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Abstract
Many population-based surveys have binary responses from a large number of individuals in each house-

hold within small areas. An example is the Nepal Living Standards Survey (NLSS II), in which health status
binary data (good versus poor) for each individual from sampled households (sub-areas) are available in
sampled wards (small areas). To make inference for the finite population proportion of individuals in each
household, we use the sub-area logistic regression model with reliable auxiliary information. The contri-
bution of this model is twofold. First, we extend an area-level model to a sub-area level model. Second,
because there are numerous sub-areas, standard Markov chain Monte Carlo (MCMC) methods to find the
joint posterior density are very time consuming. Therefore, we provide a sampling-based method, the inte-
grated nested normal approximation (INNA), which permits fast computation. Our main goal is to describe
this hierarchical Bayesian logistic regression model and to show that the computation is much faster than
the exact MCMC method and also reasonably accurate. The performance of our method is studied by using
NLSS II data. Our model can borrow strength from both areas and sub-areas to obtain more efficient and
precise estimates. The hierarchical structure of our model captures the variation in the binary data reasonably
well.

Key Words: Hierarchical Bayesian Model, Integrated nested normal approximation, MCMC, Metropolis
sampler, Numerical integration

1. Introduction

The Nepal Living Standard Survey (NLSS) II is a two-stage stratified sampling. A random
sample of wards (areas) were selected from six strata and 12 household (sub-areas) were selected
from each sampled ward. All individual in sampled household were interviewed. One interest is
health status, a binary variable. To make smooth estimates of the finite population proportion of
individuals with good health in each household, we focus on hierarchical Bayesian (HB) models
with sub-area random effects to obtain reliable “indirect” estimates for numerous small areas or
sub-areas. Most of the sample surveys are designed to provide reliable “direct” estimates of inter-
ests for large areas or domains (e.g. state level, national level). However, direct estimates are not
reliable for areas or domains for which only small samples or no sample are available.
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Due to the NLSS II data hierarchical structure, we are particular interested in small area mod-
els that can capture such property. Although the one-fold basic models are very popular and in
common use in producing reliable estimates, the hierarchical structure of the data and the consis-
tency between the estimates for different levels may not hold. In particular, the sampling design of
many population-based survey are two-stage stratified sampling as NLSS II. But if we use one-fold
unit level model to fit the data, sub-area level effects would be ignored. Yan and Sedransk (2007)
studied the case that the data follow a normal model with a two-stage (three-stage) hierarchical
structure while the fitted model has a one-stage (two-stage) hierarchical structure by using pos-
terior predictive p-values. Yan and Sedransk (2010) discussed the ability to detect a three-stage
model when a two-stage model is actually fitted.

Two-fold models are an important extension of basic small area models. Many authors have
considered the problems and proposed such kinds of models. But most of them are for continuous
data. Fuller and Goyenche (1998) proposed a sub-area level model which provides model-based
estimates that account for the hierarchical structure of data. Two-fold sub-area level models was
studied by Torabi and Rao (2014), Rao (2015). This is an area-level model which extend the Fay-
Harriot model to sub-area level. Two-fold nested error regression models was considered by Stukel
and Rao (1997,1999).

Bayesian logistic regression models with random effects are suitable to handle binary data with
covariates. Nandram (1989) discussed discrimination between the logit and the complementary
log-log link functions by using logistic regression model. Roberts, Rao and Kumar (1987) dis-
cussed logistic regression for sample survey data (not small area estimation). Nandram and Chen
(1996) show how to accelerate the Gibbs sampler for a model with latent variables introduced ear-
lier by Albert and Chib (1993) for Bayesian probit analysis. Farrell, MacGibbon and Tomberlin
(1997) discussed logistic regression model by using empirical Bayesian approach. Nandram and
Erhardt (2005) showed how to analyze binary data with covariates to maintain conjugacy for both
logistic and Poisson regression model. The analysis of binary data with covariates under nonignor-
able nonresponse was discussed by Nandram and Choi (2010). Nandram, Chen, Shu and Binod
(2018) proposed a hierarchical Bayesian logistic regression model for binary data in small area es-
timation. Such model is a unit level model without sub-area effect. Our two-fold sub-area model is
an extension of this logistic regression model. We add sub-area level random effect into the model
which can capture the hierarchical structure of the sampled data. In the same time, we add more
hyper-parameters into the model which make the inference more complicated. However, we pro-
pose an approximation method called the integrated nested normal approximation (INNA) which
solved the difficulties.

The other side of our application is that there are numerous small areas (households and indi-
viduals) and MCMC methods cannot handle them efficiently which involve complicated integrals.
Scott et al. (2013) defined big data as data that are too big to comfortably process on a single
machine. They considered consensus Monte Carlo methods that split the data to several machines.
They proposed algorithms that perform distributed approximate Bayesian analyses in order to min-
imize the communication between computers. The parallel MCMC methods for non-Gaussian
posterior distributions was discussed by Miroshnikov and Colon (2015). Fortunately, in survey
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sampling the design generally uses stratification which is not artificial, and in this case, consensus
Monte Carlo may not be needed; it will be a good idea for a large stratum.

The integrations involved in Bayesian inference are usually intractable which is true for our
logistic regression model. The approximation techniques are desired. The procedure we use to ap-
proximate the posterior density of the parameters of logistic regression sub-area model, INNA, is
similar to the integrated nested Laplace approximation (INLA) originally proposed by Rue, Mar-
tino and Chopin (2009), but they are different actually. INLA is a quite popular algorithm and
an alternative to MCMC for big data analysis if the joint posterior density is very complicated.
It requires posterior modes and, for numerous small areas, computation of modes becomes time-
consuming and challenging for logistic regression model or any generalized linear mixed models.
Yet INLA has found many useful applications, such as on Poisson regression by Fong, Rue and
Wakefield (2010), and on spatial point pattern data by Illian, Srbye and Rue (2012). We note that
INLA can be problematic especially for logistic and Poisson hierarchical regression models, even
if the modes can be computed. Ferkingstad and Rue (2015), attempting to improve INLA, used
a copula-based correction which adds complexity to INLA. Our approximation method, INNA,
which does not require to find posterior modes, uses a sampling-based procedure accommodated
by the multiplication rule of probability. Instead of finding the posterior modes, INNA finds ap-
proximate modes in closed form, facilitated by the empirical logistic transform (Cox and Snell
1972) and the second-order Taylor series approximation.

On the other hand, two-fold models can capture the heterogeneity between samples within not
only areas but also sub-areas. Many model-based estimation techniques for the sampling variances
have been considered in the literature, but most of them for the area-level model: see Wang and
Fuller (2003), You and Chapman (2006) and Erciulescu and Berg (2014). Nandram and Chen
(2016) studied a Bayesian model under heterogeneous sampling variance as log-linear structure,
which is preferable than homogeneous model.

In section 2, we give a full description of a sub-area HB logistic regression model. In particular,
we describe the integrated nested normal approximation (INNA) and some theoretical results are
provided. We put the exact MCMC method discussion in appendix. In section 3, we apply our
model to the NLSS II data to provide smoothed estimates of the household proportions of members
in good health for both sampled and nonsampled households. Finally, in section 4, we make
concluding marks and future work for my remaining research.

2. Sub-Area Hierarchical Logistic Regression Model

In this section, we assume that reliable auxiliary information are available at unit level. The
model and method we proposed for many small areas and sub-areas is not only for our application
NLSS II. It can be applied to other population-based survey with binary response. In our applica-
tion, we have binary data (good health versus poor health) for each individual within a household,
and these households are within wards.

We have a finite population of L small areas (wards) and within the ith area, there are Ni sub-
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areas (households). Within the jth sub-area there are Mi j individuals. We assume that `(< L) areas
are sampled and a simple random sample of ni(< Ni) households is taken from the ith area. All
individuals in sampled household are sampled. Here we assume the survey weights are the same
within all households in each area. Let yi jk, k = 1, . . . ,mi j, j = 1, . . . ,ni, i = 1, .. . . . , ` denote the
binary responses. Let

˜
y = (yi jk, k = 1, . . . ,mi j, j = 1, . . . ,ni, i = 1, .. . . . , `)′. Let yi j = ∑

mi j
k=1 yi jk

be the number with response 1 and mi j is the total number of people who responsed. Let
˜
xi jk =

(1,xi jk1, . . . ,xi jkp)
′ be the (p+1) vector with p covariates for individuals and an intercept.

We use P to represent the population proportion and p be the sample proportion. Let pi j be the
corresponding sample probability of yi j, j = 1, ...,ni, i = 1, . . . , `.

The primary interests are the finite population proportions of households, which are Pi j =
1

Mi j
∑

Mi j
k=1 yi jk, j = 1, . . . ,Ni, i = 1, .. . . . , ` and the finite population proportions of areas which are

Pi =
1
Ni

∑
Ni
j=1 ∑

Mi j
k=1 yi jk, i = 1, .. . . . , `.

In the content of logistic regression model, the two-fold hierarchical Bayesian logistic regres-
sion model for the sub-area means µi j:

yi jk|
˜
β ,νi,µi j

ind∼ Bernoulli

{
e˜

x′i jk
˜
β+νi+µi j

1+ e˜
x′i jk

˜
β+νi+µi j

}
,k = 1, . . . ,mi j,

µi j|σ2 iid∼ Normal(0,σ2), j = 1, . . . ,ni,

νi|δ 2 iid∼ Normal(0,δ 2), i = 1, . . . , `,

π(
˜
β ,δ 2,σ2) ∝

1
(1+δ 2)2

1
(1+σ2)2 ,δ

2 > 0, σ
2 > 0.

Here, µi j, i = 1, . . . , `; j = 1, . . . ,ni are the sub-area level random effect, which is not in the area-
level model in Nandram and Chen (2018). νi, i = 1, . . . , ` are the area random effects and

˜
β =

(β0,β1, . . . ,βp)
′ are the regression coefficients with σ2,δ 2, the variance of the random effects,

respectively.
In order to apply our approximation method and make inference for posterior distribution, we

use an equivalent model. First, we seperate
˜
β into β0 and

˜
β(0), where

˜
β(0) = (β1,β2, ...,βp)

T . We
set β0 as the mean of

˜
ν , and then we can omit intercept term from the covariate

˜
xi jk. Second, we

introduce a new parameter wi j = νi + µi j in order to set νi and µi j independent and then easy to
make inference on both of them. We have

yi jk|
˜
β(0),wi j

ind∼ Bernoulli

{
e˜

x′i jk
˜
β(0)+wi j

1+ e˜
x′i jk

˜
β(0)+wi j

}
,k = 1, . . . ,mi j,

wi j|νi,σ
2 ind∼ Normal(νi,σ

2), j = 1, . . . ,ni,
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νi|β0,δ
2 iid∼ Normal(β0,δ

2), i = 1, . . . , `,

π(
˜
β ,δ 2,σ2) ∝

1
(1+δ 2)2

1
(1+σ2)2 ,δ

2 > 0, σ
2 > 0.

The joint posterior density for the parameters is

π(
˜
v,

˜
w,

˜
β ,σ2,δ 2|

˜
y) ∝

`

∏
i=1

ni

∏
j=1

mi j

∏
k=1

[
e(˜x
′
i jk

˜
β(0)+wi j)yi jk

1+ e˜
x′i jk

˜
β(0)+wi j

]
×
( 1√

2πσ2

)n
exp

{
−

l

∑
i=1

ni

∑
j=1

(wi j−νi)
2

2σ2

}

×
( 1√

2πδ 2

)l
exp

{
−

l

∑
i=1

(νi−β0)
2

2δ 2

}
1

(1+σ2)2
1

(1+δ 2)2 .

The posterior density is a non-standard density, and there are difficulties in fitting it using MCMC
methods, more so when ni, mi j are large. This motivates our approximate methods.

3. Integrated Nested Normal Approximation Method

In this section we discuss our approximation method INNA and construct the approximate joint
posterior density πa(

˜
v,

˜
w,

˜
β ,σ2,δ 2|

˜
y). INNA method is not required to find the posterior modes.

Due to the large amount of subareas, it would be time consuming to find all posterior modes so that
is why we did not choose the popular INLA method here.

Notice that the joint posterior density of π(
˜
v,

˜
w,

˜
β ,σ2,δ 2|

˜
y) is very complicated and it is the

logit expit part
`

∏
i=1

ni

∏
j=1

mi j

∏
k=1

[
e
(
˜
x′i jk ˜

β(0)+wi j)yi jk

1+e˜
x′i jk ˜

β(0)+wi j

]
that causes the difficulties. Therefore, we find a method

to approximate this term to normal density functions by using Laplace approximation, the second-
order multivariate Taylor-series approximation and the empirical logistic transform (ELT).

Let f (
˜
τ) = eh(

˜
τ) denote the density of a vector of parameters

˜
τ . Let

˜
g denote the gradient vector

and H the Hessian matrix at some point
˜
τ∗.

Lemma 3.1. Let h(
˜
τ) be a logconcave density function with the parameter

˜
τ . Then,

˜
τ approxi-

mately has a multivariate normal distribution,

˜
τ ∼ Normal(

˜
τ
∗−H−1

˜
g,−H−1).

Proof. Simply apply the second-order multivariate Taylor series of h(
˜
τ) at

˜
τ∗ is

f (
˜
τ)≈ f (

˜
τ
∗)+(

˜
τ−

˜
τ
∗)′

˜
g+

1
2
(
˜
τ−

˜
τ
∗)′H(

˜
τ−

˜
τ
∗).

Note that due to the logconcavity of h(
˜
τ), its Hessian Matrix−H is positive defenite, which can be

the covariance matrix. Here we also use certain point
˜
τ∗ rather than the mode of h(

˜
τ). So we do
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not need to find the solution of the gradient vector
˜
g = 0. And the term −H−1

˜
g is a correction to

˜
τ∗.

Starting with a flat prior
˜
β(0) and the

˜
w, the model is

yi jk|wi j,
˜
β(0)

ind∼ Bernoulli

{
e˜

x′
˜
β(0)+wi j

1+ e˜
x′i jk

˜
β(0)+wi j

}
, j = 1, . . . ,ni, i = 1, . . . , `,

p(
˜
w,

˜
β(0)) = 1.

The joint posterior density is

π(
˜
w,

˜
β(0)|

˜
y) ∝

`

∏
i=1

ni

∏
j=1

mi j

∏
k=1

{
e(˜x
′
i jk

˜
β(0)+wi j)yi jk

1+ e˜
x′i jk

˜
β(0)+wi j

}
. (1)

The logarithm of the joint posterior density (or log-likelihood) is

∆ = h(
˜
τ) =

`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

{
(
˜
x′i jk

˜
β(0)+wi j)yi jk− log(1+ e˜

x′i jk
˜
β(0)+wi j)

}
.

Let
˜
τ ′ = (

˜
µ ′,

˜
β ′(0)). In our method, we find a convenient point to expand the log-likelihood in a

second-order multivariate Taylor’s series expansion.
To begin with, let ȳi j =

1
mi j

∑
mi j
k=1 yi jk. We use the empirical logistic transform zi j to get an

estimate of wi j, where

ŵ∗i j = zi j = log

{
ȳi j +

1
2mi j

1− ȳi j +
1

2mi j

}
, i = 1, . . . , `; j = 1, . . . ,ni.

First, we discuss how to find the quasi mode of
˜
β(0). We plug ŵ∗i j into the log likelihood function

∆ and consider it as a function of
˜
β(0) only as q(

˜
β(0)) , we get

q(
˜
β(0)) =

`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

[
(
˜
x′i jk

˜
β(0)+ ŵ∗i j)yi jk− log(1+ e˜

x′i jk
˜
β(0)+ŵ∗i j)

]
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The frist derivative of q(
˜
β(0)) is

q′(
˜
β(0)) =

`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

{
˜
xi jkyi jk− ˜

xi jke(˜x
′
i jk

˜
β(0)+ŵ∗i j)

1+ e˜
x′i jk

˜
β(0)+ŵ∗i j

}

=
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

{
˜
xi jkyi jk− ˜

xi jk
[
1+ e−(˜x

′
i jk

˜
β(0)+ŵ∗i j)

]−1
}

Usually we should set q′(
˜
β(0)) equal to zero and find the modes as the maximum likelihood esti-

mator(MLE) of
˜
β(0). But here it is not easy to solve the equation due to the complexity of q′(

˜
β(0)).

We use the first-order Taylor’s series to appoximate and then simplfy q′(
˜
β(0)) so that we can get

quasi modes of
˜
β(0).

Since the first-order Talor’s expansion of (1+e˜
x′i jk

˜
β(0)+ŵ∗i j)−1 equals (1−e−(˜x

′
i jk

˜
β(0)+ŵ∗i j)). Notice that

by Taylor seriers, e−(˜x
′
i jk

˜
β(0)+ŵ∗i j) ≈ 1− (

˜
x′i jk

˜
β(0)+ ŵ∗i j). Then we can get

q′(
˜
β(0))≈

`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

{
˜
xi jkyi jk− ˜

xi jk
[
(1− e˜

x′i jk
˜
β(0)+ŵ∗i j)

]}
≈

`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

{
˜
xi jkyi jk− ˜

xi jk
[
(1−1+(

˜
x′i jk

˜
β(0)+ ŵ∗i j))

]}
=

`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

{
˜
xi jk(yi jk− ŵ∗i j)− ˜

xi jk˜
x′i jk

˜
β(0)

}
Then solve for q′(

˜
β(0)) = 0, we can easily get the quasi modes of

˜
β(0)

˜
β
∗
(0) = [

`

∑
i=1

ni

∑
j=1

mi j

∑
k=1 ˜

xi jk˜
x′i jk]

−1[
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1 ˜

xi jk(yi jk− ŵ∗i j)].

Second, we obtain quasi modes for the wi j, a refinement of the zi. Plug
˜
β ∗(0) in the likelihood

function ∆ and consider it as function wi j only,

g(wi j) =
mi j

∑
k=1

[
(
˜
x′i jk

˜
β
∗
(0)+wi j)yi jk− log(1+ e˜

x′i jk
˜
β(0)∗+wi j)

]
.

 
972



Similarly we apply Taylor expansion, we get the approximate first derivative of g(wi j)

g′(wi j) =
mi j

∑
k=1

{
yi jk−

[
1+ e−(˜x

′
i jk

˜
β ∗(0)+wi j)

]−1
}

≈
mi j

∑
k=1

{
yi jk−

(
1− e−wi j e−˜

x′i jk
˜
β ∗(0)
)}

Solve for g′(wi j) = 0, we can obtain the approximate posterior mode of wi j,

w∗i j = log

{
∑

mi j
k=1 e−˜

x′i jk
˜
β ∗(0)

mi j(1− ȳi j)

}

Notice that the term 1− ȳi j in denominator may cause trouble if ȳi j = 1 for some is and js. Here
we borrow the idea from ELT and make a small adjustment in order to avoid zero denominator.
That is,

w∗i j ≈ log

{
∑

mi j
k=1 e−˜

x′i jk
˜
β ∗(0)

mi j(1− ȳi j +
1

2mi j
)

}
i = 1, . . . , `, j = 1, . . . ,ni.

Let
˜
τ∗′ = (

˜
µ∗′,

˜
β ∗′(0)). Next, we evaluate

˜
g and H at the quasi modes

˜
τ =

˜
τ∗ can also be obtained

as

˜
g =

(
∂∆

∂w11
· · · ∂∆

∂w`n`

∂∆

∂

˜
β(0)

)T

˜
w=

˜
w∗,

˜
β(0)=

˜
β ∗
(0)

,

H =



∂ 2∆

∂w2
11

· · · ∂ 2∆

∂w11∂w`n`

∂ 2∆

∂w11∂

˜
β(0)

...
...

. . .
...

0 · · · ∂ 2∆

∂w2
`n`

∂ 2∆

∂w`n`∂

˜
β(0)

∂ 2∆

∂w11∂

˜
β(0)

· · · ∂ 2∆

∂w`n`∂

˜
β(0)

∂ 2∆

∂

˜
β 2
(0)


˜
w=

˜
w∗,

˜
β(0)=

˜
β ∗
(0)

.

The partial derivatives can be expressed in terms of response yi jk and covariates
˜
xi jk as

∂∆

∂

˜
β(0)

=
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

{
˜
xi jkyi jk− ˜

xi jke˜
x′i jk

˜
β ∗(0)+w∗i j

1+ e˜
x′i jk

˜
β ∗
(0)+w∗i j

}
,

∂∆

∂wi j
=

mi j

∑
k=1

(yi jk−
e˜

x′i jk
˜
β ∗(0)+w∗i j

1+ e˜
x′i jk

˜
β ∗
(0)+w∗i j

),
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∂ 2∆

∂

˜
β 2
(0)

=−
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

˜
xi jk˜

x′i jke˜
x′i jk

˜
β ∗(0)+w∗i j

(1+ e˜
x′i j

˜
β ∗
(0)+w∗i j)2

,

∂ 2∆

∂w2
i j
=−

mi j

∑
k=1

e˜
x′i jk

˜
β ∗(0)+w∗i j

(1+ e˜
x′i jk

˜
β ∗
(0)+w∗i j)2

,

∂ 2∆

∂ µi∂
˜
β(0)

=−
mi j

∑
k=1

˜
xi jke˜

x′i jk
˜
β ∗(0)+w∗i j

(1+ e˜
x′i jk

˜
β ∗
(0)+w∗i j)2

,

where i = 1, . . . , `, j = 1, . . . ,ni.

For the convenience of computation, denote
˜
g =

(
˜
g1

˜
g2

)
and H =−

(
D C′

C B

)
, where

˜
g1 =

(
∂∆

∂w11
· · · ∂∆

∂w`n`

)T
,
˜
g2 =

∂∆

∂

˜
β(0)

,

B =− ∂ 2∆

∂

˜
β 2
(0)

,C =−
(

∂ 2∆

∂w11∂

˜
β(0)

· · · ∂ 2∆

∂w`n`∂

˜
β(0)

)
,D =−


∂ 2∆

∂w2
11
· · · 0

:
. . . :

0 · · · ∂ 2∆

∂w2
`n`

 .

Note that D and I (identity) are diagonal matrices.

Let −H−1 =

(
D C′

C B

)−1

=

(
E F ′

F G

)
, where

E = D−1 +D−1C′(B−CD−1C′)−1CD−1,F =−(B−CD−1C′)−1CD−1,G = (B−CD−1C′)−1.

Lemma 3.2. Assuming that the design matrix is full-rank and 0<∑
mi j
k=1 yi jk <mi j, j = 1, . . . , ,ni; i=

1, . . . , `, the posterior density,
˜
τ|

˜
y in (1), is logconcave.

Proof. If 0 < ∑
mi j
k=1 yi jk < mi j, i = 1, . . . , `, j = 1, . . . ,ni, there are solutions to the gradient vector set

to zero.
Let pi jk =

e˜
x′i jk ˜

β(0)+wi j

1+e˜
x′i jk ˜

β(0)+wi j
,k = 1, . . . ,mi j, j = 1, . . . ,ni, i= 1, . . . , `. Then, A, B and C of the negative

Hessian matrix can be written as,

B =− ∂ 2∆

∂

˜
β 2
(0)

=
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

pi jk(1− pi jk)˜
xi jk˜

x′i jk,
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D = diagonal(di j), di j =
∂ 2∆

∂w2
i j
=

mi j

∑
k=1

pi jk(1− pi jk),

C = (
˜
ci j),

˜
ci j =

∂ 2∆

∂wi j∂
˜
β(0)

=
mi j

∑
k=1

pi jk(1− pi jk)˜
xi jk,

where j = 1, . . . ,ni, i = 1, . . . , `.
It is obvious that D is positive definite. Thus, to show that −H is positive definite, we need

to show that its Schur complement of D, S = B−CD−1C′, is positive definite (e.g., see Boyd and
Vandenberghe 2004). Let ωi jk = pi jk(1− pi jk)/∑

mi j
k=1 pi jk(1− pi jk),k = 1, . . . ,mi j, j = 1, . . . ,ni, i =

1, . . . , `. The Schur complement is

S =
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

pi jk(1− pi jk)
mi j

∑
k=1

ωi jk˜
xi jk˜

x′i jk−
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

pi jk(1− pi jk)
mi j

∑
k=1

ωi jk˜
xi jk

mi j

∑
k=1

ωi jk˜
x′i jk.

It is now easy to show that

S =
`

∑
i=1

ni

∑
j=1

mi j

∑
k=1

ωi jk(˜
xi jk−

mi j

∑
k=1

ωi jk˜
xi jk)(˜

xi jk−
mi j

∑
k=1

ωi jk˜
xi jk)

′.

Therefore, −H is positive definite, and
˜
τ|

˜
y is logconcave.

Therefore, according to the Lemma 3.1 and Lemma 3.2, we can establish the approximation
Theorem.

Theorem 3.1. Assuming that the design matrix is full-rank and 0<∑
mi j
k=1 yi jk <mi j, j = 1, . . . ,ni, i=

1, . . . , `, the posterior density,
˜
τ|

˜
y in (1) is approximately a multivariate normal density, and the con-

ditional posterior density of
˜
w|

˜
β(0),

˜
y and

˜
β(0)|

˜
y can also be approximated by multivariate normal

distributions.

Proof. By Lemma 3.2, the posterior density is logconcave. Then according to Lemma 3.1, the
posterior distribution

˜
τ|

˜
y is approximately a multivariate normal distribution.

By Lemma 3.1, evaluating all quantities at
˜
τ∗, the mean is(

˜
µw

˜
µβ

)
=

˜
τ
∗−H−1

˜
g =

(
˜
w∗

˜
β ∗(0)

)
+

(
E F ′

F G

)(
˜
g1

˜
g2

)
=

(
˜
w∗+E

˜
g1 +F ′

˜
g2

˜
β ∗(0)+F

˜
g1 +G

˜
g2

)
.
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Also, the covariance matrix is

−H−1 =

(
D C′

C B

)−1

=

(
E F ′

F G

)
.

Therefore, by Lemma 3.1, the approximate joint posterior density of
˜
w,

˜
β(0)|

˜
y is(

˜
w

˜
β(0)

)
|
˜
y∼ Normal

{(
˜
µw

˜
µβ

)
,

(
E F ′

F G

)}
.

Finally, using the property of the multivariate normal density, the conditional posterior density
of

˜
w|

˜
β(0),

˜
y and

˜
β(0)|

˜
y can also be approximated by multivariate normal distributions,

˜
w|

˜
β(0),

˜
y∼ Normal{

˜
µw−D−1C′(

˜
β(0)−

˜
µβ ),D

−1} and
˜
β(0)|

˜
y∼ Normal{

˜
µβ ,G},

where

˜
µw =

˜
w∗+E

˜
g1 +F ′

˜
g2 and

˜
µβ =

˜
β
∗
(0)+F

˜
g1 +G

˜
g2.

Therefore, we can approximate that logit expit term
`

∏
i=1

ni

∏
j=1

mi j

∏
k=1

[
e
(
˜
x′i jk ˜

β(0)+wi j)yi jk

1+e˜
x′i jk ˜

β(0)+wi j

]
into two multi-

variate density by Theorem 3.1. And then we can get our approximate two-fold Bayesian logistic
regression model.

Recall the posterior density of our two-fold logistic model is

π(
˜
w,

˜
ν ,

˜
β ,σ2,δ 2 |

˜
y) ∝ π(

˜
y|

˜
w,

˜
β(0))π( ˜

w |
˜
ν ,σ2)π(

˜
ν | β0,δ

2)π(
˜
β(0),β0,σ

2,δ 2)

The likelihood function π(
˜
y|

˜
w,

˜
β(0)) can be approximated by the multivariate normal distribution

by Theorem 3.1. Combine the prior of
˜
w and

˜
ν given by our Bayesian Logistic model and the

results in Theroem 3.1, we can obtain our INNA model

˜
w|

˜
β(0),

˜
y∼ Normal{

˜
µw−D−1C′(

˜
β(0)−

˜
µβ ),D

−1}

˜
β(0)|

˜
y∼ Normal{

˜
µβ ,G}

˜
w|

˜
ν ,σ2 ind∼ Normal(

˜
µν ,σ

2I),

˜
ν |β0,δ

2 iid∼ Normal(β0
˜
j,δ 2I),
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π(
˜
β(0),β0,δ

2,σ2) ∝
1

(1+δ 2)2
1

(1+σ2)2 ,δ
2 > 0, σ

2 > 0,

where
˜
µ ′ν =

(
ν1, . . . ,ν1︸ ︷︷ ︸

n1

· · ·ν`, . . . ,ν`︸ ︷︷ ︸
n`

)′ and
˜
j is a vector of ones.

By Bayes’ Theorem and the multiplication rule, the posterior density π(
˜
w,

˜
ν ,

˜
β ,σ2,δ 2 |

˜
y) can

be approximated by

πa(
˜
w,

˜
ν ,

˜
β ,σ2,δ 2 |

˜
y) ∝ πa(

˜
w |

˜
ν ,

˜
β(0),σ

2,
˜
y)πa(

˜
ν | β0,δ

2,
˜
y)πa(

˜
β(0) |

˜
y)πa(

˜
β ,σ2,δ 2 |

˜
y)

= e−
1
2

{
[
˜
w−(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ ))]

′
D[

˜
w−(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ ))]

}

× e−
1
2

{
[
˜
w−

˜
µν ]
′
(σ2I)−1[

˜
w−

˜
µν ]+[

˜
ν−β0

˜
j]
′
(δ 2I)−1[

˜
ν−β0

˜
j]+[

˜
β(0)−

˜
µβ ]

′
G−1[

˜
β(0)−

˜
µβ ]
}

× |D|1/2

|δ 2I|1/2|σ2I|1/2|G|1/2

1
(1+σ2)2

1
(1+δ 2)2 (2)

Therefore, we can get the following key result,

Theorem 3.2. Using the multiplication rule, the joint posterior density, π(
˜
w,

˜
ν ,

˜
β ,σ2,δ 2 |

˜
y) in

(2), can be approximated by

πa(
˜
w,

˜
ν ,

˜
β ,σ2,δ 2 |

˜
y) ∝ πa(

˜
w |

˜
ν ,

˜
β(0),σ

2,
˜
y)πa(

˜
ν | β0,δ

2,
˜
y)πa(

˜
β(0) |

˜
y)πa(

˜
β ,σ2,δ 2 |

˜
y),

where the first three densities on the right-hand side are all multivariate normal densities.

Proof. First, look at the exponent terms containing
˜
w in the above approximate posterior density

function[
˜
w−

(
˜
µw−D−1C′(

˜
β(0)−

˜
µβ )
)]′

D
[

˜
w−

(
˜
µw−D−1C′(

˜
β(0)−

˜
µβ )
)]

+
[

˜
w−

˜
µν

]′
(σ2I)−1

[
˜
w−

˜
µν

]
=

[
˜
w− (D+

1
σ2 I)−1

(
D

˜
µw−C′(

˜
β(0)−

˜
µβ )+

1
σ2 ˜

µν

)]′
(D+

1
σ2 I)

[
˜
w− (D+

1
σ2 I)−1

(
D

˜
µw−C′(

˜
β(0)−

˜
µβ )+

1
σ2 ˜

µν

)]
+
[

˜
µw−D−1C′

(
˜
β(0)−

˜
µβ

)
−

˜
µν

]′
(D−1 +σ

2I)−1
[

˜
µw−D−1C′

(
˜
β(0)−

˜
µβ

)
−

˜
µν

]
Then it can show that

˜
w|

˜
ν ,

˜
β(0),σ

2,
˜
y

app∼ Normal
{
(D+

1
σ2 I)−1

(
D

˜
µw−C′(

˜
β(0)−

˜
µβ )+

1
σ2 ˜

µν

)
,(D+

1
σ2 I)−1

}
which is the πa(

˜
w |

˜
ν ,

˜
β(0),σ

2,
˜
y).

Notice that (D+ 1
σ2 I) is diagonal matrix. Then given

˜
ν ,

˜
β(0),σ

2,
˜
y, all wi js are independent.
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This is an important result because parallel computation can be done for wi j, which accommodates
time-consuming and massive storage challenges in big data analysis. This result holds for the exact
conditional posterior density of the µi j. Since

˜
w has a multivariate normal distribution, we can

integrate out
˜
w from the joint approximate posterior density πa(

˜
w,

˜
ν ,

˜
β ,σ2,δ 2 |

˜
y), and obtain the

joint posterior density of
˜
ν ,

˜
β ,σ2 and δ 2

πa(
˜
ν ,

˜
β ,σ2,δ 2 |

˜
y) ∝ e−

1
2

{
[
˜
µν−D−1C′(

˜
β(0)−

˜
µβ)−

˜
µw]

′
(D−1+σ2I)−1[

˜
µν−D−1C′(

˜
β(0)−

˜
µβ)−

˜
µw]
}

× e−
1
2

{
[
˜
ν−β0

˜
j]
′
(δ 2I)−1[

˜
ν−β0

˜
j]+[

˜
β(0)−

˜
µβ ]

′
G−1[

˜
β(0)−

˜
µβ ]
}

× |D|1/2

|δ 2I|1/2|D+ 1
σ2 I|1/2|G|1/2

1
(1+σ2)2

1
(1+δ 2)2

Next, we will show that the approximate conditional posterior density of νi is also normal dis-
tribution and all νis are independent as well. Here we consider each νi. Let ∑

`
i=1 ∑

ni
j=1 = n,

(σ2
i j)n×n = D−1 +σ2I , (

˜
ti j)n×1 = D−1C and (µwi j)n×1 =

˜
µw.

Look at the exponent only containing νi, i = 1, . . . , `. in the πa(
˜
ν ,

˜
β ,σ2,δ 2 |

˜
y)

`

∑
i=1

ni

∑
j=1

1
σ2

i j

[
νi−µwi j +˜

t ′i j(
˜
β(0)−

˜
µβ )
]2

+
1

δ 2

`

∑
i=1

(νi−β0)
2

=
`

∑
i=1

(
1

∑
ni
j=1 σ2

i j
+

1
δ 2 )

−1

νi−

(
1

∑
ni
j=1 σ2

i j

)[
µ̄wi− ¯

˜
t ′i(

˜
β(0)−

˜
µβ )
]
+ 1

δ 2 β0

1
∑

ni
j=1 σ2

i j
+ 1

δ 2


2

+
`

∑
i=1

(
1

1/∑
ni
j=1 σ2

i j
+δ

2

)−1{
µ̄wi− ¯

˜
t ′i(

˜
β(0)−

˜
µβ )−β0

}2

+
`

∑
i=1

ni

∑
j=1

1
σ2

i j

{
(¯
˜
t i−˜

ti j)
′(

˜
β(0)−

˜
µβ )− (µ̄wi−µwi j)

}2

,where µ̄wi =
1
ni

∑
ni
j=1 µwi j and ¯

˜
t i =

1
ni

∑
ni
j=1˜

ti j

Then it is easy to see that

νi|β0,σ
2,δ 2,

˜
y

app∼ Normal


(

1
∑

ni
j=1 σ2

i j

)[
µ̄wi− ¯

˜
t ′i(

˜
β(0)−

˜
µβ )
]
+ 1

δ 2 β0

1
∑

ni
j=1 σ2

i j
+ 1

δ 2

,
1

∑
ni
j=1 σ2

i j
+

1
δ 2


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Similarly, we can use parallel computing to draw νi, i = 1, . . . , ` as well since all of them are
independent given

˜
β(0),β0,σ

2,δ 2. Then we can integrate out
˜
ν from the joint approximate posterior

density πa(
˜
ν ,

˜
β ,σ2,δ 2 |

˜
y) and obtain the joint posterior density of

˜
β ,σ2 and δ 2

πa(
˜
β ,σ2,δ 2|

˜
y) ∝ exp

−1
2

`

∑
i=1

(
1

1/∑
ni
j=1 σ2

i j
+δ

2

)−1 [
µ̄wi− ¯

˜
t ′i(

˜
β(0)−

˜
µβ )−β0

]2


× exp

{
−1

2

`

∑
i=1

ni

∑
j=1

1
σ2

i j

[
{(¯

˜
t i−˜

ti j)
′(

˜
β(0)−

˜
µβ )− (µ̄wi−µwi j)

]2
}

×
l

∏
i=1

(
1

∑
ni
j=1 σ2

i j
+

1
δ 2

) 1
2 1
|δ 2I|1/2|D+ 1

σ2 I|1/2

1
(1+σ2)2

1
(1+δ 2)2

= e−
1
2(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ )−β0

˜
j)
′
(D−1+σ2I+δ 2I)

−1
(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ )−β0

˜
j)

× e−
1
2(

˜
β(0)−

˜
µβ)

′
G−1(

˜
β(0)−

˜
µβ)

×
l

∏
i=1

(
1

∑
ni
j=1 σ2

i j
+

1
δ 2

) 1
2 1

|δ 2D+ δ 2

σ2 I|1/2

1
(1+σ2)2

1
(1+δ 2)2 .

Next we assume that the conditional posterior density of
˜
β |σ2,δ 2,

˜
y has an approximate multivari-

ate normal density,(
β0

˜
β(0)

)
|σ2,δ 2,

˜
y∼ Normal


(

ω0

˜
ω(0)

)
,

(
δ 2

0
˜
γ ′

˜
γ ∆(0)

)−1
 ,

which is denoted by πa(
˜
β | σ2,δ 2,

˜
y). The density function is

πa(
˜
β | σ2,δ 2,

˜
y) ∝

∣∣∣∣∣
(

δ 2
0

˜
γ ′

˜
γ ∆(0)

)∣∣∣∣∣
1
2

× e
− 1

2

 β0−ω0

˜
β(0)− ˜

ω(0)


′ δ 2

0
˜
γ ′

˜
γ ∆(0)


 β0−ω0

˜
β(0)− ˜

ω(0)



So the exponent terms are(
β0−ω0

˜
β(0)− ˜

ω(0)

)′(
δ 2

0
˜
γ ′

˜
γ ∆(0)

)(
β0−ω0

˜
β(0)− ˜

ω(0)

)
.
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Consider the exponent terms containing
˜
β(0) and β0(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ )−β0

˜
j
)′ (

D−1 +σ
2I +δ

2I
)−1
(

˜
µw−D−1C′(

˜
β(0)−

˜
µβ )−β0

˜
j
)

+
(

˜
β(0)−

˜
µβ

)′
G−1

(
˜
β(0)−

˜
µβ

)
=

˜
β
′
(0)

[
CD−1(D−1 +σ

2I +δ
2I)−1D−1C′+G−1]

˜
β(0)+

˜
j′(D−1 +σ

2I +δ
2I)−1

˜
jβ 2

0

−2
[
(
˜
µw +D−1C′

˜
µβ )

′(D−1 +σ
2I +δ

2I)D−1C′+
˜
µ
′
β

G−1
]

˜
β(0)

−2
[
(
˜
µw +D−1C′

˜
µβ )

′(D−1 +σ
2I +δ

2I)−1

˜
j
]

β0 +2CD−1(D−1 +σ
2I +δ

2I)−1

˜
jβ0

˜
β(0)

+(D−1C′
˜
µβ +

˜
µw)

′(D−1 +σ
2I +δ

2I)−1

˜
jβ0

˜
β(0)

(
˜
µw +D−1C′

˜
µβ )

′(D−1 +σ
2I +δ

2I)−1(
˜
µw +D−1C′

˜
µβ )+

˜
µ
′
β

G−1

˜
µβ

We know those two exponent parts are equal, so we have

∆(0) =CD−1(D−1 +σ
2I +δ

2I)−1D−1C′+G−1,

δ
2
0 =

˜
j′(D−1 +σ

2I +δ
2I)−1

˜
j,

˜
γ =CD−1(D−1 +σ

2I +δ
2I)−1

˜
j,(

ω0

˜
ω(0)

)
=

(
δ 2

0
˜
γ ′

˜
γ ∆(0)

)−1(
(
˜
µw +D−1C′

˜
µβ )

′(D−1 +σ2I +δ 2I)−1

˜
j

(
˜
µw +D−1C′

˜
µβ )

′(D−1 +σ2I +δ 2I)D−1C′+
˜
µ ′

β
G−1

)
.

That is,
˜
β |σ2,δ 2,

˜
y approximately follows multivariate normal distribution,

(
β0

˜
β(0)

)
|σ2,δ 2,

˜
y∼ Normal


(

ω0

˜
ω(0)

)
,

(
δ 2

0
˜
γ ′

˜
γ ∆(0)

)−1
 ,

Then we can easily integrate out
˜
β from the joint density of

˜
β ,σ2,δ 2|

˜
y, and get the posterior
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density of σ2,δ 2|
˜
y

πa(σ
2,δ 2|

˜
y) ∝

∣∣∣∣∣ δ 2
0

˜
γ ′

˜
γ ∆(0)

∣∣∣∣∣
− 1

2

×
l

∏
i=1

(
1

∑
ni
j=1 σ2

i j
+

1
δ 2

) 1
2 1

|δ 2D+ δ 2

σ2 I|1/2

1
(1+σ2)2

1
(1+δ 2)2

× exp
{
−1

2
(
˜
µw +D−1C′

˜
µβ )

′(D−1 +σ
2I +δ

2I)−1(
˜
µw +D−1C′

˜
µβ )+

˜
µ
′
β

G−1

˜
µβ

}
× exp

{
−1

2

(
β0−ω0

˜
β(0)− ˜

ω(0)

)′(
δ 2

0
˜
γ ′

˜
γ ∆(0)

)(
β0−ω0

˜
β(0)− ˜

ω(0)

)}
.

The INNA is actually a random sampler. First, we draw samples for σ2,δ 2 from π(σ2,δ 2|
˜
y).

The posterior distribution of σ2,δ 2|
˜
y does not have standardized form. Here we use grid method

and numerical integration to sample σ2 and δ 2. Since 0 < σ2 < ∞ and 0 < δ 2 < ∞, we make a
transformation to φ1 =

1
1+σ2 and φ2 =

1
1+δ 2 so that we get 0 < φ1 < 1 and 0 < φ2 < 1. Then the

posterior density of φ1,φ2|
˜
y is

πa(φ1,φ2|
˜
y) ∝


∣∣∣∣ δ 2

0
˜
γ ′

˜
γ ∆(0)

∣∣∣∣−
1
2

×
l

∏
i=1

(
1

∑
ni
j=1 σ2

i j
+

1
δ 2

) 1
2 1

|δ 2D+ δ 2

σ2 I|1/2


φ1=

1
1+σ2 , φ2=

1
1+δ2

× exp
{
−1

2
(
˜
µw +D−1C′

˜
µβ )

′(D−1 +σ
2I +δ

2I)−1(
˜
µw +D−1C′

˜
µβ )+

˜
µ
′
β

G−1

˜
µβ

}
× exp

{
−1

2

(
β0−ω0

˜
β(0)− ˜

ω(0)

)′(
δ 2

0
˜
γ ′

˜
γ ∆(0)

)(
β0−ω0

˜
β(0)− ˜

ω(0)

)}
φ1=

1
1+σ2 , φ2=

1
1+δ2

.

We need draw φ1,φ2 together. The joint density can be rewritten as

π(φ1,φ2|
˜
y) = π(φ2|φ1)π(φ1|

˜
y) = π(φ2|φ1)

∫ 1

0
π(φ1,φ2|

˜
y)dφ2

We plug each grid of φ1 ∈ (0,1) into
∫ 1

0 π(φ1,φ2|
˜
y)dφ2 and then use numerical integration to get

the density of (φ1|
˜
y). After we plug all the 100 grids, we can get 100 value of π(φ1|

˜
y) and then

draw φ1 from them, i.e. φ
(h)
1 . Next, we plug φ

(h)
1 into π(φ2|φ1) and use grid method to draw

φ
(h)
2 . Repeat those steps 10000 times to get the sample of (φ (h)

1 ,φ
(h)
2 ),h = 1, . . . ,10000. Once we

get samples for φ1,φ2, we transform them back to σ2 and δ 2 respectively. Second, given σ2,δ 2,
simply draw samples of

˜
β from the approximate multivariate normal distribution πa(

˜
β | σ2,δ 2,

˜
y).

Third, we can draw samples of νi independently given
˜
β ,δ 2 and data from the approximate normal
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distribution πa(
˜
ν |β0,δ

2,
˜
y). Finally samples of wi j independently given

˜
ν ,

˜
β ,σ2 can be obtained

from the approximate normal distribution πa(
˜
w|

˜
ν ,

˜
β(0),σ

2,
˜
y). Notice that the last three step are

very simple, just drawing samples from normal densities respectively. In addition, wi j and νi are
all independent so that we can draw them simultaneously. Therefore, those latter steps permit fast
computing.

4. Numerical Example

4.1 Nepal Living Standards Survey II

The performance of our method is studied using the Nepal Living Standard Survey (NLSS II),
conducted in the years 2003-2004. The main objective of NLSS II is to track changes and progress
about national living standards and social indicators of Nepalese population. It is an integrated
survey which covers samples from the whole country and runs throughout the year.

The NLSS II gathers information on a variety of aspects. It has collected data on demographics,
housing, education, health, fertility, employment, income, agricultural activity, consumption, and
various other areas. The sampling design of NLSS II is two-stage stratified sampling. Nepal is
stratified into PSUs and within each PSU, there are a number of households (sub-area) are selected.
All household members in the sample were interviewed.

In detail, NLSS II has records for 20,263 individuals from 3,912 households (sub-areas) from
326 PSUs (areas) from a population of 60,262 households and about two million Nepalese. A sam-
ple of PSUs was selected from strata using the probability proportional to size (PPS) sampling and
12 households were systematically selected from each PSU. The survey is self-weighed and some
adjustments were maded after conducting the survey for non-response or missing data. For sim-
plicity, in this paper, we assume all samples have the same weight. Table 1 shows the distribution
of all samples by stratum.

Table 1: Distribution of wards and households in the sample

Strata Mountains Kathemandu Urban Hill Rural Hills Urban Tarai Rural Tarai Total
PSU 32 34 28 96 34 102 326

Households 384 408 336 1,152 408 1,224 3,912
Individuals 1,949 1,954 1,467 5,755 2,104 7,034 20,263

We choose four relevant covariates which can influence health status from the same NLSS II
survey for out two-fold logistic regression model. They are age, nativity, sex and religion. We
created binary variables nativity (Indigenous = 1, Non-indigenous = 0) and religion ((Hindu = 1,
Non-Hindu = 0), sex (Male = 1, Female = 0). Table 2 shows the details of these 4 covariates. In
the model fitting, we standardize age covariate. Older age and child age are more vulnerable than
younger age. Indigenous people can have different health status from migrated people.
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Table 2: The descriptives of 4 covariates

Covariates Frequency Percentage
Age 0-14 7,765 38.32

15-59 10,951 54.04
60+ 1,547 7.64

Gender Male 9,763 48.18
Female 10,500 51.82

Nativity Indigeous 11,903 41.25
Non-Indigous 8,360 58.75

Religion Hingdu 16,378 80.83
Non-Hingdu 3,385 19.17

According to the 2001 census data, only about 0.091% of households and only 0.904% of PSU
were sampled. NLSS II was designed to provide reliable estimates only at stratum level or even
larger areas than stratum. It cannot give estimates in small area (PSU or household level) since the
sample sizes are too small. Therefore, we need to use statistical models to fit the available data and
find reliable estimates in small areas. In our study, we choose the binary variable, health status,
from the health section of the questionnaire.

4.2 Numerical Comparison

We use data from NLSS II to illustrate our sub-area logistic regression model. We predict
the household proportions of members in good health for 18,924 households (sampled and non-
sampled). This analysis is based on 1,224 sample households from 102 wards (PSUs) in strata 6.
Our primary purposes are to show that our model can provide good estimates and to compare the
approximate method with the exact method when there are random effects at the household level.

In Figure 1, 2, 3, we compare respectively the posterior means (PMs), posterior standard devi-
ations (PSDs) and posterior coefficient of variations (CVs) in the household level as our primary
purpose.
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Figure 1: Comparison of the posterior means (PM) of the household proportions by the approximate method
and the exact method
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Figure 2: Comparison of the posterior standard deviations (PSD) of the household proportions by the ap-
proximate method and the exact method
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Figure 3: Comparison of the posterior coefficient of variations (CV) of the household proportions by the
approximate method and the exact method

We can see that the PMs are very close, nearly lying on the 45 degree line through the origin.
PSDs a little bit spread out and thicker but all points are still lies on the 45 degree line and so
as the CVs. Overall, these approximations are acceptable in data analysis. In Figure 4, 5, 6,
we compare respectively the posterior means (PMs), posterior standard deviations (PSDs) and
posterior coefficient of variations (CVs) in the household level as our primary purpose. The plots
of PM are still very good. Notice that other two plots of PSDs and CVs are more spread out that
those in household level. But again the approximate method and the exact method are reasonably
closed.
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Figure 4: Comparison of the posterior means (PM) of the ward proportions by the approximate method and
the exact method
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Figure 5: Comparison of the posterior standard deviations (PSD) of the ward proportions by the approximate
method and the exact method
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Figure 6: Comparison of the posterior coefficient of variations (CV) of the ward proportions by the approx-
imate method and the exact method

5. Conclusion and Future Work

Sub-area HB logistic regression model can be applied to analyze binary response variable.
This model is an extension of the HB logistic regression area-level model, which ignores the actual
hierarchical structure of data. We propose an approximation method, INNA, to fit the model.
For large dataset, it is very unrealistic to use MCMC method to fit the model. We propose the
approximation method, INNA, which save time significantly becasue there is no need to compute
numerous modes. In the numerical example, we can show that INNA can provide reliable estimates
as well. An illustrative example of NLSS II is presented in order to compare the approximation
method and the exact method. It shows that when there are large number of areas and subareas, the
approximation method can be efficient and it can also provide reasonable estimates.

There are many future works on two-fold small areas model. First, in this paper, we assume
equal survey weights since NLSS II is a self-weighted sampling. However, after data were col-
lected, the sampling weights are usually adjusted for various characteristics or based on nonre-
sponse as well. Incorporating those survey weights into the model is also very important. Gener-
ally, we need to consider these weights into the model. NLSS II is a national wide and population
based survey. We should rescale sample weights to sum to an equivalent sample size. That is, we
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consider adjusted weight as w∗i jk = n̂( wi jk
`

∑
i=1

ni
∑
j=1

mi j
∑

k=1
wi jk

), where n̂=
(

`

∑
i=1

ni
∑
j=1

mi j
∑

k=1
wi jk)

2

`

∑
i=1

ni
∑
j=1

mi j
∑

k=1
w2

i jk

as an equivalent sample.

Introducing the sampling weights, we can obtain a updated normalized likelihood function. Based
the updated likelihood function and same prior in the two-fold model, we can have full Bayesian
analysis on the updated model and then project the finite population proportion of family members
with good health in each household.

Second, we focus on the binary data. Actually there are 4 options in the health status question-
naire. Multinomial-Dirichlet model can be an extension for polychotomous data. Third, the two
fold sub-area level models can also be extended to three-fold models if the data have additional hi-
erarchical structure, actually the NLSS II has this structure (households within wards, wards within
districts). Forth, in our models, we are considering parametric priors. Introducing Dirichlet process
as prior might be able to make our method more robust to its specifications.

A. Exact Method for Sub-Area Logistic Regression Model
Recall that the joint posterior distribution of our two-fold logistic regression model is The joint

posterior density for the parameters is

π(
˜
v,

˜
w,

˜
β ,σ2,δ 2|

˜
y) ∝

`

∏
i=1

ni

∏
j=1

mi j

∏
k=1

[
e(˜x
′
i jk

˜
β(0)+wi j)yi jk

1+ e˜
x′i jk

˜
β(0)+wi j

]
×
( 1√

2πσ2

)n
exp

{
−

l

∑
i=1

ni

∑
j=1

(wi j−νi)
2

2σ2

}

×
( 1√

2πδ 2

)l
exp

{
−

l

∑
i=1

(νi−β0)
2

2δ 2

}
1

(1+σ2)2
1

(1+δ 2)2 .

We can see that the form of the joint posterior density is very complicated. It is very time consum-
ing to draw all the posterior samples if applying the exact MCMC method. But the exact method
will provide reliable estimates of all parameters, so in order to test the performance of our approxi-
mation method, we need to apply MCMC method on our model and then compare the performance
of two methods. We use Metropolis-Hastings sampler to draw samples for

˜
β ,σ2,δ 2 together and

then draw
˜
ν given

˜
β ,σ2,δ 2 samples. At last, we use MH method to draw

˜
w given

˜
ν ,

˜
β ,σ2,δ 2

samples.
In order to draw samples for

˜
β ,σ2,δ 2 together, we need to integrate out

˜
w and

˜
v. First, we

integrate out
˜
ν from the joint posterior density π(

˜
v,

˜
w,

˜
β ,σ2,δ 2|

˜
y) to get

π(
˜
ν ,

˜
β ,σ2,δ 2|

˜
y) ∝

∫
Ω

`

∏
i=1

{
ni

∏
j=1

[
mi j

∏
k=1

e(˜x
′
i jk

˜
β(0)+µi+wi j)yi j

1+ e˜
x′i jk

˜
β(0)+µi+wi j

]
1√

2πσ2
e−

(wi j−νi)
2

2σ2

}
d

˜
w

×
( 1√

2πδ 2

)l
exp

{
−

l

∑
i=1

(νi−β0)
2

2δ 2

}
1

(1+σ2)2
1

(1+δ 2)2 .
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Notice that the integrant is not any simple distribution function, so we use Monte Carlo numberical
integration to approximate the integrals. Let zw

i j =
wi j−νi

σ
. Notice that zw

i j follows standard normal
distribution. For standard normal density, 99.7% of data will fall within 3 standard deviations of
the mean, which corresponds to the interval [−3,3]. Therefore, we bounded the integration domain
to [−3,3] and divide the interval to M equal subintervals [pa−1, pa],a = 1, . . . ,M. Then we can get
an approximate but very accurate joint density

π(
˜
ν ,

˜
β ,σ2,δ 2|

˜
y) ∝

`

∏
i=1

ni

∏
j=1


M

∑
a=1
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pa−1

e

mi j
∑

k=1
(
˜
x′i jk
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β(0)+wi j)yi jk

mi j

∏
k=1

[
1+ e˜

x′i jk
˜
β(0)+wi j

] 1√
2πσ2

e−
(wi j−νi)

2

2σ2 dwi j


×
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2πδ 2

)l
exp

{
−

l

∑
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2

2δ 2

}
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(1+σ2)2
1
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∝
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∏
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ni

∏
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M

∑
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e

mi j
∑
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(
˜
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Let z̄w
a = pa−pa−1

2 , which is the midpoint of each interval [pa−1, pa],a = 1, . . . ,M. We use midpoint
rule to approximate the definite integrals. We divide the interval [−3,3] into 100 subintervals, and
so we use 100 midpoints to get the approximate joint posterior distribution

π(
˜
ν ,

˜
β ,σ2,δ 2|

˜
y)≈

`

∏
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ni

∏
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1+ e˜
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a +νi
](Φ(a)−Φ(a−1)

)
×
( 1√

2πδ 2

)l
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{
−
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(νi−β0)
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2δ 2

}
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Similarly, let zν
i =

νi−β0
δ

and z̄ν
b =

pb−pb−1
2 , b= 1, . . . ,100. We use the midpoint rule to approximate

the definite integral with respect to
˜
ν and then get the posterior density of

˜
β ,σ2,δ 2|

˜
y
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π(
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We propose to draw samples from
˜
β ,σ2,δ 2 jointly by applying M-H sampler. Target function

is π(
˜
β ,σ2,δ 2|

˜
y). We set the proposal function as

 ˜
β

logσ2

logδ 2

 |
˜
y∼ Normal


 ¯

˜
β

a
log σ̄2

a

log δ̄ 2
a

 ,σ2
t Σa

 ,

where t
σ2

t
∼ χ2

t , Chi-square on t degree of freedom, i.e.

 ˜
β

logσ2

logδ 2

 |
˜
y ∼ Student’s t. Here t is

tuning constant.
We also use M-H sampler draw samples for

˜
ν and

˜
w respectively. Proposal functions are

πa(
˜
ν |

˜
β(0),β0,σ

2,
˜
y) and πa(
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w |
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y) respectively from the INNA method.

The target function to draw
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After we get samples for
˜
ν , we can use M-H sampler to draw
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