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Abstract
In parametric models, there are several reasons why the estimators can be biased and inconsistent.
We focus on two sources of bias, namely measurement error in the dependent variable and unrepre-
sentative samples, and we propose an estimation method that simultaneously corrects for this double
source of bias. Most empirical work is based on observational data that are unrepresentative of the
population of interest. Sample selection models attempt to correct for non-randomly selected data
in a two-model hierarchy where, on the first level, a binary selection equation determines if a par-
ticular observation will be available for the second level (outcome equation). In the case of binary
choice models, we assume that also the dependent variable of the outcome equation is binary. The
likelihood function takes into account the selection mechanism and allows for unbiased parameters
estimation. We extend this framework to the situation of a measurement error in the dependent vari-
able of the outcome equation. We use a parametric approach to the estimation of the probabilities
of misclassification by incorporating them in the likelihood of a binary choice model with sample
selection.
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1. Introduction

In parametric models, there are several reasons why the estimators can be biased and incon-
sistent. A long lasting stream of literature has focused in reducing (or eliminating) the bias
of estimators, in order to alleviate the problems that it can cause in inference. In this work,
we focus on two sources of bias, namely measurement error in the dependent variable and
unrepresentative samples. We propose an estimation method that simultaneously corrects
for this double source of bias.

Most empirical work in the social sciences is based on observational data that are in-
complete and therefore unrepresentative of the population of interest. There are many types
of selection mechanisms that result in a non-random sample. Some of them are due to sam-
ple design, while others depend on the behavior of the units being sampled, other than
non-response or attrition. In the first case, data are usually missing on all the variables of
interest; for example, in estimating a saving function for all the families of a given coun-
try, a bias would arise if only families whose household head shows certain characteristics
were sampled. However, when causes of missingness are appropriately exogenous, using a
sub-sample has no serious consequences.

In the second case, instead, there is a self-selection of the sample units and data avail-
ability on a key variable depends on the behavior of the units about another variable. The
classical example is that of the linear wage equation where we want to estimate the expected
wage of an individual using a set of exogenous characteristics (gender, age, education etc).
The key problem is that in regressing wages on the characteristics ofemployed individuals,
we are not making inferences for the population as a whole. In fact those in employment
are a selected sample of the population and their wages are higher than those not in the
labor force would have. Hence the results will tend to be biased (sample selection bias). In
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order to avoid the bias, we need to take into account the selection mechanism by which an
individual decides to take a job and then receives a wage.

As it is well known, Heckman (1979) proposed a useful framework for handling esti-
mation when the sample is subject to a selection mechanism. In the original framework,
the dependent variable in the outcome equation (the wage equation in the above example)
is continuous and can be explained by a linear regression model with a normal random
component; in addition to the output equation a selection equation describes the selection
rule by means of a binary choice model (probit).

The original Heckman’s model was extended in many directions and a survey would be
beyond the scope of this paper, but the interested reader can refer to Vella (1998) and Lee
(2003). To our purposes the relevant framework is the one where both the output and the
selection equations are defined as a binary choice model (Dubin and Rivers, 1989).

Sample selection models attempt to correct for non-randomly selected data in a two-
model hierarchy where, on the first level, a binary selection equation determines whether
a particular observation will be available for the second level (outcome equation). In the
case of binary choice models, we assume that also the dependent variable of the outcome
equation is binary. The likelihood function takes into account the selection mechanism
and allows for unbiased estimates of the parameters of interest (i.e. the coefficients of the
selection and the outcome equations and the correlation coefficient of the two processes).

We extend this framework to the situation of a measurement error in the dependent
(binary) variable of the outcome equation. Misclassification of a binary variable means
that an observation with a true value of 0 is observed as 1 or an observation that is truly
a 1 is observed as a 0. This mistake are very common in applied context. It could easily
happen, for example, during an interview if the respondent misunderstands the question or
the interviewer simply checks the wrong box.

When traditional estimation methods (like logit or probit) are used in binary choice
models with a misclassified dependent variable, the resulting estimates are inconsistent.

Previous work on misclassified dependent variables in discrete choice models follows
two approaches. In the first, supplemental data are used to verify the accuracy of responses.
In Chua and Fuller (1987) a parametric model that incorporates all possibleJ(J − 1) mis-
classification of aJ-level outcome variable is developed. This approach has been seldom
used because it is very data demanding, as a minimum of three independent sets of sur-
vey responses obtained by re-interviewing the original respondents are required. A similar
approach, based on a conditional logit procedure, was proposed in Poterba and Summers
(1995). It also incorporates all possible misclassification and the estimation of the mis-
classification probabilities is done by analyzing the divergences between interview and
reinterview outcomes.

Other authors have taken a different path to deal with misclassification. In particular
Hausman et al. (1998) and Abrevaya and Hausman (1999) incorporates the probability
of misclassification directly into the estimation procedure. In particular, they consider a
parametric model for a binary response variable with two types of misclassification; these
unknown misclassification probabilities are estimated parametrically simultaneously with
the usual coefficients of the binary choice model.

We extend the work of Hausman (1998) on misclassified dependent variable in binary
choice models incorporating the other source of bias coming from sample selection. We use
a parametric approach to simultaneously estimate the parameters of the selection and of the
outcome equation, the correlation between them and the probabilities of misclassification.
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2. The model

Let’s first introduce some notations and briefly illustrate the sample selection framework
with a binary choice model for both the selection and the output equations (Dubin and
Rivers, 1989).

Let Y ∗ andS∗ be two latent (unobservable) variables characterizing the output and the
selection equations respectively. The model, in its general form, is:

Y ∗
i
= X1iβ + ǫ1i (1a)

S∗
i
= X2iθ + ǫ2i (1b)

whereXi = (X1i,X2i) is a vector of exogenous variables (namely,X1i for Y ∗
i

andX2i

for S∗
i
), containing all the relevant covariates, andβ andθ are the vectors of regression

coefficients. Note that, for model (1a-1b) to be identified, it is necessary thatX1i andX2i

do not fully overlap; that is the covariates of the selection and outcome equations must
differ for at least one variable. Let’s defineYi andSi as two observable variables such that:

Yi =

{

1 if Y ∗
i
> 0

0 otherwise
(2) Si =

{

1 if S∗
i
> 0

0 otherwise
(3)

The p.d.f. ofYi andSi are Bernoulli, with probability of success depending on the
parametersβ andθ respectively.

Model (3) defines the mechanism which governs the censoring process: we can observe
Yi if and only if Si = 1. On the contrary, ifSi = 0, Yi will be missing.

In the general case, if we estimated the parameters of equation (1a) without considering
the selection process (1b), a bias would arise. This is because the processes represented by
the two equations are related, i.e.corr(ǫ1, ǫ2) = ρ is not null (see for example Cameron
and Trivedi, 2005, for further details).

The likelihood function for model (1a-1b) is:

L(η) =
n
∏

i=1

[

Pr(S∗
i < 0)

]1−Si

·
[

Pr(Yi = yi|S
∗
i > 0) · Pr(S∗

i > 0)
]Si

=

=
n
∏

i=1

[

1− Sπ(Xi)
]1−Si

·
[

Pr(Yi = yi|Si = 1) · Sπ(Xi)
]Si

(4)

whereη = (β, θ, ρ) is the vector of parameters to be estimated,yi = 0, 1 and the function

Sπ(·) gives the probability that an observation is uncensored.
Now, if we assume that:

(

ǫ1i
ǫ2i

)

∼ NID

[(

0
0

)

,

(

1 ρ
ρ 1

)]

(5)

we can compute the probabilitiesP (Si = 0) = 1− Sπ(X2) andP (Yi = i) = Y π(X1) in
(4) as follows:

Pr(Si = 0) = 1− Sπ(X2i) = Φ
(

−θ′X2i

)

(6)

Pr(Yi = 1, Si = 1) = Pr(Yi = 1|Si = 1) · Pr(Si = 1) = Y π(X1i) · Sπ(X2i)

= Φ2

(

β′
X1i, θ

′
X2i, ρ

)

(7)

Pr(Yi = 0, Si = 1) = Pr(Yi = 0|Si = 1) · Pr(Si = 1) = (1− Y π(X1i)) · Sπ(X2)

= Φ2

(

β′
X1i,−θ′X2i,−ρ

)

(8)
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whereΦ andΦ2 are c.d.f.of univariate and bivariate normal respectively.
Now, let us suppose thatYi can be misclassified, that is some true 1 are observed as 0,

and some true 0 are observed as 1. It follows that what we observe can differ from the true
response variable of the outcome equation. Let’s denoteobsYi the observed binary variable
affected by error, andTYi the true response variable of equation 2. Following Hausman
et al. (1998), we assume that the probability of misclassification depends on the value of

TYi, but is otherwise independent of the covariatesX1. To be more specific, we set the
following misclassification probabilities:

α0 = Pr (obsYi = 1|TYi = 0) (9)

α1 = Pr (obsYi = 0|TYi = 1) (10)

The probability that a true zero is misclassified as a one is given byα0; the probability
that a true one is misclassified as a zero is given byα1. The stochastic mechanism that
determines the values of the observed dependent variableobsY becomes:

Pr (obsYi = 1|Si = 1,X1i) =

Pr (obsYi = 1|Si = 1,X1i, TYi = 1)Pr (TYi = 1|Si = 1,X1i)+

+ Pr (obsYi = 1|Si = 1,X1i, TYi = 0)Pr (TYi = 0|Si = 1,X1i)

= (1− α0 − α1) Pr (TYi = 1|Si = 1,X1i) + α0 (11)

wherePr (TYi = 1|Si = 1,X1i) =
TY π(X1i) is the homologous ofY π(X1i) in equa-

tions (7-8).
Obviously we can put:

Pr (obsYi = 0|Si = 1,X1i) = 1− Pr (obsYi = 1|Si = 1,X1i)

= 1− α0 − (1− α0 − α1) Pr (TYi = 1|Si = 1,X1i) (12)

To estimate the vector of parameters,γ = (θ, β, α0, α1, ρ), we have to extend the
likelihood function (4) bearing in mind that theobserved values of the dependent variable
in the outcome equation are misclassified. Rewriting the likelihood function by plugging in
(11) and (12) into (4) and considering assumption (5), we get the following log-likelihood
function:

logL(γ) =

n
∑

i=1

(1− Si) · log Φ
(

−θ′X2i

)

+

Si · log

[

α0Φ
(

θ′X2i

)

+ (1− α0 − α1)Φ2

(

β′
X1i, θ

′
X2i, ρ

)

]

obsYi

+

Si · log

[

(1− α0)Φ
(

θ′X2i

)

− (1− α0 − α1)Φ2

(

β′
X1i, θ

′
X2i, ρ

)

]1−obsYi

3. Simulation results

In this section, we present Monte Carlo simulations performed to evaluate finite sample
performance of the proposed model. We consider the following generating model:
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Y ∗
i = −1 + 0.2X11i + 1.5X12i − 0.6X13i + ǫ1i

S∗
i = 0.5 + 0.8X21i − 0.5X22i + ǫ2i

The outcome equation is the same as Hausman et al. (1998), whereX11 is drawn from
a lognormal,X12 is a dummy variable equal to one with probability1/3 andX13 is a
uniform (0, 1). For the selection equation, we drawn bothX21 andX22 from a standard
normal distribution. The choice ofθ0 = 0.5 is to ensure a medium amount of censored data
(approximately 30%).

We performed 200 replications with samples of sizen = 5, 000. We chooseρ ∈
{−0.8,−0.4;−0.2; 0; 0.2; 0.4; 0.8} and the following pairs of misclassification probabil-
ities: (α0 = 0.02, α1 = 0.02), (α0 = 0.05, α1 = 0.05), (α0 = 0.05, α1 = 0.2) and
(α0 = 0.2, α1 = 0.02).

We compared 4 models: the simple probit, a model that corrects for sample selection
only (named SS in the following), a model that corrects for misclassification only (MIS)
and a model that corrects for sample selectionand misclassification (MIS-SS).

The results, reported in tables 1 and 21, clearly show that the MIS-SS dominates all
others.

With regards to probit estimates, consistently with Hausman et al. (1998), we found
biased estimates. Depending on the coefficient, the bias spans from 6 to 30% even with
a small amount of misclassification. In our simulations, unlike theirs, we don’t find the
problem to worsen as theα’s increase.

When correcting for misclassification (MIS), the bias ofβ̂s considerably reduces (around
5%) only if ρ is moderate. However, as expected, when the correlation between the out-
come and the selection equation errors increases, the bias rises to 15-20%.

Correcting for sample selection (SS) induces the bias under 10%, no matter the value
of ρ. As anticipated, the best results are obtained when correcting for both sample selection
and misclassification

4. Conclusions

We proposed an estimation method of the parameters of a binary response model affected
by a censoring mechanism, which makes unobservable a relevant part of units, and by a
measurement error in the dependent variable.

We derived a likelihood function analytically, obtaining the maximum likelihood esti-
mator for the parameter vector. The results obtained in a simulation study are very promis-
ing: actually our estimator considerably reduces the bias compared to alternative estimators
that do not simultaneously account for the two sources of bias (probit, Hausman and sample
selection).

Further work will be oriented to allow the probability of misclassification to vary ac-
cording to some known covariates.

1To sparespace, we provide only partial results but the interest reader can obtain them all by writing to the
authors
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Table 1: Monte Carlo simulation results (n= 5, 000, α0 = α1 = 0.02, ρ ∈ {±0.2;±0.8})

Probit MIS

ρ ρ

-0.8 -0.2 0.2 0.8 -0.8 -0.2 0.2 0.8
Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

α0 0.02 0.0436 0.0146 0.0596 0.0274 0.0616 0.0332 0.0748 0.0482
α1 0.02 0.0484 0.0266 0.0496 0.0266 0.0524 0.0272 0.0496 0.0212
β0 -1 -0.6335 0.0560 -0.6335 0.0560 -0.6335 0.0560 -0.6335 0.0560 -1.5144 0.1460 -1.1477 0.1542 -0.9734 0.1589 -0.8110 0.1694
β1 0.2 0.1729 0.0152 0.1729 0.0152 0.1729 0.0152 0.1729 0.0152 0.2290 0.0284 0.2099 0.0299 0.2112 0.0415 0.2365 0.0402
β2 1.5 1.4259 0.0533 1.4259 0.0533 1.4259 0.0533 1.4259 0.0533 1.7109 0.1523 1.5612 0.1588 1.5589 0.1696 1.7318 0.1917
β3 -0.6 -0.5284 0.0855 -0.5284 0.0855 -0.5284 0.0855 -0.5284 0.0855 -0.6729 0.1329 -0.6141 0.1315 -0.6154 0.1441 -0.6901 0.1546

SS MIS-SS

ρ ρ

-0.8 -0.2 0.2 0.8 -0.8 -0.2 0.2 0.8
Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

α0 0.02 0.0215 0.0086 0.0299 0.0212 0.0311 0.0279 0.0134 0.0136
α1 0.02 0.0455 0.0329 0.0439 0.0328 0.0360 0.0307 0.0114 0.0088
ρ -0.8300 0.0822 -0.2046 0.0751 0.1659 0.0768 0.8577 0.0950 -0.7927 0.1674 -0.2226 0.1002 0.2131 0.1014 0.7708 0.1362
θ0 0.5 0.4968 0.0214 0.5004 0.0216 0.4991 0.0217 0.4952 0.0212 0.5017 0.0308 0.5018 0.0299 0.5025 0.0282 0.5016 0.0215
θ1 0.8 0.7967 0.0250 0.7987 0.0255 0.8008 0.0255 0.7975 0.0248 0.8062 0.0345 0.8035 0.0333 0.8041 0.0321 0.8025 0.0251
θ2 -0.5 -0.5027 0.0220 -0.5062 0.0227 -0.5042 0.0227 -0.5088 0.0218 -0.5029 0.0314 -0.5034 0.0306 -0.5027 0.0292 -0.5033 0.0220
β0 -1 -0.9852 0.0690 -0.9253 0.0680 -0.9120 0.0637 -0.9137 0.0532 -1.0237 0.1003 -1.0397 0.1385 -1.0432 0.1461 -0.9854 0.0725
β1 0.2 0.1876 0.0139 0.1814 0.0146 0.1833 0.0148 0.1851 0.0144 0.2071 0.0288 0.2122 0.0346 0.2104 0.0341 0.1954 0.0176
β2 1.5 1.4131 0.0551 1.3827 0.0529 1.3991 0.0527 1.4306 0.0529 1.5395 0.0954 1.5767 0.1419 1.5608 0.1443 1.4748 0.0715
β3 -0.6 -0.5490 0.0874 -0.5380 0.0885 -0.5771 0.0870 -0.5853 0.0787 -0.5745 0.1150 -0.6110 0.1344 -0.6168 0.1322 -0.5772 0.0890
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Table 2: Monte Carlo simulation results (n= 5, 000, α0 = 0.05;α1 = 0.2, ρ ∈ {±0.2;±0.8})

Probit MIS

ρ ρ

-0.8 -0.2 0.2 0.8 -0.8 -0.2 0.2 0.8
Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

α0 0.05 0.0936 0.0222 0.1002 0.0371 0.1028 0.0465 0.1053 0.0829
α1 0.2 0.2559 0.0820 0.2624 0.0696 0.2705 0.0653 0.2723 0.0172
β0 -1 -0.6335 0.0560 -0.6335 0.0560 -0.6335 0.0560 -0.6335 0.0560 -1.5166 0.2317 -1.1438 0.2305 -0.9747 0.2323 -0.7965 0.2804
β1 0.2 0.1729 0.0152 0.1729 0.0152 0.1729 0.0152 0.1729 0.0152 0.2287 0.0507 0.2106 0.0516 0.2148 0.0544 0.2352 0.0494
β2 1.5 1.4259 0.0533 1.4259 0.0533 1.4259 0.0533 1.4259 0.0533 1.7111 0.2912 1.5689 0.2961 1.5874 0.3126 1.7236 0.2754
β3 -0.6 -0.5284 0.0855 -0.5284 0.0855 -0.5284 0.0855 -0.5284 0.0855 -0.6707 0.2013 -0.6210 0.2071 -0.6415 0.2200 -0.6842 0.1975

SS MIS-SS

ρ ρ

-0.8 -0.2 0.2 0.8 -0.8 -0.2 0.2 0.8
Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

α0 0.05 0.0428 0.0111 0.0469 0.0259 0.0363 0.0331 0.0373 0.0173
α1 0.2 0.1950 0.0594 0.2293 0.0745 0.1726 0.0636 0.1731 0.0376
ρ -0.6320 0.0752 -0.1261 0.0732 0.1106 0.0738 0.5551 0.0798 -0.7287 0.2886 -0.2359 1.1019 0.1758 0.1200 0.7140 0.2725
θ0 0.5 0.4979 0.0213 0.5019 0.0217 0.4987 0.0216 0.4987 0.0215 0.5014 0.0551 0.5014 0.0365 0.5024 0.0217 0.5015 0.0939
θ1 0.8 0.7952 0.0251 0.8031 0.0255 0.7974 0.0254 0.8008 0.0252 0.8048 0.0568 0.8031 0.0401 0.8029 0.0255 0.8019 0.0913
θ2 -0.5 -0.4997 0.0221 -0.5040 0.0227 -0.5055 0.0227 -0.5066 0.0223 -0.5019 0.0540 -0.5024 0.0374 -0.5030 0.0227 -0.5037 0.0891
β0 -1 -0.9235 0.0671 -0.9392 0.0659 -0.8862 0.0624 -0.8653 0.0550 -1.0351 0.1631 -0.9610 0.1979 -0.9673 0.1870 -0.9702 0.1710
β1 0.2 0.1238 0.0118 0.1187 0.0122 0.1168 0.0123 0.1112 0.0118 0.1979 0.0598 0.2088 0.0586 0.1889 0.0429 0.1925 0.0911
β2 1.5 1.0940 0.0518 1.0850 0.0510 1.0725 0.0503 1.0763 0.0492 1.4925 0.1698 1.5749 0.2556 1.4777 0.2330 1.4779 0.1957
β3 -0.6 -0.4103 0.0856 -0.3632 0.0866 -0.4302 0.0849 -0.4477 0.0797 -0.5269 0.1715 -0.6077 0.2069 -0.5616 0.1800 -0.5737 0.1887
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