointly by minimizing the objective
function below

n∑

t=1

{φ(L)

θ(L)

[Yt − f(Xt)

σ(Xt)

]}2
. (2)

Let r(x) denote the “pre-whitened” partial residuals

r(x) =
φ(L)

θ(L)
[Y − f(x)],

a residual-based estimator forσ2(x) can be derived based on the relationship

E[r2(X)|X = x] = σ2(x).

A common issue with many variance estimator is that sometimes the estimates can be
negative. To ensure the positivity of the estimate ofσ2(·), we adopt an idea similar to Yuan
and Wahba (2004) and letσ2(x) = exp[g(x)].

In this paper, we use polynomial splines to approximatef(x) and g(x). Polyno-
mial splines are piecewise polynomials defined on disjoint partitions of the support of
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X, with the pieces joining smoothly at a set of interior points (theknots). Precisely, a
polynomial spline of degreed ≥ 0 defined on an intervalX with knot sequenceλ =
{λ0, λ1, · · · , λk+1} (λ0 < λ1 < · · · < λk+1) is a function consisting of pieces of polyno-
mials of degreed on each of the intervals[λi, λi+1), i = 0, · · · , k, and[λk, λk+1], where
λ0 andλk+1 are the end points ofX . Given knot sequenceλ and degreed, the collection
of spline functions forms a function space spanned by a set of basis functions. One of the
commonly used basis functions is thetruncated power basis, which is the set of functions
{1, x, · · · , xd, (x − λ1)

d
+, · · · , (x − λk)

d
+}, where(x)d+ ≡ (x+)

d, x+ = x if x ≥ 0 and
x+ = 0 if x < 0. The dimension of the spline function space isK = d + k + 1. When
applied on real-life problems, regression models using the truncated power basis functions
as regressors are easy to interpret because the coefficients usually bear practical meanings,
however, such models can suffer from multicollinearity. The computer solutions of such
models can be numerically unstable, especially when the degree of polynomial is high. An-
other popular basis function is theB-spline basis. It has nice theoretical properties (see for
examples, Deboor 2001, Schumaker (1981)), so it is often used to derive the asymptotic
properties of estimators. The B-spline basis also tends to be more stable numerically when
implemented in computer programs. Obviously, the numeric results do not depend on the
choice of the basis functions. Polynomial splines allow the underlying function to have
different polynomial forms in different regions of the support, so they are very flexible and
are suitable to explore complex, highly nonlinear relationships without explicit assumptions
about the functional forms a priori. Polynomial splines are also highly efficient computa-
tionally, because once the knots are determined, the estimation can be carried out as one
standard least squares regression. In contrast, the local polynomial smoothing method re-
quires least squares procedures to be performed at many focal points, consequently takes
much longer to calculate the solution.

Denote a set of basis functions as{Bj(·)}Kj=1, approximatef(·) andg(·) with polyno-
mial splines, specifically,

f(x) ≈
K1∑

i=1

αiB1i(x), g(x) ≈
K2∑

i=1

βiB2i(x),

where{B1i(·)}K1
i=1 and{B2i(·)}K2

i=1 are the B-spline basis of the estimation spaces forf(·)
andg(·), respectively,K1 andK2 are the corresponding dimensions of the spline spaces,
Kj = kj + dj +1 (j = 1 , 2), wherekj is the number of interior knots, anddj is the degree
of the polynomial. With the above approximations, (2) can be rewritten as

n∑

t=1

{[φ(L)θ(L)−1][Yt −
∑K1

i=1 αiB1i(Xt)]}2

exp[
∑K2

i=1 βiB2i(Xt)]
. (3)

To solve this problem, we consider an iterative estimation procedure which is convenient
for the discussion of the properties of the estimators. Letα = (α1, · · · , αK1)

τ , β =
(β1, · · · , βK2)

τ , φ = (φ1, · · · , φp)
τ , andθ = (θ1, · · · , θq)τ . A brief description of the

estimation procedure is given below.

1. Obtainα̌i by minimizing

n∑

t=1

{
Yt −

K1∑

i=1

αiB1i(Xt)
}2

,

the preliminary estimate išf(x) =
∑K1

i=1 α̌iB1i(x).
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2. Obtain preliminary estimatêφ andθ̂ by minimizing

n∑

t=1

{
φ(L)θ(L)−1[Yt − f̌(Xt)]

}2
,

let r(Xt) = φ̂(L)θ̂(L)−1[Yt − f̌(Xt)] .

3. Obtainβ̂i by minimizing

n∑

t=1

[
log(r2(Xt))−

K2∑

i=1

βiB2i(Xt)
]2

,

σ̂(x) =
√

exp[
∑K2

i=1 β̂iB2i(x)].

4. Obtainα̂i by minimizing

n∑

t=1

{ φ̂(L)

θ̂(L)

[Yt −
∑K1

i=1 αiB1i(Xt)

σ̂(Xt)

]}2
,

f̂(x) =
∑K1

i=1 α̂iB1i(x).

5. Obtainφ̂ andθ̂ by minimizing

n∑

t=1

{φ(L)

θ(L)

[Yt − f̂(Xt)

σ̂(Xt)

]}2
.

Steps 3-5 may be iterated to improve the finite sample performance.

3. Simulations

Extensive simulations are used to investigate the behavior of the procedure proposed in this
paper. Due to the limit of space, only selected cases are reported here. In reference to
model (1), data are generated using the following models:

f(x) = sin(4x) + cos(2x),

σ(x) = 0.4 exp(−2x2) + 0.2,

the dependent variableXt is generated from the following AR(1) process:

Xt = 0.3Xt−1 + at, at ∼ N(0, .52),

the innovation process{et} is generated from an ARMA(1,1) model

et − φet−1 = εt − θεt−1, εt ∼ N(0, 1),

the parameters of this model are selected combinations ofφ =-.8, -.5, -.2, .2, .5, .8, and
θ = -.8, -.5, -.2, .2, .5, .8, one obvious requirement isφ 6= θ so that there is no common
factor on the two sides of the equation. The sample sizes used in the simulations are 200,
500, and 1000. Four hundred replications are used in each case.

A key issue in polynomial spline regression is the number and location of knots. The
degree of the polynomial, although not as crucial as the knots, should also be selected to
improve the performance of the model. In the simulations we adopt an exhaustive search
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method similar to the idea of Fan and Gilbels . Specifically, for each degree of the poly-
nomial di ∈ {0, 1, 2, 3}, ki (i = 1, 2) interior knots are placed on the percentile points
so that there are equal number of observations between adjacent knots.ki is in the range[
⌊.5k0⌋ , ⌈(min(5k0, n/4)⌉

]
, wherek0 = n1/5 is the theoretically optimal order. The

combination ofdi andki (i = 1, 2) that minimizes the Bayesian Information Criteria (BIC)
is selected. In the simulation it is found that the Akaike Information Criteria (AIC) tends
to over-fit the model.

The proposed estimation procedure is used to estimatef(x), σ(x) and the ARMA pa-
rameters. The results when{et} follows a pure AR(1), a pure MA(1) and the more general
ARMA(1,1) process are summarized in Tables 1, 2, and 3 respectively. The criterion used
to evaluate the performance of the nonparametric estimatorsσ̂(·) andf̂(·) is the mean ab-
solute error (MAE), for example, for̂σ(x),

MAEσ̂ =
1

n

n∑

t=1

|σ(Xt)− σ̂(Xt)|,

MAE
f̂

is defined the same way. To put the performance of the proposed estimators in

perspective, the mean absolute error (MAE) of the proposed estimatorsf̂ andσ̂ are com-
pared with those of the corresponding “idealized” estimatorsf̃ and σ̃. σ̃(x) is the same
polynomial splines estimator aŝσ(x), except calculated with knownf(x), φ andθ; sim-
ilarly, f̃(x) is the same estimator aŝf(x), except calculated with knownσ(x), φ andθ.
The sample mean and sample standard deviation of the proposed estimatorφ̂ andθ̂ are also
compared with their “idealized” counterparts̃φ and θ̃, which are calculated with known
f(x) and knownσ(x). Needless to say, with all other components known,f̃(x) andσ̃(x)
are univariate polynomial spline estimators,φ̃ and θ̃ are standard ARMA estimators with
observed{et}.

In Tables 1, 2, and 3 below, the MAE of the proposed estimatorsf̂(·) and σ̂(·) are
averaged over the 400 replications and used as the baseline. The average MAE of the
“idealized” estimators̃f(·) andσ̃(·) is divided by the average MAE of the corresponding
proposed estimator (̂f and σ̂) as a measure of relative efficiency. The relative efficiency
measures for̂f(·) andσ̂(·) are denoted as Efff and Effσ, respectively, in Tables 1-3. The
means and standard deviations ofφ̂, θ̂, as well as those of the “idealized”̃φ andθ̃ over the
400 replications, are included in the tables under “mean” and “std”.

The serial correlation is an important feature in time series data and must be taken
into consideration in nonparametric smoothing. In nonparametric smoothing, if the serial
correlation in the data is ignored, the nonparametric estimator will not be efficient. On
the other hand, if the serial correlation is modeled appropriately, nonparametric estimation
can achieve the optimal efficiency as if the data is iid (Liu, Chen, and Yao 2010). The
serial correlation contains useful information that can improve forecasting performance.
The explicit ARMA structure used in this paper for the noise offers a parsimonious way to
utilize this information In order to show the effect of removing serial correlation in spline
estimation, we consider a “naive” version of estimators which are the same polynomial
splines estimators aŝf(x) and σ̂(x) except the serial correlation in the noise is ignored,
i.e., assuminget is iid. The relative efficiency of the “naive” estimators, measured as the
ratio of their average MAE to those of the corresponding proposed estimators are included
in Tables 1, 2, and 3 under “Effnf ” and “Effnσ”.

From Tables 1, 2 and 3, we can see while the average MAE of the “idealized” estimators
tend to be smaller than those of the proposed estimators, which is expected, but overall the
difference is quite small. As expected, on average the proposed ARMA estimators have
larger bias and standard deviation than the “idealized” estimators, but the difference is
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Table 1: Simulation results when{et} follows AR(1) processes

φ n MAE
f̂

Eff
f̃

Effnf MAEσ̂ Effσ̃ Effnσ mean(φ̂) std(φ̂) mean(φ̃) std(φ̃)

200 0.0783 1.1561 1.3460 0.0957 0.8396 3.1657 -0.7635 0.0485 -0.7717 0.0477
-0.8 500 0.0588 1.1539 1.2251 0.0726 0.8775 4.2643 -0.7753 0.0292 -0.7823 0.0333

1000 0.0517 1.1128 1.1719 0.0704 0.8311 4.4788 -0.7818 0.0319 -0.7893 0.0184

200 0.0729 0.9951 1.0825 0.0592 0.9253 1.2416 -0.4883 0.0662 -0.4894 0.0650
-0.5 500 0.0564 1.0110 1.0602 0.0439 0.9096 1.7296 -0.4871 0.0446 -0.4923 0.0419

1000 0.0453 1.0449 1.0555 0.0320 0.9323 2.2723 -0.4921 0.0279 -0.4963 0.0288

200 0.0777 0.9492 0.9817 0.0530 0.9679 0.9502 -0.1995 0.0749 -0.2007 0.0736
-0.2 500 0.0569 0.9607 0.9850 0.0386 0.9462 1.1401 -0.1940 0.0465 -0.1983 0.0468

1000 0.0459 0.9764 0.9874 0.0279 0.9538 1.3964 -0.1963 0.0316 -0.1995 0.0309

200 0.0816 0.9722 0.9821 0.0559 0.9301 0.9408 0.1847 0.0754 0.1890 0.0683
0.2 500 0.0597 0.9568 0.9880 0.0445 0.8310 0.9938 0.1890 0.0465 0.1942 0.0446

1000 0.0470 0.9675 0.9877 0.0265 0.9740 1.4255 0.1944 0.0313 0.1973 0.0308

200 0.0939 0.9976 1.0548 0.0597 0.9551 1.2794 0.4829 0.0619 0.4882 0.0607
0.5 500 0.0679 1.0029 1.0296 0.0450 0.8745 1.6084 0.4817 0.0409 0.4878 0.0399

1000 0.0547 0.9991 1.0308 0.0310 0.9715 2.2892 0.4894 0.0287 0.4937 0.0286

200 0.1621 1.0263 1.0876 0.0887 0.8873 3.1496 0.7480 0.0683 0.7530 0.0506
0.8 500 0.1111 0.9934 1.0608 0.0762 0.8672 4.0292 0.7734 0.0329 0.7792 0.0283

1000 0.0841 0.9841 1.0403 0.0672 0.8660 4.5694 0.7791 0.0199 0.7852 0.0177

Table 2: Simulation results when{et} follows MA(1) processes

θ n MAE
f̂

Eff
f̃

Effnf MAEσ̂ Effσ̃ Effnσ mean(θ̂) std(θ̂) mean(θ̃) std(θ̃)

200 0.0683 1.0773 1.2046 0.0781 0.9279 1.6327 -0.7264 0.0748 -0.7402 0.0731
-0.8 500 0.0526 1.0869 1.1820 0.0649 0.9668 2.0019 -0.7306 0.0464 -0.7589 0.0478

1000 0.0444 1.1037 1.1569 0.0580 0.9538 2.2703 -0.7434 0.0299 -0.7699 0.0333

200 0.0708 1.0106 1.0849 0.0570 0.9894 1.0859 -0.4965 0.0725 -0.4934 0.0724
-0.5 500 0.0550 1.0084 1.0630 0.0424 0.9034 1.4620 -0.4844 0.0434 -0.4923 0.0433

1000 0.0456 1.0141 1.0615 0.0328 0.8948 1.7264 -0.4899 0.0311 -0.4981 0.0312

200 0.0740 0.9635 0.9867 0.0523 0.9551 0.9499 -0.2035 0.0813 -0.2043 0.0760
-0.2 500 0.0565 0.9591 0.9804 0.0383 0.9504 1.1433 -0.2006 0.0458 -0.2040 0.0428

1000 0.0451 0.9697 0.9901 0.0261 1.0080 1.4571 -0.1985 0.0316 -0.2016 0.0309

200 0.0810 0.9492 0.9801 0.0546 0.9560 0.9414 0.1866 0.0765 0.1916 0.0699
0.2 500 0.0595 0.9653 0.9788 0.0383 0.9459 1.1407 0.1947 0.0471 0.1981 0.0447

1000 0.0477 0.9702 0.9792 0.0268 0.9546 1.4005 0.1951 0.0328 0.1981 0.0323

200 0.0856 0.9961 1.0558 0.0624 0.8821 1.0004 0.4774 0.0787 0.4860 0.0671
0.5 500 0.0611 1.0043 1.0476 0.0436 0.9142 1.3586 0.4835 0.0445 0.4904 0.0482

1000 0.0488 1.0104 1.0384 0.0314 0.8978 1.7491 0.4845 0.0292 0.4935 0.0279

200 0.0875 1.0316 1.1317 0.0847 0.8938 1.4780 0.7183 0.0798 0.7279 0.0813
0.8 500 0.0643 1.0490 1.1270 0.0665 0.9209 1.9400 0.7264 0.0490 0.7496 0.0578

1000 0.0521 1.0441 1.1047 0.0605 0.9193 2.1841 0.7429 0.0299 0.7670 0.0304

quite small and diminishing with the increase of the sample size. Similar observations are
made in other simulation scenarios not reported here. As a visual example, the MAEs
of the proposed estimatorŝf(·) and σ̂(·) in the 400 replications are plotted against those
of the “idealized” estimators in Figure 1, with a 45-degree line passing though the origin
added to show the pattern. This figure shows that the proposed estimators perform similarly
as their respective “idealized” counterparts, indicating that using the proposed method,
the conditional variance function and the transfer function can be estimated as if other
components of the model are known by some “oracle”. This graph is made forn = 500
andet follows an AR(1) process withφ = 0.5, but similar pattern is observed in other
cases.

The histogram of̂φ in the left panel of Figure 2 shows that the sampling distribution of
φ̂ is close to a normal distribution centered atφ, the true AR parameter. The right panel of
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Table 3: Simulation results when{et} follows ARMA(1,1) processes

φ θ n MAE
f̂

Eff
f̃

Effnf MAEσ̂ Effσ̃ Effnσ mean(φ̂) std(φ̂) mean(θ̂) std(θ̂)

200 0.0719 1.1216 1.2910 0.0887 0.9105 2.7090 -0.4846 0.0841 0.4064 0.1239
-0.5 0.5 500 0.0574 1.1105 1.2045 0.0805 0.8935 3.0985 -0.4985 0.0502 0.4154 0.0666

1000 0.0488 1.1120 1.1689 0.0717 0.9085 3.4562 -0.4976 0.0354 0.4356 0.0448

200 0.0781 1.1303 1.4052 0.1543 1.2347 2.4103 -0.4861 0.0800 0.5350 0.1289
-0.5 0.8 500 0.0547 1.1938 1.3290 0.1439 1.3194 2.6110 -0.4899 0.0477 0.5920 0.0753

1000 0.0506 1.1591 1.2387 0.1476 1.2962 2.5591 -0.4948 0.0344 0.6036 0.0547

200 0.0744 0.9899 1.0358 0.0561 0.9515 0.9940 -0.1612 0.2165 0.2323 0.2259
-0.2 0.2 500 0.0553 0.9956 1.0219 0.0421 0.9299 1.1842 -0.1868 0.1235 0.2053 0.1277

1000 0.0444 0.9933 1.0239 0.0286 0.9786 1.4971 -0.1963 0.0781 0.1969 0.0785

200 0.0704 1.0547 1.1450 0.0706 0.8574 1.4977 -0.1869 0.1289 0.4768 0.1314
-0.2 0.5 500 0.0554 1.0383 1.1060 0.0532 0.9024 2.0139 -0.1914 0.0746 0.4702 0.0703

1000 0.0449 1.0566 1.1045 0.0401 0.9010 2.6664 -0.2003 0.0514 0.4751 0.0503

200 0.0656 1.1503 1.3275 0.1096 0.8987 1.7720 -0.1824 0.0987 0.6776 0.1287
-0.2 0.8 500 0.0535 1.1060 1.2271 0.0826 1.1054 2.4355 -0.1938 0.0578 0.6916 0.0609

1000 0.0462 1.1079 1.1810 0.0845 1.0465 2.3820 -0.1995 0.0423 0.7016 0.0420

200 0.0978 1.0060 1.1518 0.0948 1.0438 2.0067 0.1844 0.0921 -0.6677 0.1107
0.2 -0.8 500 0.0707 1.0395 1.1438 0.0887 1.0293 2.2245 0.1968 0.0575 -0.6782 0.0616

1000 0.0558 1.0591 1.1311 0.0912 0.9691 2.1914 0.1954 0.0392 -0.7061 0.0406

200 0.0864 1.0254 1.1017 0.0674 0.9193 1.5075 0.1896 0.1384 -0.4562 0.1435
0.2 -0.5 500 0.0660 1.0137 1.0867 0.0532 0.8412 1.9838 0.1933 0.0788 -0.4715 0.0716

1000 0.0537 1.0020 1.0706 0.0417 0.8608 2.5587 0.2028 0.0513 -0.4713 0.0483

200 0.0850 0.9735 1.0159 0.0546 0.9638 0.9741 0.1661 0.2264 -0.2101 0.2234
0.2 -0.2 500 0.0622 0.9720 1.0030 0.0396 0.9079 1.2641 0.2035 0.1194 -0.1847 0.1243

1000 0.0478 1.0054 1.0257 0.0279 1.0012 1.5335 0.1964 0.0816 -0.1958 0.0834

200 0.1182 1.0081 1.1225 0.0964 0.8892 2.4511 0.4888 0.0927 -0.3907 0.1238
0.5 -0.5 500 0.0782 1.0325 1.1210 0.0787 0.8971 3.0604 0.4907 0.0471 -0.4211 0.0657

1000 0.0632 1.0446 1.1174 0.0720 0.9035 3.3999 0.4940 0.0353 -0.4371 0.0454

200 0.0996 1.0136 1.0875 0.0697 0.9085 1.7586 0.4781 0.1015 -0.1812 0.1223
0.5 -0.2 500 0.0721 1.0149 1.0728 0.0509 0.8990 2.5316 0.4930 0.0670 -0.1752 0.0768

1000 0.0570 1.0101 1.0668 0.0402 0.9162 3.2859 0.4966 0.0422 -0.1800 0.0526
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Figure 1: Left: MAE of f̂(·) vs. f̃(·). Right: MAE of σ̂(·) vs. σ̃(·). φ = 0.5, n=500.

the same figure showŝφ against the “idealized”̃φ in 400 replications, we again see thatφ̂
behaviors similarly to the “idealized ” ARMA estimator which is estimated with observed
{et}, i.e., with knownf andσ. Figure 3 showsf̂ and σ̂ in a typical simulation when
n = 500 andet follows an MA(1) process withθ = 0.5. From Tables 1-3, it is obvious
that the performance of the estimators improves with the increase of sample size. These
observations are similar to those made by Fan and Yao (1998) in which local polynomial
smoothers are used to modelf(·) andσ(·). This leads us to conjecture that the estimators
proposed in this paper have the “oracle” properties similar to those observed by Fan and
Yao (1998), i.e., the conditional variance functionσ2(·) can be estimated as if the other
components of the modelf(·), φ andθ, are known by an “oracle”. Similarly, the transfer
functionf(·) can be estimated as ifσ(·), φ andθ are known, and the ARMA estimators has
the same asymptotic normal distribution as a standard univariate ARMA estimator.

We also see that the “naive” estimators have larger average MAE than the proposed
estimators, which indicates the information contained in the serial correlation of the noise
should be utilized to improve the efficiency in nonparametric estimation. The gain in ef-
ficiency in estimatingf(x) andσ(x) is larger when the serial correlation is strong (e.g.,
whenφ is high in absolute value in AR(1) cases).
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Figure 2: Left: Histogram ofφ̃, Right: φ̂ vs φ̃. φ = 0.5, n = 500.

4. The Properties of the Estimators

The following assumptions are needed in the discussion of the properties of the proposed
estimators. Most of them are standard assumptions in the literature.

(A1) f(·) andσ(·) areq-smooth1.

(A2) The density of X,pX is absolutely continuous and bounded away from zero and
infinity.

(A3) σ(·) is bounded away from zero and infinity.

(A4) The knot sequenceκ = {κ0 ≤ κ1 < · · · < κK ≤ κK+1) has bounded mesh

ratio, that is, forj = 1, · · · ,K, max(κj+1−κj)
min(κj+1−κj)

≤ c. The number of interior knotski

satisfiesk ∼ n1/(2p+1).
1A functionf(·) is q−smooth (q = r+β) if it is r-times continuously differentiable onX andf (r) satisfies

a Hölder condition with exponentβ, i.e., there exists a positive integerγ such that|f (r)(x1) − f (r)(x2)| ≤
γ|x1 − x2|

β , for x1, x2 ∈ X , 0 < β ≤ 1.
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Figure 3: f̂(·) andσ̂(·) in a typical simulation,θ = 0.5, n=500.

(A5) The process{Yt,Xt} is jointly α-mixing in the sense that theα−mixing coefficient
α(k) ≤ cρk for constantsc > 0, 0 < ρ < 1, where

α(k) = sup
A∈F0

−∞
,B∈F∞

k
,

∣∣P (A)P (B)− P (AB)
∣∣,

whereF j
i is theσ-algebra generated by{Xi, · · · ,Xj} for i ≤ j.

Define ||f ||∞ ≡ supx∈X f(x). Let Sn be the space of polynomial splines, which is
the estimation space. Usuallyf is not inSn and we use functions inSn to approximation
unknownf . In order to obtain good approximation we allow the dimension ofSn to grow
with the sample sizen. For notational convenience we suppress the dependence ofSn

on n in the subsequent discussion. For any integrable functionf on X , define En(f) =
1
n

∑n
i=1 f(Xi), the empirical inner product is defined by〈f1, f2〉n = En(f1f2), and the

empirical norm is defined as||f ||2n = 〈f, f〉n. The theoretical inner product and norm are
defined as〈f1, f2〉 = E(f1f2), and||f ||2 = 〈f, f〉, respectively. The least squares estimate
f̂ is an orthogonal projection of the observationsY on the estimation spaceS, with respect
to the empirical inner product. Denote such an orthogonal projection operator byPn, we
havef̂ = PnY = Pnf + PnE, whereE = (e1, e2, · · · , en)τ . From the definitions of
expectation and orthogonal projection, it can be easily shown thatf̄ ≡ E(f̂ |X1, · · · ,Xn) =
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Pnf , therefore we have the following decomposition

f̂(x)− f(x) = f̂(x)− f̄(x) + f̄(x)− f(x),

in subsequent discussionŝf(x)−f̄(x) is referred to as the variance term andf̄(x)−f(x) the
bias term. To show the dependence on sample sizen, we useKn to denote the dimension
of the polynomial spline. In the following we will discuss the asymptotic normality of the
variance term and the order of the bias term. Letσ2

e =Var(et), under our stationary ARMA
assumption,σ2

e < ∞.
Let γ = (φτ ,θτ )τ , let γ̂ be the proposed ARMA estimator and̃γ the “idealized”

ARMA estimator whenet is observable. Assumeφ meets the stationarity condition andθ
meets the invertibility condition. Then asn → ∞,

√
n
(
γ̂ − γ̃

)
= op(1).

Henceγ̂ shares the same asymptotic distribution ofγ̃,

√
n
(
γ̂ − γ)

D−→ N
(
0, σ2

V(γ)−1
)
,where

V(γ) = E

[
U1U

τ
1 U1V

τ
1

V1U
τ
1 V1V

τ
1

]
,

Ut = (Ut, Ut−1, · · · , Ut+1−p)
τ , Vt = (Vt, Vt−1, · · · , Vt+1−q)

τ . φ(L)Ut = ε1t and
θ(L)Vt = ε2t (Brock and Davis (1987) ).

The above result shows thatγ̂ − γ = Op(
√
n), faster than the nonparametric rate in

f̂(·). Based on this we can treat̂γ = γ in the derivation. Replacêγ with γ, Yt is pre-
whitened and used in the next step of the estimation:

φ(L)

θ(L)
Yt =

φ(L)

θ(L)
f(Xt) + εt,

with preliminary estimatěf(·), use theπ weightsφ(L)θ(L)−1 = 1+
∑∞

i=1 πiL
i, it is easy

to see that the response variable in the spline estimation next stage is

Ỹt =
φ(L)

θ(L)
Yt −

∞∑

i=1

πif̌(Xt−i)

= f(Xt) + εt +

∞∑

i=1

πi

[
f(Xt−i)− f̌(Xt−i)

]
,

andf̂(·) is the orthogonal projection of̃Y onto polynomial splines spaceSn. Ỹt is made up
of the “pre-whitened” observationf(Xt) + εt, and the error resulting from the preliminary

estimation
∑∞

i=1 πi

[
f(Xt−i)− f̌(Xt−i)

]
. From the stationarity assumption, we can show

the error term is negligible in the estimation, andf̂(·) has the same limiting distribution
as if {et} is iid. The results below are essentially the same results in Huang (2003) for
cross-sectional data, our simulation results indicates that the proposed estimatorsf̂(·) and
σ(·) behave similarly to the corresponding “idealized” estimators, which are univariate
polynomial splines estimators applied on time series data with serial correlation removed,
therefore these results continue to hold in the estimation off(·) andσ(·). Let Φ(·) be
the distribution function of the standard normal distribution. The following establishes the
asymptotic normality of the variance term̂f − f̄ , wheref̄ = Pnf as before.
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Conjecture 1 Assumelimλ→∞ E (ε2I{|ε|>λ}|X = x) = 0, then forx ∈ X andt ∈ R,

P
(
f̂(x)− f̄(x) ≤ t

√
Var[f̂(x)|X1, · · · ,Xn]

)
− Φ(t) = op(1),

consequently
f̂(x)− f̄(x)√

Var(f̂(x)|X1, · · · ,Xn)

D−→ N(0, 1).

From the above result, we can derive that

sup
x∈X

|f̂(x)− f̄(x)| = Op(
√

Kn/n). (4)

The following result, which is similar to Theorem 5.2 of Huang (2003) , shows that
whenf is q-smooth, the bias term of̃f(x) is negligible comparing with the variance term.

Conjecture 2 Assume that the marginal density functionpX is bounded away from zero
and infinity. Iflimn→∞Kn/n

2q+1 = ∞ and limn→∞Kn log n/n = 0, then

sup
x∈X

∣∣∣ f̄(x)− f(x)√
V ar(f̂(x)|X1, · · · ,Xn)

∣∣∣ = op(1)

It is shown in the approximation theory (e.g., Huang 2003) that the bias term|f̄(x) −
f(x)| caused by using regression spline to approximatef is controlled byinff∗∈S ||f −
f∗||∞, the best rate inL∞ norm for approximatingf with a regression spline function.
With a B-spline basis, using results in approximation theory we can show the following
result

sup
x∈X

|f̄(x)− f(x)| = Op(K
−q
n ). (5)

Using (4) and (5), balancing the variance and the squared bias, we can see that ifKn =

Op(n
1

2q+1 ) the optimal estimation rateOp(n
− 2q

2q+1 ) (Stone (1982)) can be obtained. The
above results show that after removing the correlation in the noise,f can be estimated with
the same rate as ifet is iid.

For the conditional variance function estimatorσ̂(·), perform the same decomposition
of σ̂(·) − σ(·) = σ̂(·) − σ̄(·) + σ̄(·) − σ(·), similar results as above should hold forσ̂,
i.e., the variance term̂σ(·)− σ̄(·) is asymptotically normally distributed, and the bias term
σ̄(·)− σ(·) is of smaller order than the variance term therefore is negligible.

5. An empirical example

To illustrate the proposed approach, we consider the weekly yields of three-month Treasury
Bills from January 18, 1954 to December 31, 1999. This data set was previously analyzed
by Anderson and Lund (1997) , Gallant and Tauchen (1997) , and Fan and Yao (1998) . A
time series plot is given in Figure 4.

To build the model, the Dicky-Fuller ADF test is first applied to test for nonstationarity
of Yt. The test statistic is -2.7538, with ap-value of 0.2592, therefore the null hypothesis
of unit root is not rejected. As a result, first order difference is taken to eliminate the unit
root. LetZt = Yt − Yt−1, we consider the following model

Zt = f(Yt−1) + σ(Yt−1)et. (6)
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Figure 4: Yields of 3-month T-Bills, 1/8/1954-12/31/1999

To select the polynomial spline models, the degree of the polynomial is selected in the
range of 0 through 6. To select the knotski, considering the rather large sample size
(n=2400),ki is chosen from the range of[1, 100]. At ki = 100, one interior knot is placed
on each percentile point, while whenki = 1 the only knot is placed on the median of
the “independent variable”Yt−1. The degree of polynomialdi and number of knotski
(i = 1, 2) are then selected using BIC. The exhaustive search procedure mentioned before
results in a degree-5 spline with 1 knot forf(·), and a linear spline with 2 knots forσ(·).
As for the innovation process{et}, BIC is used to identify the orders of the ARMA model,
the result is an ARMA (1,2) model. Based on these model selection results, the identified
model is :

Zt =

7∑

i=1

βiB1i(Yt−1) +

√√√√exp
[ 4∑

j=1

αjB2j(Yt−1)
](1− θ1L)(1− θ2L

2)

1− φL
εt.

The proposed iterative estimation procedure is used in the estimation, the residual vari-
ance is5.18. The estimated transfer functionf(Yt−1) is plotted againstYt−1 in Yt is
plotted againstYt−1 in the left panel of Figure 5, superimposed on the scatter diagram
of Yt−1 againstYt. In the right panel of Figure 5, the absolute value ofr(Yt−1) =

1−φL
(1−θ1L)(1−θ2L2)

[
Yt − f(Yt−1)

]
is plotted againstYt−1, on which the estimated conditional

standard deviation function is superimposed. From both panels of Figure 5, we can see that
the variability is rather stable and show small decrease when previous week’s yield is less
than 4 approximately, after which the variability starts to increase rapidly. The estimated
ARMA parameters are given in Table 4. The ACF and PACF of the standardized residual
(Figure 6), as well as the Ljung-BoxQ(10), indicate the residual is white noise.
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Figure 5: Estimated mean and volatility functions

6. Summary and Discussions

In this paper a nonparametric method is developed to model conditional variance functions
in transfer function models. In this method, the conditional variance function and the trans-
fer function are assumed to be smooth, no additional assumption is made about their func-
tional forms. Polynomial splines are used to approximate the conditional variance function
and the transfer function due to their flexibility and computational efficiency. The serial
correlation in the innovation process is modeled as a stationary ARMA process. Through
simulation studies, the proposed estimators are shown to process the “oracle” property,
i.e., the conditional variance function estimator performs as if the transfer function and the
ARMA parameters are known by some “oracle”. Similarly, the transfer function estima-

Table 4: The Estimated ARMA(1,2) Cofficients

Coefficients φ θ1 θ2

Estimates 0.9036 -0.6478 -0.1967
s.e. 0.0492 0.0542 0.0264
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Figure 6: Residual Sample ACF and PACF

tor behaves as if the conditional variance function and the ARMA parameters are known.
The ARMA estimators are shown to be approximately normally distributed, with mean and
standard deviation close to those of the standard ARMA estimator with observedet. With-
out the need of making explicit assumptions on the forms of the unknown functions, this
nonparametric model can be used when the underlying functions are highly nonlinear. By
using polynomial splines, this method is very computationally efficient therefore applica-
tions with large number of observations can be analyzed with ease. It is also demonstrated
that it is necessary to model the serial correlation in the data in order to improve the effi-
ciency in estimating the transfer function and conditional variance function. The usefulness
of this model is demonstrated in a classical example in the literature. The proposed method
shows promising properties through simulation studies, but the asymptotic properties of the
estimators need more rigorous study in the future.
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