
Component-wise Discrete Asymmetric AdaBoost
for High-dimensional Binary Quantile Regression∗

Jianghao Chu† Tae-Hwy Lee‡ Aman Ullah§

Abstract
We generalize Adaptive Boosting or AdaBoost, introduced by Freund and Schapire (1996), to solve
the high-dimensional binary quantile regression problems. The existing AdaBoost may be under-
stood as an algorithm to solve the high-dimensional binary median regression problem. We extend
the theory of Friedman, Hastie, and Tibshirani (2000) who show that AdaBoost builds an additive
logistic regression model via minimizing the ‘exponential loss’. Generalizing the exponential loss
function to an asymmetric exponential loss function, we introduce “Asymmetric AdaBoost”. While
the exisitng (symmetric) AdaBoost penalizes false positive (FP) prediction and false negative (FN)
prediction equally, we show that the Asymmetric AdaBoost algorithm penalizes them differently
(asymmetrically).

Key Words: Adaboost, exponential loss, Asymmetric Adaboost, asymmetric exponential loss, bi-
nary quantiles, false negative, false positive.

1. Introduction

Consider the binary variable y that takes a value 1 with probability π (x) ≡ P (y = 1|x)
and −1 with probability 1 − π (x). We wish to make predition on y using the high-
dimensional predictor x. A traditional econometric model is to estimate π̂ (x) via logit and
probit models, then make the prediction on y being 1 if π̂ (x) > 0.5 using the estimated
probability model conditional on a number of predictors (x).

Freund and Schapire (1996) introduce the (symmetric) AdaBoost algorithm which takes
a functional descent procedure and selects the predictor variables sequentially in a forward
stagewide fashion when x is of high dimension. This method is widely used and performs
well in practice. However, it can be shown that it takes 0.5 as cutoff for π̂ (x) to make the
binary prediction. In other words, wrong predictions are given the same penalty regardless
of whether it is a false positive (type I error) or false negative (type II error) prediction.
Hence we call it a symmetric AdaBoost algorithm.

The goal of this paper is to introduce an asymmetric AdaBoost algorithm, which gives
different penalty depending on whether it is a false positive (type I error) or false negative
(type II error) prediction. In the boosting literature, algorithms have also been proposed
to use asymmetric loss functions, including AdaCost (Fan et al. 1999), CSB0, CSB1,
CSB2 (Ting 2000), asymmetric-AdaBoost (Viola and Jones 2002) and AdaC1, AdaC2,
AdaC3 (Sun et al. 2005), and asymmetric Boosting (Masnadi-Shirazi and Vasconcelos
2007). Most of the literature only focus on manipulating the weights and/or step-size of the
boosting algorithm and lack a sound statistical fundation. These algorithms lost the nice
statistical property of AdaBoost and have no theoretical support of its correctness.
∗We thank seminar participants at USC (Econ), UCR (Econ), UCR (CS), PKU (Business School), CAS

(AMSS), CUFE (Economics, Statistics), CMES2018 (Shanghai), AMES2018 (Seoul), and JSM2018 (Vancou-
ver).
†Department of Economics, University of California, Riverside, CA 92521. E-mail: jiang-

hao.chu@email.ucr.edu
‡Department of Economics, University of California, Riverside, CA 92521. E-mail: tae.lee@ucr.edu
§Department of Economics, University of California, Riverside, CA 92521. E-mail: aman.ullah@ucr.edu

842

We note that the name, “Asymmetric AdaBoost” has been used in Viola and Jones
(2002). Although we will use the same name in this paper, it is noted that they are different
as theirs use a different methodology for the optimal step size in each iteration. As a result,
the first classifier absorbs the entire effect of the asymmetric weights and the remaining
rounds are entirely symmetric (Viola and Jones 2002). Moreover, their asymmetry is based
merely on a simple belief that the loss of a false positive error is k times the loss of a
false negative one and cannot be applied to complex situations in prediction of economic
behavior.

This paper is concerned with getting the optimal binary classification/prediction algo-
rithm with a loss function which is asymmetric. The proposed new algorithm produces an
additive model by iteratively maximizing an asymmetric “exponential” loss function. In
each iteration, we put more weight on the observations that cannot be predicted correctly
using the previous predictors, with a particularly designed weight that is consistent with
the asymmetric exponential loss based on a sound mathematical derivation. It is therefore
able to solve not just the binary median regression but also binary quantile problems with
high-dimensional covariates.

The rest of the paper is organized as follow. In Section 2 we provide a brief intro-
duction of the symmetric AdaBoost as minimizing an exponential loss function. When
the dependent variable and the forecast function are binary, the exponential loss function
gives the same solution as the ordinary symmetric least squares loss function. This equiv-
alence indicates the possibility to use the exponential loss in place of the least square loss
especially when the data are high-dimensional. In Section 3 we introduce a new “asymmet-
ric exponential loss” function, based on which we derive a new component-wise discrete
asymmetric adaptive boosting algorithm. We also relate the asymmetric exponential loss
function with asymmetric L2 or L1 loss functions. When the target variable is binary, L2

and L1 loss functions are equivalent up to a constant scale. Thus, the Asymmetric Ad-
aBoost will produce the usual binary quantiles of the binary target variable. What is new
here is the ability of Asymmetic AdaBoost to handle high-dimensional predictor space to
obtain the conditional binary quantiles. When we make binary prediction under asymmet-
ric loss, the Asymmetric AdaBoost algorithm can provide a reliable algorithm when the
predictor space is of high dimension. Section 4 concludes.

2. Component-wise Discrete Symmetric AdaBoost Algorithm

The algorithm of the conventional (symmetric) AdaBoost is as shown in Algorithm 1. Let
y be the binary class taking a value in {−1, 1} that we wish to predict. Let fm (x) be
the weak learner (weak classifier) for the binary target y that we fit to predict using the
high-dimensional covariates x in the mth iteration. Let errm denote the error rate of the
weak learner fm (x), and Ew (·) denote the weighted expectation (to be defined below)
of the variable in the parenthesis with weight w. Note that the error rate Ew

[
1(y 6=fm(x))

]
is estimated by errm =

∑n
i=1wi1(yi 6=fm(xi)) with the weight wi given by step 2(d) from

the previous iteration. n is the number of observations. The symbol 1(·) is the indicator
function which takes the value 1 if a logical condition inside the parenthesis is satisfied and
takes the value 0 otherwise. The symbol sign(z) = 1 if z > 0, sign(z) = −1 if z < 0, and
hence sign(z) = 1(z>0) − 1(z<0).

843

Algorithm 1 Component-wise Discrete Symmetric AdaBoost

1. Start with weights wi = 1
n , i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi on the training
data.

ii. Compute errmj =
∑n

i=1wi1(yi 6=fmj(xji)).

(b) Find ĵm = argminj errmj

(c) Compute cm = log
(
1−errm,ĵm
errm,ĵm

)
.

(d) Set wi ← wi exp[cm1(yi 6=fm,ĵm (xĵm,i))
], i = 1, . . . , n, and normalize so that∑n

i=1wi = 1.

3. Output the classifier sign[FM (x)] where FM (x) =
∑M

m=1 cmfm,ĵm(xĵm).

To fit the classifier fmj(xij) ∈ {−1, 1} in step 2(a)i, let us consider two examples of
the weak classifier. The first example is the most widely used weak learner, namely the
classification tree. The simplest classification tree is the stump, which takes the following
functional form

f (xj , a) =

{
1 xj > a

−1 xj < a

where the parameter a is found by minimizing the error rate

min
a

n∑
i=1

wi1 (yi 6= f (xji, a)) , (1)

where the weight wi is computed according to the steps in Algorithm 1.
As an alternative to the commonly used classification tree weak learners described

above, the second example of the weak learner is a logistic weak learner that considers
one variable at a time. In the logistic weak learner, we assume the probability π (xj) ≡
P (y = 1|xj) = exjβ

1+exjβ
. Let Y = y+1

2 . We estimate the parameter β by maximizing the
weighted logistic log-likelihood function

max
β

logL = log

n∏
i=1

[(
exjiβ

1 + exjiβ

)Yi (1

1 + exjiβ

)1−Yi
]wi

, (2)

where the weight wi here is also computed according to the steps in Algorithm 1, just like
for the classification tree learner in (1). Then the resulting logistic classifier for the weak
learner will be

f (xj , β, τ) =

{
1 π (xj , β) > 0.5

−1 π (xj , β) < 0.5

where τ takes the value 0.5 in symmetric case. However, in asymmetric case, we suggest
to set τ other than 0.5, e.g. the conditional quantile in interest for quantile prediction.

844

2.1 Understanding Algorithm 1

Friedman et. al. (2000) show that AdaBoost builds an additive logistic regression model

FM (x) =

M∑
m=1

cmfm (x) (3)

via Newton-like updates for minimizing the exponential loss

J (F) = E
(
e−yF (x)|x

)
. (4)

We use greedy method to minimize the exponential loss function iteratively.

2.1.1 Looking for the optimal weak learner fm+1

After m iterations, the current classifier is denoted as Fm (x) =
∑m

s=1 csfs (x). In the next
iteration, we are seeking an update cm+1fm+1 (x) for the function fitted from previous
iterations Fm (x). The updated classifier would take the form

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) .

The loss for Fm+1 (x) will be

J (Fm+1 (x)) = J (Fm (x) + cm+1fm+1 (x))

= E
[
e−y(Fm(x)+cm+1fm+1(x))

]
. (5)

Expand w.r.t. fm+1 (x)

J (Fm+1 (x)) ≈ E
[
e−yFm(x)

[
1− ycm+1fm+1 (x) +

y2c2m+1f
2
m+1 (x)

2

]]
= E

[
e−yFm(x)

(
1− ycm+1fm+1 (x) +

c2m+1

2

)]
.

The last equality holds since y ∈ {−1, 1} , fm+1 (x) ∈ {−1, 1}, and y2 = f2m+1 (x) =
1. fm+1 (x) only appears in the second term in the parenthesis, so minimizing the loss
function (5) w.r.t. fm+1 (x) is equivalent to maximizing the second term in the parenthesis
which results in the following conditional expectation

max
f

E
[
e−yFm(x)ycm+1fm+1 (x) |x

]
.

For any c > 0 (we will prove this later), we can omit cm+1 in the above objective function

max
f

E
[
e−yFm(x)yfm+1 (x) |x

]
.

To compare it with the AdaBoost algorithm, here we define weight w = w (y, x) =
e−yFm(x). Later we will see that this weight w is equivalent to that shown in the AdaBoost
algorithm in the previous section. So the above optimization can be seen as maximizing a
weighted conditional expectation

max
f

Ew [yfm+1 (x) |x] (6)

845

where

Ew (y|x) := E (wy|x)
E (w|x)

(7)

refers to a weighted conditional expectation. Note that (6) can be written as

Ew [yfm+1 (x) |x]
= Pw (y = 1|x) fm+1 (x)− Pw (y = −1|x) fm+1 (x)

= [Pw (y = 1|x)− Pw (y = −1|x)] fm+1 (x) (8)

= Ew (y|x) fm+1 (x) .

where

Pw (y|x) := E(w|y, x)P (y|x)
E (w|x)

. (9)

Solve the maximization problem (6). Since fm+1 (x) only takes 1 or −1, it should be
positive wheneverEw (y|x) is positive and−1 wheneverEw (y|x) is negative. The solution
for fm+1 (x) is

fm+1 (x) =

{
1 Ew (y|x) > 0

−1 otherwise.
(10)

2.1.2 Looking for the optimal learning rate cm+1

Minimize the loss function (5) w.r.t. cm+1

cm+1 = arg min
cm+1

Ew

(
e−cm+1yfm+1(x)

)
, (11)

where

Ew

(
e−cm+1yfm+1(x)

)
= Pw (y = fm+1 (x)) e

−cm+1 + Pw (y 6= fm+1 (x)) e
cm+1 . (12)

Then the first order condition is

∂Ew
(
e−cm+1yfm+1(x)

)
∂cm+1

= −Pw (y = fm+1 (x)) cm+1e
−cm+1+Pw (y 6= fm+1 (x)) cm+1e

cm+1 = 0.

(13)
Thus we have

Pw (y = fm+1 (x)) cm+1e
−cm+1 = Pw (y 6= fm+1 (x)) cm+1e

cm+1 , (14)

where

Pw (y) :=
E(w|y)P (y)

E(w)
. (15)

Solving it for cm+1, we obtain

cm+1 =
1

2
log

Pw (y = fm+1 (x))

Pw (y 6= fm+1 (x))
=

1

2
log

(
1− errm+1

errm+1

)
,

where
errm+1 := Pw (y 6= fm+1 (x)) (16)

is the error rate of fm+1 (x). Note that cm+1 > 0 as long as the error rate is smaller than
50%. Our assumption cm+1 > 0 holds for any learner that is better than random guessing.

846

2.1.3 Updating the weight wm and the strong learner Fm

Now we have finished the steps of one iteration and can get our updated classifier by

Fm+1 (x)← Fm (x) +

(
1

2
log

(
1− errm+1

errm+1

))
fm+1 (x) . (17)

Note that in the next iteration, the weight we defined wm+1 will be

wm+1 = e−yFm+1(x) = e−y(Fm(x)+cm+1fm+1(x)) = wm × e−cm+1fm+1(x)y. (18)

Since −yfm+1 (x) = 2× 1{y 6=fm+1(x)} − 1, the update is equivalent (up to the normaliza-
tion) to

wm+1 = wm × e
(
log
(

1−errm+1
errm+1

)
1[y 6=fm+1(x)]

)
= wm ×

(
1− errm+1

errm+1

)1[y 6=fm+1(x)]
.

Thus the function and weights update are of an identical form to those used in AdaBoost.
AdaBoost could do better than any single weak classifier since it iteratively minimizes the
loss function via a Newton-like procedure.

2.2 Understanding AdaBoost as a Logistic Regression

Interestingly, the function F (x) from minimizing the exponential loss is the same as max-
imizing a logistic log-likelihood. Let

J (F (x)) = E
[
E
(
e−yF (x)|x

)]
(19)

= E
[
P (y = 1|x) e−F (x) + P (y = −1|x) eF (x)

]
. (20)

Taking derivative w.r.t. F (x) and making it equal to zero, we obtain

∂E
(
e−yF (x)|x

)
∂F (x)

= −P (y = 1|x) e−F (x) + P (y = −1|x) eF (x) = 0

F ∗ (x) =
1

2
log

[
P (y = 1|x)
P (y = −1|x)

]
.

Moreover, if the true probability

P (y = 1|x) = e2F (x)

1 + e2F (x)
,

for Y = y+1
2 , the log-likelihood is

E (logL|x) = E
[
2Y F (x)− log

(
1 + e2F (x)

)
|x
]
.

The solution F ∗ (x) that maximize the log-likelihood must equals the F (x) in the true
model P (y = 1|x) = e2F (x)

1+e2F (x) . Hence,

e2F
∗(x) = P (y = 1|x)

(
1 + e2F

∗(x)
)

e2F
∗(x) =

P (y = 1|x)
1− P (y = 1|x)

F ∗ (x) =
1

2
log

[
P (y = 1|x)
P (y = −1|x)

]
.

AdaBoost that minimizes the exponential loss yield the same solution as the logistic regres-
sion that maximizes the logistic log-likelihood.

847

2.3 Understanding AdaBoost as a Symmetric Algorithm

Now we expand the results of Friedman et. al. (2000) and show that AdaBoost is a sym-
metric algorithm which is equivalent (up to scale) to the least square. At the end of the al-
gorithm, AdaBoost yields a binary prediction rule which is the sign of F (x). The predictor
from AdaBoost is equivalent to a binary function G (x) from minimizing the exponential
loss function E

(
e−yG(x)

)
with respect to G (x).

Theorem 1. If F(x) ∈ R is the solution for

min
F (x)

E
(
e−yF (x)|x

)
and G(x) ∈ {1,−1} is the solution for

min
G(x)

E
(
e−yG(x)|x

)
,

we have
sign [F (x)] = G (x) .

Proof. The first order condition for

min
F (x)

E
(
e−yF (x)|x

)
is

E
(
−ye−yF (x)|x

)
= −P (y = 1|x) e−F (x) + P (y = −1|x) eF (x) = 0

Hence

F (x) =
1

2
log

(
P (y = 1|x)
P (y = −1|x)

)
and

sign [F (x)] =

{
1 P (y = 1|x) > P (y = −1|x)
−1 otherwise.

Moreover,

E
(
e−yG(x)|x

)
=

{
P (y = 1|x) e−1 + P (y = −1|x) e G (x) = 1

P (y = 1|x) e+ P (y = −1|x) e−1 G (x) = −1,

Hence,

G (x) =

{
1 P (y = 1|x) > P (y = −1|x)
−1 otherwise.

Thus, the proof is complete.

Relating the predictor sign [F (x)] yields from AdaBoost with a binary function G (x)
can give us better insights of the symmetry of AdaBoost.

Remark 1. The exponential loss functionE
[
e−yG(x)

]
is equivalent to maximizing the max-

imum score.

848

Proof. Taking Taylor expansion of E
[
e−yG(x)

]
around G (x) = 0, since y2 = 1 and

G2 (x) = 1, we have that

E
[
e−yG(x)

]
= E

[
1− yG (x) +

y2G2 (x)

2
− y3G3 (x)

6
+
y4G4 (x)

24
+ · · ·

]
= E

[
1− yG (x) +

1

2
− yG (x)

6
+

1

24
+ · · ·

]
= E [a− byG (x)]

The last equality holds since that the odd order terms in the Taylor expansion can be written
as constant multiples of −yG (x) and the even order terms are constant.

Therefore, minimizing the exponential loss function E
[
e−yG(x)

]
is equivalent to

min
G(x)

E (−yG (x)) (21)

which has been introduced by Manski (1975) in economic literature long before AdaBoost
has been invented.

Remark 2. Minimizing the exponential loss is equivalent to minimizing the squared error
loss E

[
(y −G (x))2

]
.

Proof. Minimizing the exponential loss E
[
t (y, x) e−yG(x)

]
is equivalent to

min
G(x)

E (−t (y, x) yG (x)) .

Furthermore, we have

E [−yG (x)] =
1

2
× {2E [−yG (x)] + 2} − 1

=
1

2
× E

[
y2 − 2yG (x) +G2 (x)

]
− 1

=
1

2
× E [y −G (x)]2 − 1

Hence, minimizing E
[
e−yG(x)

]
is equivalent to minimizing the squared error loss function

E [y −G (x)]2 which is symmetric.

Therefore, AdaBoost yield same solution as minimizing a squared errors loss. More-
over, in binary settings, this result can be directly extended to symmetric check loss.
Remark 3. For y ∈ {−1, 1} and G (x) ∈ {−1, 1}, minimizing the L2 loss is equivalent to
minimizing the L1 loss.

Proof. we have that the L2 loss function

L2 (y −G) =


(y −G)2 = 4, y > f if and only if y = 1 and f = −1
0, y = f

(y −G)2 = 4, y < f if and only if y = −1 and f = 1

(22)

which is equivalent to the L1 loss function

L1 (y −G) =


|y −G| = 2, y > f if and only if y = 1 and f = −1
0, y = f

|y −G| = 2, y < f if and only if y = −1 and f = 1

(23)

up to a constant scale of 1
2 , i.e., the L2 loss is always twice the L1 loss. So minimizing the

L2 loss is equivalent to minimizing the L1 loss for this binary problem.

849

Therefore the L1 loss and the L2 loss in the binary setup would yield the same result.
Hence, AdaBoost can be seen as getting an additive model via least square or least absolute
loss regression.

3. Component-wise Discrete Asymmetric AdaBoost

In this section, we explore the properties of the new asymmetric exponential loss function
in detail. It solves the binary decision problem with asymmetric loss function. The key
idea is to assign larger penalty on cases that may lead to higher losses and lower penalty
where losses are limited. An algorithm for minimizing the asymmetric exponential loss is
also provided in this section.

3.1 Asymmetric Least Squares

In Theorem 1 we established the equivalence between the symmetric exponential loss and
least square loss. Now we explore on the relation between the asymmetric exponential loss
and the asymmetric least square loss of Newey and Powell (1987) where the loss function
is defined as

ρτ (y − f) =
∣∣τ − 1(y<f)

∣∣ · (y − f)2 , for τ ∈ (0, 1) . (24)

In the binary case where f ∈ {−1, 1} and y ∈ {−1, 1}, this becomes

ρτ (y − f) =


τ (y − f)2 y > f (when y = 1 and f = −1)
0 y = f

(1− τ) (y − f)2 y < f (when y = −1 and f = 1).
(25)

So without changing the behavior of ρτ (y − f), we can replace
∣∣τ − 1(y<f)

∣∣ with a func-
tion of y

t (y, x) =

{
τ y = 1
(1− τ) y = −1.

(26)

or t (y, x) =
∣∣τ − 1(y=−1)

∣∣ .
3.2 Asymmetric Exponential Loss

Theorem 2. If F(x) ∈ R is the solution for

min
F (x)

E
(
t (y, x) e−yF (x)|x

)
(27)

and G (x) ∈ {1,−1} is the solution for

min
G(x)

E
(
t (y, x) e−yG(x)|x

)
, (28)

we have
sign [F (x)] = G (x) .

Proof. The first order condition for

min
F (x)

E
(
t (y, x) e−yF (x)|x

)
is

E
(
−ye−yF (x)|x

)
= −P (y = 1|x) t (1, x) e−F (x) + P (y = −1|x) t (−1, x) eF (x) = 0

850

Hence

F (x) =
1

2
log

(
P (y = 1|x) t (1, x)

P (y = −1|x) t (−1, x)

)
and

sign [F (x)] =

{
1 P (y = 1|x)× t (1, x) > P (y = −1|x)× t (−1, x)
−1 otherwise.

Moreover,

E
(
t (y, x) e−yG(x)|x

)
=

{
P (y = 1|x) e−1 × t (1, x) + P (y = −1|x) e× t (−1, x) G (x) = 1

P (y = 1|x) e× t (1, x) + P (y = −1|x) e−1 × t (−1, x) G (x) = −1,
Hence,

G (x) =

{
1 P (y = 1|x)× t (1, x) > P (y = −1|x)× t (−1, x)
−1 otherwise.

Thus, the proof is complete.

3.3 Equivalence of Asymmetric Exponential Loss and Asymmetric Least Squares

Theorem 3. Minimizing the exponential loss function E
[
t (y, x) e−yG(x)

]
is equivalent to

minimizing the asymmetric squared errors loss function E
[
t (y, x) (y −G (x))2

]
.

Proof. Taking Taylor expansion of E
[
t (y, x) e−yG(x)

]
around G (x) = 0, since y2 = 1

and G2 (x) = 1, we have that

E
[
t (y, x) e−yG(x)

]
= E

[
t (y, x)

(
1− yG (x) +

y2G2 (x)

2
− y3G3 (x)

6
+
y4G4 (x)

24
+ · · ·

)]
= E

[
t (y, x)

(
1− yG (x) +

1

2
− yG (x)

6
+

1

24
+ · · ·

)]
.

Note that the odd order terms in the Taylor expansion can be written as constant multi-
ples of −t (y, x) yG (x) and the even order terms are constant. Therefore, minimizing the
exponential loss function E

[
t (y, x) e−yG(x)

]
is equivalent to

min
F (x)

E (−t (y, x) yG (x)) .

Furthermore, we have

E [−t (y, x) yG (x)] =
1

2
× 2E {−t (y, x) yG (x) + t (y, x)− t (y, x)}

=
1

2
× E {t (y, x) [−2yG (x) + 2− 2]}

=
1

2
× E

{
t (y, x)

[
y2 − 2yG (x) +G2 (x)− 2

]}
=

1

2
× E

{
t (y, x) [y −G (x)]2 − 2t (y, x)

}
=

1

2
× E

{
t (y, x) [y −G (x)]2

}
− E [t (y, x)] .

Hence, minimizingE
[
t (y, x) e−yG(x)

]
is equivalent to minimizing the asymmetric squared

error loss function E
[
t (y, x) (y −G (x))2

]
.

Then minimizing (28) will be exactly the same as minimizing an asymmetric least
squares loss function. It is easy to see that the symmetric AdaBoost in Section 2 is a
special case of t(y, x) where τ = 0.5.

851

3.4 Binary Expectile Regression and Binary Quantile Regression

Theorem 4. For y ∈ {−1, 1} and G (x) ∈ {−1, 1}, minimizing the asymmetric L2 loss
function is equivalent to minimizing the asymmetric L1 loss function.

Proof. we have that the L2 loss function

L2 (y −G) =


τ (y −G)2 = 4τ, y > f if and only if y = 1 and f = −1
0, y = f

(1− τ) (y −G) = 4 (1− τ) , y < f if and only if y = −1 and f = 1
(29)

which is equivalent to the L1 loss function

L1 (y −G) =


τ |y −G| = 2τ, y > f if and only if y = 1 and f = −1
0, y = f

(1− τ) |y −G| = 2 (1− τ) , y < f if and only if y = −1 and f = 1
(30)

up to a constant scale of 1
2 , i.e., the L2 loss is always twice the L1 loss. So minimizing the

L2 loss is equivalent to minimizing the L1 loss for this binary problem.

Hence, the expectile from minimizing the Newey and Powell (1987)’s asymmetric L2

loss function is the same as the binary quantile regression from minimizing the asymmetric
L1 loss function of Koenker and Bassett (1978) and Koenker (2005). Therefore the Asym-
metric AdaBoost gives the same solution to the binary quantile regression as well as to the
binary expectile regression.

3.5 Introducing Asymmetric AdaBoost Algorithm

Next, we propose an algorithm to minimize our new asymmetric exponential loss function.
We take similar steps as in the symmetric case.

Algorithm 2 Component-wise Discrete Asymmetric AdaBoost

Start with weights wi =
t(yi,xi)∑n
s=1 t(ys,xs)

, i = 1, . . . , n.

1. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi.

ii. Compute errmj =
∑n

i=1wi1(yi 6=fmj(xji)).

(b) Find ĵm = argminj errmj .

(c) Compute cm = log
(
1−errm,ĵm
errm,ĵm

)
.

(d) Set wi ← wi exp[cm1(yi 6=fm,ĵm (xĵm,i))
], i = 1, . . . , n, and normalize so that∑n

i=1wi = 1.

2. Output the classifier, sign
[∑M

m=1 cmfm,ĵm(xĵm)
]
.

852

Note that the error rate Ew
(
1(y 6=fmj(xj))

)
:= E

(
wi × 1(y 6=fmj(xj))

)
is estimated by

errmj =
∑n

i=1wi × 1(yi 6=fmj(xji)). The same classifiers can be used for the weak learner
as in the symmetric AdaBoost, e.g. the stump learner in (1) and the logistic classifier in (2).

3.6 Understanding Algorithm 2

To better understand the new algorithm, we take the similar steps as in the symmetric
AdaBoost. We start with the asymmetric exponential loss function

J (F (x)) = E
(
t (y, x) e−yF (x)

)
. (31)

We have derived the optimal weak learner f and the optimal learning rate c. Only a sum-
mary is provided below. Proofs and more detailed discussion will be provided in the full
version of the paper to be published elsewhere, which includes the asymptotic theory,
Monte Carlo simulation, applications, variants of the new algorithm, and more extensive
remarks and discussions on various properties of the Asymmetric AdaBoost algorithm.

3.6.1 Optimal weak learner fm+1(x)

For the purpose of showing how the asymmetric function t (y, x) changes the results of the
algorithm, it can be shown that the solution for the optimal weak learner fm+1 (x) is

fm+1 (x) =

{
1, Ew (t (y, x) y|x) > 0

−1, otherwise,
(32)

where

Ew (t (y, x) y|x) = Pw (y = 1|x) t (1, x)− Pw (y = −1|x) t (−1, x) . (33)

3.6.2 Optimal learning rate cm+1

After solving fm+1 (x), we minimize the loss function w.r.t. cm+1. We show that the first
order condition from taking the derivative w.r.t. cm+1 gives the optimal cm+1

cm+1 =
1

2
log
(
1− errm+1

errm+1

)
, (34)

where

errm+1 = FN× t (1, x) + FP× t (−1, x) = Ew
(
t (y, x)× 1(y 6=fm+1(x))

)
, (35)

wherePw (y = 1, fm+1 (x) = −1) is the rate of false negative (FN) andPw (y = −1, fm+1 (x) = 1)
is the rate of false positive (FP).

3.6.3 Updating the weight wm and the strong learner Fm

In the next iteration, we have

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) .

Hence

wm+1 = e−yFm+1(x)

= e−y(Fm(x)+cm+1fm+1(x))

= wm × e−cm+1yfm+1(x)

So our algorithm tends to give larger weights to the observations when y 6= fm+1 (x) as
long as a weak learner is not too weak with errm+1 < 0.5 and cm+1 > 0.

853

4. Conclusions

In this paper, we introduce a new Asymmetric AdaBoost algorithm which produces an
additive logistic regression model from maximizing a new loss function, namely the asym-
metric exponential loss function. The Asymmetric AdaBoost algorithm is based on the
asymmetric exponential loss function. In the binary classification, we show that the asym-
metric exponential loss function is equivalent to the asymmetric L2 loss function of Newey
and Powell (1987) and the asymmetric L1 loss function of Koenker and Bassett (1978) and
Koenker (2005). Therefore the Component-wise Discrete Asymmetric AdaBoost algorithm
gives a solution to the high-dimensional binary quantile regression and the binary expectile
regression.

REFERENCES

Fan, W., S.J. Stolfo, J. Zhang, and P.K. Chan (1999), “AdaCost: misclassification cost-sensitive boosting.”
ICML 99: 97-105.

Freund, Y. and Schapire, R. E. (1996), “Experiments with a new boosting algorithm.” In Machine Learning:
Proceedings of the Thirteenth International Conference: 148–156. Morgan Kaufman, San Francisco.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2000), “Additive logistic regression: a statistical view
of boosting (with discussion).” The Annals of Statistics 28(2): 337-407.

Koenker, R., Bassett, G. (1978), “Regression quantiles”. Econometrica 46, 33-50.
Koenker, R. (2005). Quantile Regression. Cambridge University Press.
Masnadi-Shirazi, Hamed and Nuno Vasconcelos (2007), “Asymmetric boosting.” Proceedings of the 24th In-

ternational Conference on Machine Learning: 609-619.
Newey, Whitney K. and James L. Powell (1987), “Asymmetric least squares estimation and testing.” Econo-

metrica 55(4): 819-847.
Sun, Yanmin, Andrew K.C. Wong, and Yang Wang (2005), “Parameter inference of cost-sensitive boosting

algorithms.” Machine Learning and Data Mining in Pattern Recognition: 21-30.
Ting, Kai Ming (2000), “A comparative study of cost-sensitive boosting algorithms.” In Proceedings of the

17th International Conference on Machine Learning.
Viola, Paul and Michael Jones (2002), “Fast and robust classification using asymmetric adaboost and a detector

cascade.” Advances in Neural Information Processing System 14: 1311-1318.

854

