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Abstract
In this article, we develop a spectral method for identifying information loss on the process charac-
teristics of an aggregate series. Even though temporal aggregation is a simple and efficient technique
summarizing sequential observations, it causes substantial structural changes in a process because
a non-aggregate series of a relatively high frequency is transformed into an aggregate series of a
relatively low frequency. The effects of temporal aggregation can be explained with changes in the
spectral density function. Then, we propose a spectral-based Kolmogorov-Smirnov test for detect-
ing an aggregation resulting significant structural changes to white noise.

Key Words: temporal aggregation, information loss, spectral density function, Kolmogorov-
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1. Introduction

Univariate temporal aggregation, defined as the periodic non-overlapping sums of a time
series process, is a simple and efficient technique accumulating sequential observations and
so reducing their size. As a result, the technique has been widely used in various fields such
as economics and environmental science where long temporal data are treated. Neverthe-
less, the aggregation is known to cause substantial changes in a process structure, called loss
of process information (Abraham, 1982; Rossana and Seater, 1995), when a non-aggregate
series of a relatively high frequency and a short period is transformed into an aggregate
series of a relatively low frequency and a long period. Those structural changes due to tem-
poral aggregation are associated with the fact that the transformed spectral density function
of the aggregates is closely linked but completely different to the initial spectral density
function of the non-aggregates. That is, the information loss on a process structure can be
explained by similarities and differences between the two spectral density functions. Thus,
we can characterize the effects of temporal aggregation as “changes in spectral densities”
and “information loss of model structure.”

The aggregation effects on various time series processes have been investigated in
the literature, for example, Tiao (1972) of an integrated moving average (IMA) process,
Amemiya and Wu (1972) of an autoregressive (AR) process, Brewer (1973) of an au-
toregressive moving average (ARMA) process and an ARMA with exogeneous variables
(ARMAX) process, Tiao and Wei (1976) of a dynamic input-output process, Wei (1978)
and Weiss (1984) of an autoregressive integrated moving average (ARIMA) process and a
seasonal ARIMA process, Stram and Wei (1986) of an ARIMA process with hidden pe-
riodicity, Ltkepohl (1984) and Marcellino (1999) of a vector ARMA (VARMA) process,
Drost and Nijman (1993) of a generalized autoregressive conditional heteroscedasticity
(GARCH) process, and Hafner (2008) of a multivariate GARCH (MGARCH) process.
Teles et al. (2008) derived the exact model expression for the temporal aggregation of an
AR(1) process. Lee and Wei (2017) extended the exact model expression to the temporal
aggregation of an AR(p) process where p is a positive integer. Also, temporal aggrega-
tion is known to affect other process characteristics. For example, the aggregation reduces
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the non-linearity (Granger and Lee, 1999; Teles and Wei, 2000), the non-Gaussianity (Teles
and Wei, 2002), and the non-stationarity (Teles et al., 2008) of a univariate time series. Bre-
itung and Swanson (2002) examined the impact of temporal aggregation on instantaneous
causality in a vector AR process.

Even though those researches state in common that the initial process information of
a time series disappears through temporal aggregation, they do not clarify when the pe-
riodic condition of temporal aggregation begins to wipe out the information significantly.
In this paper, we therefore propose a spectral method for identifying a periodic order m
of temporal aggregation where the mth order aggregates of a stationary series lose all the
initial information and start to behave like a white noise series. This paper is organized
as follows. In Section 2, we review the concepts of temporal aggregation and the limit-
ing property of a stationary aggregate time series. Section 3 presents the spectral-based
Kolmogorov-Smirnov test. In Section 4, Monte Carlo simulations and an illustrated exam-
ple are given. Section 5 concludes the article.

2. Temporal Aggregation

2.1 Temporal Aggregation in a Stationary Process

We consider a second-order weakly stationary process {xt, t = 1, 2, . . .} with E (xt) = 0.
The stationary series xt can be expressed as a moving average (MA) model of a finite order
q,

xt =

 q∑
j=0

ψjB
j

 et, (1)

where ψ0 = 1, {et} is a white noise process of mean zero and variance σ2
e , and B is the

backshift operator such that Bjxt = xt−j . From the autocovariance generating function of
xt

Cx(B) =

q∑
k=−q

γx(k) ·Bk = σ2
e

 q∑
j=0

ψjB
j

 q∑
j=0

ψjB
−j

 , (2)

we obtain the autocovariance of xt at lag k,

γx(k) = E
(
xtxt−|k|

)
=

{
σ2
e

∑q
j=|k| ψjψj−|k|, for |k| = 0, 1, . . . , q,

0, for |k| > q,
(3)

and the autocorrelation of xt at lag k,

ρx(k) =
γx,k
γx,0

=


∑q

j=|k| ψjψj−|k|∑q
j=0 ψ

2
j

, for |k| = 0, 1, . . . , q,

0, for |k| > q.
(4)

For a positive integer m, the mth-order temporal aggregate XT of xt is defined to be
the m-period non-overlapping sum of xt,

XT =

mT∑
t=m(T−1)+1

xt =

(
m−1∑
i=0

Bi

)
xmT , (5)

for T = 1, 2, . . .. When multiplying both sides of (1) at t = mT by the link polynomial∑m−1
i=0 Bi, we obtain(

m−1∑
i=0

Bi

)
xmT =

(
m−1∑
i=0

Bi

) q∑
j=0

ψjB
j

 emT ≡ XT . (6)
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Thus, the autocovariance generating function of XT can be written as

CX(B) = σ2
e

(
m−1∑
i=0

Bi

)(
m−1∑
i=0

B−i

) q∑
j=0

ψjB
j

 q∑
j=0

ψjB
−j

 , (7)

which implies that the autocovariance (or autocorrelation) ofXT is closely linked but com-
pletely different to the autocovariance (or autocorrelation) of xt. That is, the autocovariance
of XT loses some of the process information of xt.

Equation (6) indicates that the aggregate series XT is also stationary and so the series
can follow an MA(Q) model,

XT =

 Q∑
j=0

ΨjBj
ET (8)

with

Q ≤
⌊

1 +
q − 1

m

⌋
(9)

for fixedm, where Ψ0 = 1, {ET } is another white noise process of mean zero and variance
σ2
E , B = Bm is the backshift operator such thatBjXT = XT−j , and bxc denotes the largest

integer not greater than a real number x (See Tiao, 1972; Brewer, 1973; Weiss, 1984; Stram
and Wei, 1986). In the same manner as (3) and (4), the autocovariance and autocorrelation
of XT at lag K are defined to be

γX(K) = E
(
XTXT−|K|

)
=

{
σ2
E

∑Q
j=|K|ΨjΨj−|K|, for |K| = 0, 1, . . . , Q,

0, for |K| > Q,
(10)

and

ρX(K) =
γX(K)

γX(0)
=


∑Q

j=|K|ΨjΨj−|K|∑Q
j=0 Ψ2

j

, for |K| = 0, 1, . . . , Q,

0, for |K| > Q,
(11)

respectively. The exact expressions of γX(K) and ρX(K), in terms of the aggregation
order m and the model parameters ψj of xt, are given in Section 2.2 of Tiao (1972).

Neither (10) nor (11) of XT captures all the process information of xt. Moreover, Tiao
(1972) shows that the aggregate series XT uniformly approaches a white noise process of
uncorrelated random shocks with the autocorrelation at lag K,

ρX(K) =

{
1, for K = 0

0, for K 6= 0,
(12)

if m → ∞ as n → ∞ but m/n → 0. We interpret the limiting property as the complete
loss of the process information due to temporal aggregation in a stationary series xt.

2.2 Spectral Properties of an Aggregate Process

The standardized spectral density function of the aggregate series XT in (8) is given by

fX(λ) =
1

2π

∞∑
K=−∞

ρX(K) · e−iλK =
1

2π

[
1 + 2

∞∑
K=1

ρX(K) · cos(λK)

]
(13)
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for |λ| ≤ π. Since fX(λ) is symmetric about λ = 0, the standardized spectral distribution
function of XT can be defined as

FX(λ) = 2

∫ λ

0
fX(ω)dω =

1

π

[
λ+ 2

∞∑
K=1

ρX(K) · sin(λK)

K

]
(14)

for 0 ≤ λ ≤ π (Anderson, 1993). We remark that FX(λ) can be regarded as a cumulative
distribution function of λ ∈ [0, π] because it is monotonically nondecreasing, bounded with
FX(0) = 0, and FX(π) = 1.

The Fourier transform of the density function fX(λ) equals the autocorrelation function
of XT ,

ρX(K) =

∫ π

−π
fX(λ) · cos(λK)dλ, (15)

which implies that the process information captured by fX(λ) is equivalent to the process
information captured by ρX(K) (For more details, see Durlauf, 1991; Anderson, 1993;
Shumway and Stoffer, 2011, pp.180–186). Thus, we can explain the information loss of
XT with characteristic changes in either fX(λ) or ρX(K).

Now we consider a special case of fX(λ). As XT follows an MA(0) model or, equiva-
lently, a white noise process with the autocorrelation function (12), the standardized spec-
tral density function fX(λ) in (13) simplifies to

fX(λ) =
1

2π
(16)

and the standardized spectral distribution FX(λ) in (14)

FX(λ) =
λ

π
(17)

for 0 ≤ λ ≤ π.

3. The Spectral Kolmogorov-Smirnov Test

Based on the limiting property ofXT shown in (12), we realize that an aggregate seriesXT

starts to behave like a white noise process and significantly loses the initial process infor-
mation about xt when a periodic order m in (5), which is proportional to the magnitude of
temporal aggregation, exceeds a certain critical point. Now, we develop a spectral method
for detecting the critical point of m where the mth order aggregates of a stationary series
turn to white noise.

The problem of interest is to decide whether the standardized spectral density function
fX(λ) of XT is equal to 1

2π in (13). It can be reworded as testing for the null hypothesis

H0 : fX(λ) =
1

2π
, (18)

against the alternative

Ha : fX(λ) 6= 1

2π
. (19)

We consider the mth aggregate series XT of a stationary series xt for t = 1, . . . , n,
T = 1, . . . , N , and N = bn/mc. The standardized sample spectral density function of XT
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is given by

f̂X(λ) =
1

2πγ̂X(0)

∣∣∣∣∣ 1√
N

N∑
T=1

XT · e−iλT
∣∣∣∣∣
2

=
1

2πγ̂X(0)

N−1∑
K=−(N−1)

 1

N

N∑
T=|K|

XTXT−|K|

 e−iλK

=
1

2π

N−1∑
K=−(N−1)

(
γ̂X(K)

γ̂X(0)

)
e−iλk

=
1

2π

(
1 + 2

N−1∑
K=1

ρ̂X(K) · cos(λK)

)
,

(20)

and the standardized sample spectral distribution function of XT ,

F̂X(λ) = 2

∫ λ

0
f̂(ω)dω =

1

π

(
λ+ 2

N−1∑
K=1

ρ̂X(k) · sin(λK)

K

)
, (21)

for 0 ≤ λ ≤ π, where γ̂X(K) = 1
N

∑N
T=|K|XTXT−|K| and ρ̂X(K) = γ̂X(k)/γ̂X(0).

Here, we adopt the framework of the Kolmogorov-Smirnov (KS) test. From (17) and
(21), we have

√
N
[
F̂X(λ)− FX(λ)

]
=

2
√
N

π

N−1∑
K=1

ρ̂X(K) · sin(λK)

K
(22)

under the null hypothesis (18). As discussed in Durlauf (1991) and Anderson (1993), (22)
can be treated as a stochastic process on λ ∈ [0, π] and, as N →∞, it converges weakly to
a Gaussian process with the autocovariance function

4πG(π)

[
G(λ1)

G(π)

(
1− G(λ2)

G(π)

)
+

(
G(λ1)

G(π)
− F (λ1)

)(
G(λ2)

G(π)
− F (λ2)

)]
= 2

[
λ1

π

(
1− λ2

π

)
+

(
λ1

π
− λ1

π

)(
λ2

π
− λ2

π

)]
=

2λ1

π

(
1− λ2

π

) (23)

for 0 ≤ λ1 ≤ λ2 ≤ π, whereFX(λi) = 2
∫ λi

0 fX(ω)dω = λi
π andGX(λi) = 2

∫ λi
0 f2

X(ω)dω =
λi

2π2 . Then, we propose the spectral KS test statistic DN ,

DN =
1√

4πG(π)
sup

0≤λ≤π

∣∣∣√N [F̂X(λ)− FX(λ)
]∣∣∣

=

√
2N

π
sup

0≤λ≤π

∣∣∣∣∣
N−1∑
K=1

ρ̂X(K) · sin(λK)

K

∣∣∣∣∣ .
(24)

The asymptotic null distribution of the test statistic DN in (24) is shown below.

Theorem 1. The asymptotic null distribution of the spectra KS test statistic DN is

DN =

√
2N

π
sup

0≤λ≤π

∣∣∣∣∣
N−1∑
K=1

ρ̂X(K) · sin(λK)

K

∣∣∣∣∣ d→ sup
0≤ν≤1

|B(ν)| . (25)
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Table 1: Simulated critical values cα

(1− α)100% 90% 95% 97.5% 99% 99.5% 99.9%
cα 1.20546 1.33940 1.46212 1.60737 1.71155 1.92921

Proof. Consider the monotonic transformation ν = λ/π for 0 ≤ λ ≤ π. Here, the stochas-
tic process (22) and the autocovariance function (23) are rewritten as

√
N
[
F̂X(πν)− FX(πν)

]
=

2
√
N

π

N−1∑
K=1

ρ̂X(K) · sin(πνK)

K
(26)

for 0 ≤ ν ≤ 1 and
2πν1

π

(
1− πν2

π

)
= 2ν1(1− ν2) (27)

for 0 ≤ ν1 ≤ ν2 ≤ 1, respectively. Let B(ν) be the Brownian bridge with E [B(ν)] = 0
for 0 ≤ ν ≤ 1 and E [B(ν1)B(ν2)] = ν1(1− ν2) for 0 ≤ ν1 ≤ ν2 ≤ 1. B(ν) is Gaussian
and sample paths are continuous with probability 1. Then, it can be shown that√

N

2

[
F̂X(πν)− FX(πν)

]
=

√
2N

π

N−1∑
K=1

ρ̂X(K) · sin(πνK)

K
→ B(ν) (28)

in probability. (See Durlauf, 1991; Anderson, 1993; van der Vaart, 1998, pp.277–279;
Lehman and Romano, 2005, pp.584–590). Therefore,

DN =

√
2N

π
sup

0≤λ≤π

∣∣∣∣∣
N−1∑
K=1

ρ̂X(K) · sin(λK)

K

∣∣∣∣∣→ sup
0≤ν≤1

|B(ν)|

in distribution.

4. Simulation Study and Application

4.1 Simulation Study

We generate 106 different B(ν) processes, each of size 1001, assuming ν = 0, 1
1000 , 2

1000 ,
. . ., 999

1000 , and 1. The probability density of their supreme values sup0≤ν≤1 |B(ν)| is plotted
in Figure 1. Table 1 presents the percentiles (1 − α)100% of the probability density for
α = 0.1, 0.5, 0.25, 0.01, 0.005, and 0.001. We now use those percentiles as the critical
values cα of the spectral KS test in (24).

4.2 Data Application

The Center for Research in Security Prices of the University of Chicago (CRSP) historical
index is a useful benchmark for understanding the US financial markets. We consider the
monthly log returns of the CRSP equal-weighted index from January 1926 to December
2008 (Tsay, 2010).

The non-aggregate series of the CRSP log returns with m = 1 (monthly) and mth ag-
gregate series with calendrical aggregation orders m = 2 (bimonthly), m = 3 (quarterly),
m = 6 (semiannual), m = 12 (annual), and m = 24 (biennial) are displayed in Figure 2.
Through those plots, we observe that the original data of high frequency is transformed into

 
1687



0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

DN

P
ro

ba
bi

lit
y 

D
en

si
ty

Figure 1: Empirical null distribution for the spectral KS test
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Figure 2: The calendrical aggregations of the CRSP log returns from January 1926 to
December 2008
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Table 2: The spectral KS tests for the calendrical aggregations of the CRSP log returns

m Dm

1 3.3581775
2 1.5354085
3 1.3879360
6 0.5773513
12 0.5541316
24 0.4206513

an aggregated series of low frequency. The data frequency of an aggregate series becomes
lower as order m increases.

We perform the spectral KS test for the CRSP data and present the test statistic for each
m in Table 2. Then, we are confident that the aggregations of m ≥ 6 show a significant
information loss of the original series of m = 1 at α = 0.05. In other words, we claim that
the quarterly series of m = 3 is the optional aggregation in term of process information
retainment.

5. Concluding Remarks

We propose a spectral-based Kolmogorov-Smirnov test for identifying a significant infor-
mation loss of the mth aggregation of a stationary series. Through the Monte Carlo simu-
lations in Section 4.1, we find the empirical null distribution and the critical values of the
test statistic. Therefore, using the proposed test procedure, we can find a marginal m for a
significant information loss to white noise and an optional aggregation in terms of process
information retainment.
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