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Abstract
We study the association between physical appearance and family income. In most previous stud-

ies, physical appearance was measured by imperfect proxies from subjective opinion based on sur-
veys. Instead, we use the CAESAR data which have 3-dimensional whole body scans to mitigate
the issue of possible reporting errors and measurement errors. We show there are significant re-
porting errors in the reported height and weight so that these discrete measurements are too sparse
to provide a complete description of the body shape. We use the graphical autoencoder built on
deep machine learning to obtain intrinsic features consisting of human body shapes and estimate
the relation between body shapes and family income. The estimation results show that there is a
statistically significant relationship between physical appearance and family income and the asso-
ciation are different across the gender. This supports the hypothesis on the physical attractiveness
premium in the labor market outcomes and its heterogeneity across the gender. Our findings also
highlight the importance of correctly measuring body shapes to provide adequate public policies for
the healthcare.

Key Words: Physical attractiveness premium, non-Euclidean data, deep machine learning, graph-
ical autoencoder

1. Introduction

This paper studies the relationship between physical appearance and family income using
three-dimensional (3D) whole-body scan data. Recent development in machine learning is
adapted to extract intrinsic body features from the scanned data. Our approach underscores
the importance of reporting errors and measurement errors on conventional measurements
of body shape such as height and body mass index (BMI).

In the literature on the association between physical attractiveness and the labor market
outcomes, facial attractiveness, height and BMI are mainly considered as measurements
of the physical appearance. For instance, Hamermesh and Biddle (1994) studied the im-
pact of facial attractiveness on wages and showed that there is significant beauty premium.
Persico et al. (2004) and Case and Paxson (2008) analyzed the effects of height on wages.
They found apparent height premium in the labor market outcomes. Cawley (2004) esti-
mated the effects of BMI on wages and reported that weight lowers the wages of white
females. In most previous studies, physical appearance was measured by imperfect proxies
from subjective opinion based on surveys. This concerns a possibility of attenuation bias
from reporting errors on the physical appearance in the estimation of the relation between
physical appearance and labor market outcomes. In addition, measurements such as height,
weight, and BMI are too sparse to characterize detailed body shapes. As a result, the issue
of the measurement errors on the body shapes would make it difficult to correctly estimate
the true relation.

We use a unique dataset, the Civilian American European Surface Anthropometry Re-
source (CAESAR) dataset. The dataset contains detailed demographics of subjects and
anthropometric measurements such as height and weight, obtained using tape measures
and calipers. It also contains the height and weight reported by subjects. This allows us
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to calculate the reporting errors in height and weight for each subject and investigate their
properties and impacts on the estimation results. We found that the reporting error in height
is correlated with males’ characteristics such as family income, marital status, and birth re-
gion, and is correlated with females’ characteristics such as age, fitness, and race. We also
found that the reporting error in weight is dependent with males’ characteristics such as the
true weight and occupation, and is associated with females’ characteristics such as the true
weight, occupation, marital status, fitness, and race. The estimation results for the associ-
ation between height (or BMI) and the family income show that the reporting errors have
substantial impacts on the estimated coefficients. Furthermore, such conventional measure-
ments on body shape are too sparse to describe whole body structure. So the analyses with
the sparse measurements are very sensitive to the variable selection, which shows that the
measured height and BMI might suffer from measurement errors on the body shape.

The dataset encloses digital 3D whole-body scans of subjects, which is a very unique
figure. The scanned data on human body shapes would mitigate the issue of possible mea-
surement errors due to the sparse measurements. Since the observed variable on body
shapes in the dataset is three-dimensional, nevertheless, it is not straightforward to incor-
porate the data into the model of the family income. To this end, we adopt methods based
on machine learning to identify important features from 3D body scan data. Autoencoders
are a certain type of artificial neural networks that possesses an hour-glass shaped network
architecture. They are useful in extracting the intrinsic information from the high dimen-
sional input and in finding the most effective way of compressing such information into
the lower dimensional encoding. As shown in this paper, the graphical autoencoder can
effectively extracts the body features and is not sensitive to random noises.

There have been increasing attentions to non-Euclidean data such as human body shapes,
geographical models, social network data, etc, in economic studies. In this paper, we intro-
duce new methodology built on deep neural networks and show how it can be utilized to
analyze the economic model when the available data has a non-Euclidean structure. When
one attempts to incorporate non-Euclidean data in statistical analyses, there is no trivial
grid-like representation for the data. As a result, encoding the features and characteristics
of each data point into a numerical form is neither straightforward nor consistent. Most ex-
isting studies simplify the non-Euclidean features with some sparse characteristics. For in-
stance, in the human body data, many of the relevant works quantify the geometric charac-
teristics of a human body shape with some sparse measurements, such as height and weight.
However, such methods do not always capture detailed geometric variations and often lead
to an incorrect statistical conclusion due to the measurement errors. As a better alternative,
we propose a graphical autoencoder that can interface with the three-dimensional graphical
data. The graphical autoencoder permits incorporation of non-Euclidean manifold data into
economic analyses. As we will discuss, direct incorporation of the graphical data can re-
duce measurement errors because graphical data in general provides more comprehensive
information on non-Euclidean data compared to discrete geometric measurements.

From the proposed method using the graphical autoencoder, we successfully identify
intrinsic features of the body shape from 3D body scan data. Interestingly, intrinsic fea-
tures of the body type are significantly important to explain the family income. Using the
graphical autoencoder, we identify two intrinsic features forming men’s body type and three
intrinsic features for women’s body type. Contrast to the conventional principle component
analysis, the graphical autoencoder renders us to interpret the extracted features. For both
genders, the first feature captures how tall a person is, while the second feature captures
how obese the body type is. The third feature captures the curviness trend of the body shape
among the female sample. In the sample of men, the first feature has a positive correlation
with family income and is statistically significant at 1% significance level, while the second
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feature is statistically insignificant. We estimate one standard deviation increase in the first
feature is associated with approximately $3,811 increase in the family income for men who
earn $70,000 of median family income. For women, the coefficient of the second feature
is negative and statistically significant at 1% significance level. On the other hand, coef-
ficients of other features are statistically insignificant. One standard deviation decrease in
the second feature is associated with approximately $3,456 increase in the family income
for women who earn $52,500 median family income. The results imply there exist physical
attractiveness premium and its heterogeneity across the gender in the relationship between
body types and income.

The rest of the article is organized as follows. Section 2 presents the model of interest
with non-Euclidean data. Section 3 introduces and summarizes the CAESAR dataset. Sec-
tion 4 discusses the impact of reporting errors in height and weight. Section 5 discusses
estimation results for the relationship between the physical appearance and family income.
Section 6 concludes. Technical details and estimation results are contained in Appendix.

2. Model

We consider the association between family income and body shapes as follows:

Family Incomei = αXi + βBody Shapesi + ϵi, i = 1, ..., N, (1)

where Family Incomei is log family income, Body Shapesi is a measure of body types, Xi

is a set of covariates, and ϵi is unobserved causes of family income for individual i. We
are particularly interested in the parameter β, but we also discuss the relationship between
family income and other individual characteristics through the vector of parameters α.

A large body of literature has analyzed the presence of earnings differentials based on
physical appearance. A strand of literature has focused on facial attractiveness. Hamermesh
and Biddle (1994) analyzed the effect of physical appearance on earnings using interview-
ers’ ratings of respondents’ physical appearance. They found evidence of a positive impact
of looks on earnings. Mobius and Rosenblat (2006) examined the sources of the beauty
premium and decomposed the beauty premium that arises during the wage negotiation pro-
cess between employer and employee in an experimental labor market. They identified
transmission channels through which physical attractiveness raises an employer’s estimate
of a worker’s ability. Scholz and Sicinski (2015) studied the impact of facial attractiveness
on the lifetime earnings. They found there exists the beauty premium even after controlling
for other factors which enhance productivity in the labor market earnings.

Other threads of literature have analyzed the effects of height on labor market out-
comes. Persico et al. (2004) found that an additional inch of height is associated with an
increase in wages, which is a consistent finding in the literature in addition to racial and
gender bias. They showed that how tall a person is as a teenager is the source of the height
wage premium. This implies that there are positive effects of social factors associated with
the accumulation of productive skills and attributes on the development of human capital
and the distribution of economic outcomes. Case and Paxson (2008) also found there are
substantial returns to height in the labor market. However, they showed that the height pre-
mium is the result of positive correlation between height and cognitive ability. Lundborg
et al. (2014) found that the positive height-earnings association is explained by both cogni-
tive and noncognitive skills observed in tall people. Deaton and Arora (2009) reported that
taller people evaluate their lives more favorably and the findings are explained by the pos-
itive association between height and both family income and education. Lindqvist (2012)
studied the relationship between height and leadership and confirmed that tall men are sig-
nificantly more likely to attain managerial positions. Cawley (2004) considered the effects
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of obesity on wages. He found that weight lowers the wages of white females and noted
that one possible reason for the result is that obesity has adverse impact on the self-esteem
of white females. Rooth (2012) used a field experimental approach to find differential treat-
ment against obese applicants in terms of the number of callbacks for a job interview in the
hiring process in the Swedish labor market. He found the callback rate to interview was
lower for both obese male and female applicants than for nonobese applicants.

Mathematically, human body shapes can be viewed as arbitrary 2-manifolds M em-
bedded in the Euclidean 3-space R3. In statistical analyses as in equation (1), quantifying
geometric characteristics of different manifold shapes and encoding them into a numerical
form is not straightforward. Thus, these continuous manifolds are approximated by proxies
in a tensor form. Due to this reason, many of the relevant works in the literature on the phys-
ical appearance quantify the geometric characteristics of a human body shape with some
sparse measurements, such as height, weight, or BMI. As we will see in the later sections,
however, such kind of quantification methods do not always capture detailed geometric
variations and often lead to an erroneous explanation of statistical data. For instance, with
height and BMI alone, one can hardly distinguish muscular individuals from individuals
with round body shapes. The situation does not improve even if some new variables, such
as chest circumference, are added, since these variables still are not quite enough to codify
all the subtle variations in body shapes. Moreover, oftentimes, such additional variables
merely add redundancy, without adding any significant statistical description of data, as the
commonly-used anthropometric parameters are highly correlated to each other. In addition,
it is also noteworthy that the manual selection of measurement variables can also introduce
one’s bias into the model. In this paper, we compare several common ways of quantifying
manifold structured data with a newly-proposed graphical autoencoder method.

3. Data

We use the Civilian American European Surface Anthropometry Resource (CAESAR)
dataset. The dataset contains 2,383 individuals whose ages vary from 18 to 65 with a di-
verse demographical population. The dataset was collected from 1998 to 2000 in the U.S.
and contains detailed demographics of subjects, anthropometric measurements done with a
tape measure and caliper, and digital 3D whole-body scans of subjects. In contrast to other
traditional surveys, the data contains both reported and measured height and weight. This
feature makes it possible to calculate survey reporting errors and analyze relation to the
correctly measured height/weight and individual characteristics. In addition, the existence
of 3D whole-body scan data makes the CAESAR data serves as a good proxy to physical
appearance such that potential issue of measurement errors can be mitigated.

Some of the total 2,383 subjects in the database have missing demographic and an-
thropometric information; these have been deleted in our study. In addition, there are also
subjects who elected not to disclose and/or were not aware of their income, race, education,
etc. These individuals have also been removed in this study. In the analysis, we divide the
sample by gender to take into account the differential treatment across genders.

Tables 1-2 provide summary statistics of the variables in the database for men and
women, respectively. The data has a single question about family income (grouped into
ten classes). Average family income is $76,085 for men and $65,998 for women. Median
family income is slightly lower than the mean family income, which amounts to $70,000
for men and $ 52,500 for women. For men, on average, reported height is 179.82 centime-
ters and measured height is 178.26 centimeters, which shows a tendency of over-reporting.
The gap is larger when median reported height (180.34 centimeters) and measured height
(177.85 centimeters) are compared. We observe a similar pattern in the women’s sam-
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ple: reported height is 164.96 centimeters and measured height is 164.22 centimeters on
average; median reported height is 165.1 centimeter and median measured height is 164
centimeters.

The men’s average reported weight is 86.03 kilograms and the average of the measured
weight is 86.76 kilograms. The median of two measurements are the same. For women, re-
ported weight is 67.88 kilograms and measured weight is 68.81 kilograms on average. Me-
dian reported weight is 63.49 kilograms and median measured weight is 64.85 kilograms.
In both subsamples, the standard errors of the weight are large, which are approximately
17 kilograms. BMI has been commonly used as a screening tool for determining whether a
person is overweight or obese.1 BMI is calculated as weight in kilograms divided by height
in meters squared. We refer reported BMI (measured BMI) to the one based on reported
height and weight (measured height and weight). In the tables, height, weight and BMI are
measured one for simplicity. For both men and women, reported BMI is slightly larger than
measured BMI on average.

In addition to the bio-metric measurements, the data contains other variables for in-
dividual characteristics and socio-economic backgrounds. Education grouped into nine
categories is 16.29 years for men and 15.75 years for women on average. Experience is
calculated as experience = age − education − 6 and its mean is 17.54 years for men and
18.62 years for women. Fitness is defined as exercise hours per week. Its mean and median
are 4.24 hours and 2.5 hours, respectively, for men. For women, its mean and median are
3.74 hours and 2.5 hours, respectively.

The data also include the number of children. Marital status is classified as three
groups: single, married, divorced/widowed. Occupation consists of white collar, man-
agement, blue collar, and service. Race has four groups including White, Hispanic, Black,
and Asian. Birth region is grouped into five groups including Midwest, Northeast, South,
West, and Foreign. The majority in the dataset are white collar married white men and
women born in Midwest. As we will discuss later, the data also contains 40 body measures
which includes height and weight. The list of the body measures are provided in Table 3.

4. Reporting Errors in Height and Weight

Most studies in the literature use survey data so that they assume there are no reporting
errors in height and weight or reporting errors are classical in that they are not correlated
with true measures. Since our data contains both reported and measured height and weight,
we can further investigate the properties of the reporting errors. We consider measured
height and weight as the true height and weight since they are measured by professional
tailors. The reporting errors are calculated as Reporting ErrorH = Reported Height −
Height and Reporting ErrorW = Reported Weight − Weight, respectively

The following equation estimates which personal background explains reporting error
in height and weight:

Reporting ErrorHi = αXi + βHeighti + ϵ, (2)

Reporting ErrorWi = αXi + βWeighti + ϵ, (3)

where Xi is a set of covariates including family income, age, age squared, occupation, ed-
ucation, marital status, fitness, race, and birth region. Heighti is the true height in millime-
ters, and Weighti is the true weight in kilograms. We found dependence between reporting

1According to Centers for Disease Control and Prevention (CDC), the standard weight status categories
associated with BMI rannges for adults are as follows: below 18.5 (underweight), 18.5-24.9 (normal or healthy
weight), 25.0-29.9 (overweight), 30.0 and above (obese).
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errors and some covariates. Table 4 reports the estimation results. In the equation (2), the
coefficient of the true height is not statistically significant for both genders. We observe
different results across the gender. For men, family income is negatively correlated with
the reporting error in height at 1% significance level. Married men are more likely to over-
report their height compared to single men at 10% significance level. Men who were born
in Northeast are more likely to over-report their height relative to those from Midwest at
5% significance level. On the other hand, the coefficient of family income is not statisti-
cally significant for women. Older women are more likely to under-report their height at
5% significance level. The coefficient of fitness is positively correlated with the reporting
error in height at 10% significance level. Women who spend more time on exercise have
a tendency to over-report their height. Asian females are more likely to over-report their
height relative to white females at 5% significance level.

In the equation (3), the true weight is negatively correlated with the reporting error in
weight (at 1% significance level) for both genders: heavier people have a tendency to under-
report their weight. It is interesting to find that people who are working at service related
occupations are likely to to under-report their weight at 5% significance level. Divorced
or widowed women are more likely to under-report their weight relative to single women
at 5% significance level. As seen in (2), the coefficient of fitness is statistically significant
at 5% significance level, but it is now negatively correlated with reporting-error in weight.
Thus women who care about their body shapes or health seem more likely to under-report
their weight. Lastly, black females are more likely to under-report their weight relative to
white females (at 10% significance level).

5. Estimation of the Association between Physical Appearance and Labor Market
Outcomes

In this section, we estimate the association between the physical appearance and family
income using various methods.

5.1 Height, Weight and Reporting Errors

Most papers in the literature estimate the relationship in the equation (1) by replacing body
shapes with their observed proxies. Following the literature, we consider the following
conventional regression equations with height and/or weight:

Family Incomei = αXi + β1Heighti + ϵi, (4)

Family Incomei = αXi + β1Heighti + β2Weighti + ϵi, (5)

where Xi is a set of controls including experience, experience2, race, occupation, educa-
tion, number of children, fitness, birth region, and marital status. As mentioned before, the
data contains measurements on height and weight both reported by subjects and measured
by on-site measurers. By comparing their association with family income, we can see how
severe the reporting errors are. Table 5 reports estimation results from reported height and
weight. Table 6 provides estimation results from measured height and weight.

The hypothesis that the coefficient on height is zero is tested across gender. Results for
both genders are presented in each tables. In equation (4) of Table 5, reported weight is
not included. The column for men shows that occupation (management), occupation (blue
collar), education, marital status (married), race (black), and birth region (northeast) are
statistically significant in the income equation. The coefficient of the reported height is
positive and statistically significant at 10% significance level. The column for women is
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somewhat different from that for men: the coefficient of experience, experience2, occupa-
tion (management), education, marital status (married), marital status (divorced/widowed),
race (black), and birth region (northeast) are statistically significant. In addition, the co-
efficient on the reported height is positive and statistically significant at 5% significance
level.

In equation (5), we add reported weight to the set of regressors. The column for men
shows that the coefficient of the reported height becomes statistically insignificant, but the
coefficient of the reported weight is positive and statistically significant at 10% significance
level. It implies that heavier males are more likely to have higher family income, which is
a opposite result to most findings in the literature. However, in the column for women the
coefficient of the reported height is positive and statistically significant, but the coefficient
on the reported weight is negative and statistically significant.

In Table 6, we instead use measured height and weight to estimate the income equa-
tion. Interestingly, the coefficients on the height for men in both equations are positive and
statistically significant. They are almost two times larger than those from Table 5. Weight
is still positively correlated with family income. For women, coefficients on both height
and weight are statistically significant and larger than those from Table 5. Thus, we con-
firm there are apparent reporting errors in height and weight. Particularly, reporting errors
for men are more severe than women. These reporting errors bring attenuation bias to the
estimates.

Using height and/or weight as proxies to body shapes might be too simple to describe
delicate figures of the physical appearance. As in Cawley (2004), we add BMI to the
regression equations (4)-(5). So we consider the income equation as follows:

Family Incomei = αXi + β1BMIi + ϵi, (6)

Family Incomei = αXi + β1BMIi + β2Weighti + ϵi, (7)

Family Incomei = αXi + β1BMIi + β2Heighti + ϵi, (8)

where BMIi is the body mass index. We first estimate the equations using reported vari-
ables and summarize the estimation results in Table 7. From the columns for men in the
table, the coefficients of the reported BMI in equation (6) is statistically significant at 10%
significance level. After adding the reported weight as in equation (7), the coefficients of
the reported BMI and weight are all statistically insignificant. When the reported height
is instead added as in equation (8), the coefficients of the reported BMI is statistically sig-
nificant at 10% significance level, but the coefficient of the reported weight is statistically
insignificant. Thus, the equation (6) is most parsimonious and it shows positive correlation
between family income and men’s reported BMI. For women, reported BMI is negatively
correlated with family income and the relation is statistically significant at 5% significance
level in equation (6). The coefficient of reported weight (or height) is also statistically
significant and positive at 5% significance level in equation (7) (or equation (8)). These
equations all show that the family income and women’s reported BMI are negatively cor-
related.

We next estimate equations (6)-(8) using measured BMI, height and weight. For all
equations in Table 8, the associations between BMI and family income are different from
Table 7. In equation (6) for men, the coefficient of BMI is positive and slightly larger
than from Table 7. When weight is included as in equation (7), its coefficient for men
is positive and statistically significant at 1% significance level. The coefficient of BMI
becomes negative and statistically significant at 10% significance level. When height is
included as in equation (7), its coefficient for men is positive and statistically significant
at 1% significance level. However, the coefficient of BMI is statistically insignificant. For
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women, the results are similar to those from Table 7. The coefficient of BMI is always
negative and statistically significant. Coefficients of height and weight are statistically
significant.

Interestingly, we observe that the estimation results significantly change across different
set of measures of body types. One possible explanation for the results is that the measured
height and BMI might not be perfect proxies to the body types, although they are less prone
to reporting errors. In fact, height, weight and BMI are simple measures of body types so
that they might miss useful information on the true body types.

In order to further investigate the role of the measurement errors on the body types, we
run the following regression equation:

Family Incomei = αXi + βBodyi + ϵi, (9)

where Bodyi is a set of body measurements which include 40 number of measurements
on various parts of body.2 Since these are more sophisticate than simple measurements of
height and BMI, it is less likely that the measurement errors on body type is prevalent.

Table 9 presents the estimation results. For brevity, we only report variables which
are statistically significant. Coefficients on age, race, occupation, education, and marital
status are very similar to those in Table 8 for both men and women. Interestingly, we
found seven statistically-significant body measurements for men and five for women. For
instance, in the sample of men, Acromial Height (Sitting) and Waist Height (Preferred)
have positive association with the family income, while Arm Length (Shoulder-to-Elbow),
Buttock (Knee Length), Elbow Height (Sitting), Hip Circumference Max Height, and Sub-
scapular Skinfold are negatively correlated with the family income. For women, Shoulder
Breadth is positively correlated with the family income. However, the coefficients on Face
Length, Hand Length, Neck Base Circumference, and Waist Circumference (Preferred) are
all negative.

The most distinctive result is that the coefficients on height and weight for men and
women are statistically insignificant in the regression. This implies that there are useful
information on body types which are embedded into various body measures. The body
shapes or types cannot be fully captured by simple measures such as height or weight.

5.2 Physical Appearance and Graphical Autoencoder

Characterization of geometric quantity such as physical appearance of human body shape
using a sparse set of canonical features (e.g., height and weight) often causes unwanted
bias and misinterpretation of data. For simple shapes like rectangles, canonical measures
such as width and height already provide a complete description of the shape. Hence,
shape variation among rectangles could easily be described using the two canonical pa-
rameters without much issues. However, this seldom applies to more sophisticated shape
variations, if at all. Instead, the canonical shape descriptors, often hand-selected, might
cause nonignorable error in capturing genuine statistical distribution by overlooking some
important geometric features or measuring highly-correlated variables redundantly, which
can be thought of as a measurement error of some sort.

Unfortunately, however, extracting a complete and unbiased set of shape descriptors
is not a trivial task. Furthermore, the task is highly problem-specific such that, for exam-
ple, the shape descriptors for car shapes would not be appropriate for describing human
body shapes. To this end, we propose a novel data-driven framework for extracting com-
plete, unbiased shape descriptors from a set of geometric data in this paper. The proposed

2A full list of the measurements is reported in Table 3.
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framework utilizes an autoencoder neural network (Bourlard and Kamp, 1988) defined on
a graphical model. In this section, we present an overview of the approach and demonstrate
that the shape descriptors obtained through the new approach can actually provide a better
description of data.

5.2.1 Graphical Autoencoder

Autoencoders are a certain type of artificial neural networks that possess an hour-glass
shaped network architecture. Autoencoders can be thought of as two neural network mod-
els cascaded sequentially, where the first model codifies a high-dimensional input to a lower
dimensional embedding and the second model reconstructs the original input back from the
lower dimensional embedding. Because of their roles in the network, these two models are
called encoder and decoder, respectively, and form the major architecture of autoencoder
networks. Quite interestingly, the dimensional “bottleneck” between the encoder and de-
coder, the neural network is promoted to extract the most significant information on the
high dimensional input and find the most effective way of compressing it into a lower di-
mensional embedding. For this reason, autoencoders can also be understood in terms of
(nonlinear) dimensionality reduction.

The concept of graphical autoencoder we propose here builds upon such notion of au-
toencoder and expand it to, so called, manifold-structured data. Manifolds are generaliza-
tion of surface in arbitrary dimensional spaces. In the context of computational geometry
or computer graphics, the term manifold is often used to describe non-planar free-form
surfaces. Digitally, these manifold-structured data are often approximated by triangular
meshes as illustrated in Figure 1. Unfortunately, the canonical representation of such
manifold-structured data is almost always incompatible with neural networks because of
the inconsistency in mesh topology. In other words, the number of vertices and how these
vertices are connected by edges can vary across different graphical models. This renders
a great challenge when one attempts to feed a neural network with multiple, topology-
varying graphical models since the number and the order of input neurons must be fixed in
a neural network model.

To this end, we introduce a topology normalization step in our graphical autoencoder
framework. The key idea behind this step is as follows. First, a template model is produced
by processing and refining a sample model from the dataset or by finding a complete model
externally (e.g. a model created by a 3D artist). The selection of template does not have
significant influence on the outcome, but it is recommendable to use a model close to the
“average” shape. The template model then undergoes a deformation to conform its shape
to one of the models in the dataset. The deformation should occur in such a way that it
preserves the semantic correspondences. Such process is repeated for all of the models in
the dataset. Once the process is done, one should achieve morphed versions of template
model each of which has the same shape as the target model in the dataset but preserves
the original mesh topology of the template model. In this manner, graphical models with a
consistent topology are aquired, permitting the application of neural networks. The above
deformation process can be achieved through various deformable registration techniques.
In this paper, we use the method presented in Baek and Lee (2012), which is one of the
state-of-the-art methods for statistical human body shape analysis. In addition, in order
to better guide the deformation process, correspondence selection is achieved through the
recent correspondence matching algorithm as appears in Sun et al. (2017).

Once the graphical models with a consistent topology are obtained, the graphical au-
toencoder is constructed upon such dataset. Similar to the ordinary autoencoders, the graph-
ical autoencoder takes an input, encodes it to an embedding p, and decodes the embedding
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Figure 1: A schematic illustration of the proposed graph autoencoder. A discrete-sampled
scalar field acts as input and output nodes of the autoencoder. The intermediate layers are
similar to the ordinary autoencoder layers.

back into the original input. When we note the encoder and the decoder network f and g re-
spectively, the graphical autoencoder attempts to learn the model parameters by minimizing
the mean absolute error between the original input and the reconstruction:

min
θf ,θg

∥V − g(p)∥ (10)

where p = f(V ) by definition, θf and θg are the model parameters of f and g respectively,
and V is the list of vertex coordinates of a topology-normalized graphical model.

Figure 1 illustrates a schematic overview of the graphical autoencoder. As shown in
the figure, the vertices of a topology-normalized graphical model act as input neurons in
the autoencoder model. Then the input neurons are connected to the hidden neurons in the
next layer which then are connected in chain through the “bottleneck” layer. The bottle-
neck layer has a significantly small number of neurons compare to the input neurons and,
hence, the dimensionality compression occurs there. The latter half of the autoencoder is
symmetric to the first half and finally reconstructs the bottleneck encoding into the original
graphical model. The training process of the graphical autoencoder attempts to minimize
the discrepancy between the reconstructed model and the original input by tuning the neural
weights of the hidden layers. For more technical details, see Appendix A.

5.2.2 Graphical Autoencoder on CAESAR Dataset

In order to extract body shape parameters that encode the geometric characteristics of a per-
son’s appearance, we designed a graphical autoencoder consisting of seven hidden layers.
Each of the hidden layers are comprised of 256-64-16-d-16-64-256 neurons respectively,
where d is the intrinsic data dimension, or the dimensionality of the embedding. The RM-
Sprop optimizer was used for the training. The CAESAR scan dataset was randomly split to
a training group used for training and a validation group that were set aside during the train-
ing. The ratio between the number of data samples in such groups were 80:20 respectively.
The training continued until 5,000 epochs with the batch size of 200 samples. As a criterion
to evaluate the performance of the graphical autoencoder, we used the reconstruction error
measured in mean-squared-error (MSE). As described above, the graphical autoencoder
first embeds graphical data into a lower dimensional embedding through the encoder part
of the network, which then is reconstructed back into a graphical model through the de-
coder part. We compared how the reconstructed output is different from the original input
to the network.
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Figure 2: Result of training graphical autoencoder with the entire CAESAR dataset. The
abscissa is the number of epochs for the training and the ordinate is the model loss in terms
of MSE. The left shows the loss on training dataset (training loss) while the right shows
the loss on validation dataset (validation loss). The accuracy did not show any significant
improvement after 1,000 epochs for all cases and thus removed from the figure for the sake
of better visualization.

The first experiment was conducted to test the ability of the graphical autoencoder in
embedding the geometric information underlying in data. To achieve this, we applied the
aforementioned graphical encoder to the entire CAESAR dataset, with varying embedding
dimension d from 1 to 20 as reported in Figure 2. The embedding accuracy was below
3e−4m2 for most cases. Particularly, when the dimension d was 3, it showed the lowest
MSE, thus, the highest accuracy, in both training and validation losses, which provides a
justification for estimating d = 3 as the intrinsic dimension. Also, there was no significant
change observed after about 1,000 epochs, indicating the convergence.

For the meaning of the embedded parameters of the third dimension, the first com-
ponent, P1, discerned to be related to height of a person and P2 to the body volume
(obesity/leanness). Interestingly, as P3 increases the body shape became more feminine,
(namely, more prominent chest and waist to hip ratio) and, conversely, as it decreases the
body shape became more masculine with less prominent chest and curves.

Based on such observation, we further conducted another similar experiment for train-
ing the graphical autoencoder with separate genders. Among 2,383 subjects in the CAE-
SAR dataset, there were 1,122 males and 1,261 females. The two groups had been sep-
arated to two experiment sessions in which they were further separated to training and
validation groups with the same 80:20 ratio.

The new experiment with separate genders demonstrated a similar trend to the first
experiment in terms of how the intrinsic dimension affects the reconstruction error, as vi-
sualized in Figure 3. However, interestingly, this time, the reasonable intrinsic dimension
d was observed to be 2 for male subjects. We interpret this result that, since now the two
genders are separated, the role of P3 (feminine/masculine) is now less significant than be-
fore and, thus, the gain of accuracy by including the third dimension becomes negligible
for the men. We also note that, however, such interpretation was not true with the female
population, since the accuracy was in fact higher when P3 was included. Our explanation
to such is that, for the female body shapes, there is a greater variation in body curves com-
pared to male population, and therefore, the third component has a greater significance for
the women. We, therefore, select d = 2 for men and d = 3 for women. Lastly, we also note
that the convergence was slower when the two genders were separated and measurable gain
of accuracy could be observed even after 1,000 epochs, which was not the case when the
two genders were combined in the training. This could be because the number of training
samples in the training dataset is significantly smaller (about a half) than the previous case,
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Figure 3: Result of training graphical autoencoder separately on each gender. The abscissa
is the number of epochs for the training and the ordinate is the model loss in terms of MSE.
The left shows the loss on training dataset (training loss) while the right shows the loss on
validation dataset (validation loss).

rendering a drop of the representative power of the data.
Figure 4 illustrates the body shape spanned by the two parameters obtained from the

graphical autoencoder for each gender. 3D body shape models are arranged in accordance
with their body shape parameters with increments of −3σ, −1.5σ, 1.5σ, and 3σ with re-
spect to the mean in each direction where σ is the standard deviation of each parameter.
Body shapes for male (left) and female (right) display similar patterns over changes in the
two parameters. Overall, the first parameter P1 affects how tall a person is. That is, a
smaller value in P1 indicates the person is not tall compared to the other population and
vice versa. P2 is how lean a person is. That is, a large value in P2 results in an obese
person, while a small value in P2 results in a more slim and fit person.

In order to better understand these parameters, we consider a linear fit of BMI, height,
or weight on each parameter. Figure 5 displays the relation between body shape param-
eters and the conventional body measurements for male. P1 is positively correlated with
BMI, height, and weight. Among these body measurements, height is the most highly cor-
related with P1 (approximately R2 = 0.70). P2 is negatively correlated with height, but
is positively correlated with BMI and weight. BMI has the highest correlation with P2

(approximately R2 = 0.69). Figure 6 displays the relation between body shape parameters
and the conventional body measurements for female. The patterns are close to those for
male in Figure 5. As discussed before, the female sample produces an additional feature,
P3. We visualize the third parameter for female in Figure 7. As shown in the figure, P3 cap-
tures the ratio of waist to hip for women’s body shape, which is unique to female dataset.
For simplicity, thus, we will interpret P1, P2, and P3 as features associated with a person’s
stature, obesity, and curviness, respectively.
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Figure 4: Body shape parameters derived from the graphical autoencoder for male (left)
and female (right). 3D body shape models are arranged in accordance with their body shape
parameters, with increments of -3σ, -1.5σ, 0, 1.5σ, and 3σ with respect to the mean in each
direction.

5.2.3 Extracted Body Types and Family Income

We now use the measurements of body type which are extracted by graphical autoencoder
in the previous section. We estimate the equation (1) with the extracted body types in place
of a set of body measurements for Bodyi as following:

Family Incomei = αXi + P1i + ϵi, (11)

Family Incomei = αXi + P2i + ϵi, (12){
Family Incomei = αXi + β1P1i + β2P2i + ϵi if men,
Family Incomei = αXi + β1P1i + β2P2i + β3P3i + ϵi if women,

(13)

where P1i, P2i and P3i are body types for each individual i. Table 10 reports estimation
results across the gender with the same set of controls. In equation (13), we add all intrinsic
features of the body shape to the income equation. For men, only the coefficient of the P1

measurement is statistically significant and P2 does not explain the family income. For
women, on the other hand, only the coefficient of the P2 measurement is statistically sig-
nificant, and P1 and P3 are not correlated with the family income. When these insignificant
variables are dropped as in equations (11) and (12), the regression equations get higher ad-
justed R squared. Thus, we assume equations (11) and (12) are better model specifications
and focus on these two equations to discuss the association between the family income and
body shapes for each gender.

For men in equation (11), the feature P1 is statistically significant at 1% significance
level and has positive correlation with the family income. Thus taller men have a ten-
dency to have higher family income. But we do not find statistically meaningful relation-
ship between the men’s obesity and the family income as shown in equation (13). We
estimate that one standard deviation increase in the P1 measurement is associated with
$0.05444 × 70, 000 = $3, 810.8 increase in the family income for men who earn $70,000
of median family income. The estimation results for the covariates resemble those in pre-
vious tables. For men, occupation (management), education, and marital status (married)
matter for the family income. Their coefficients are positive and statistically significant
at 1% significance level. The coefficient of birth region (Northeast) is also positive and
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Figure 5: Relation between body shape parameters and the conventional body measure-
ments for male. The straight line displays the linear fit. The R squared is reported in the
parentheses.

statistically significance at 5% significance level. In contrast, occupation (blue collar) is
negatively correlated with the family income and its coefficient is statistically significant at
5% significance level. The coefficient of Race (black) is negative but the statistical signifi-
cance of the association is relatively weak (with 10% significance level).

On average, thus, men working in management jobs have higher family income than
men working in white collar jobs, but men working in blue collar jobs have lower family
income than men working in white collar jobs. As shown in the literature on the returns
to education, years of education has positive association with the family income. Married
males have a tendency to have higher family income than single males, which is a reason-
able since the dependent variable is the family income instead of the wage or individual
income. It is interesting to see that males born in the Northeast on average have a tendency
to have higher family income relative to males born in the Midwest.

For women in equation (12), the P2 measurement is negatively associated with the fam-
ily income and its coefficient is statistically significant at 1% significance level. Thus we
find that women’s obesity matters for the family income but their stature and curviness are
not associated with the family income. One standard deviation decrease in P2 measure-
ment is associated with $0.06582× 52, 500 = $3, 455.6 increase in the family income for
women who earn $52,500 median family income. For women, experience is important to
have higher family income. As commonly reported in the literature on the wage equation,
the experience displays a quadratic functional form. occupation (management), education,
and marital status (married) have positive correlation with the family income and their co-
efficients are statistically significant at 1% significance level, which are similar findings to
the male case. We find positive correlation of marital status (divorced/widowed) and birth
region (Northeast) with the family income, but the association is weak (with 10% signifi-
cance level). Occupation (blue collar) is negatively correlated with the family income and
its coefficient is statistically significant at 10% significance level. The coefficient of Race
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Figure 6: Relation between body shape parameters and the conventional body measure-
ments for female. The straight line displays the linear fit. The R squared is reported in the
parentheses.

(black) for women is negative and statistically significant at 1% significance level. So black
females have a tendency to have lower family income than white females.

6. Conclusion

This paper studies the relationship between the physical appearance and family income.
We show there are significant reporting errors in the reported height and weight, and show
that these discrete measurements are too sparse to provide complete description of the
body shape. In fact, these reporting errors are shown to be correlated with individual back-
grounds. We also find that the regression of family income on the self-reported measure-
ments suffers from the issue of reporting errors and delivers biased estimates compared
to the regression on the true measurements. The findings shed light on the importance of
measuring body types instead of simply relying on subjects’ self-reports for public policies.

We introduce a new methodology built on graphical autoencoder in deep machine learn-
ing. From the three dimensional whole-body scan data, we identify two intrinsic features
consisting of human body shapes for men and three intrinsic features for women. The em-
pirical results document positive association between family income and the first feature
describing stature for men. On the other hand, results for women show that the second
feature related to obesity is negatively correlated with family income. The findings support
the hypotheses on the physical attractiveness premium and the differential treatment across
the gender in the labor market outcomes.
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Figure 7: The third body shape parameter P3 for women. The third parameter tends to
capture the curviness trend of the body shape among the female subsample.
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A. Graphical Autoencoder

Mathematically, human body shapes can be viewed as arbitrary 2-manifolds M(i) embed-
ded in the Euclidean 3-space R3, where i is an index identifying each individual. In prac-
tice, these continuous manifolds are approximated by discrete, piece-wise linear surfaces,
such as a triangular mesh. The model we concern in this paper is a regression of an eco-
nomic variable Y with respect to a manifold-structured regressor M and other covariates
X:

Y = ϕ(M, X; θ) + ϵ. (14)

where ϕ is a known function up to unknown parameter θ and ϵ is an error term. A problem
rises, however, when one attempts to incorporate the manifold-structured variable M into
statistical analyses, because there is no trivial grid-like representation for such manifold-
structured data. That is, in order to use the manifold-structured variable as a regressor or
as a dependent variable, there must be a way to represent such variable in a tensor form.
However, quantifying geometric characteristics of different manifold shapes and encoding
them into a numerical form is neither straightforward nor consistent.

Autoencoders are a certain type of artificial neural networks that possesses a hour-glass
shaped network architecture. Autoencoders can be thought of as two multilayer percep-
tron (MLP) models cascaded sequentially, where the first MLP codifies a high-dimensional
input to a lower dimensional encoding (encoder) and the second MLP reconstructs the
original input back from the lower dimensional encoding (decoder). Because of such di-
mensional bottleneck between the encoder and the decoder, the neural network is promoted
to extract the most significant information from the high dimensional input and to find the
most effective way of compressing such information into the lower dimensional encoding.

During such process, the dimensionality of an input dataset is reduced effectively com-
pared to traditional dimensionality reduction methods such as principal component anal-
ysis (PCA). In addition, an invertible nonlinear parameterization f of a given dataset is
produced in forms of encoder (f ) and decoder (g ≈ f−1), which is another advantage over
many other nonlinear dimensionality reduction methods.

The concept of graphical autoencoder we propose here is an expansion of such notion
of autoencoder to interface with manifold-structured data. We assume that a manifold M
is discretized through piece-wise linear patches. Such piece-wise linear patches can be
modeled as a graph G = {V, E ,F} where V is a set of vertices/nodes, E are edges inter-
connecting the vertices, and F are the piece-wise linear patches represented as polygonal
facets. Assuming that there exists a readily-established semantic correspondence between
the vertices of different data points V(i=1...N), the proposed graphical autoencoder is de-
fined as follows:

p = (f1 ◦ f2 ◦ · · · ◦ fm)(V ∈ V), (encoder)
V = (g1 ◦ g2 ◦ · · · ◦ gm)(p). (decoder)

(15)

Here, each of the layers f1 · · · fm and g1 · · · gm are modeled as a simple perceptron:

fi(h) or gi(h) = σ

∑
j

W T
i h+ bi

 , (16)

where Wi are neural weights and bi are bias. σ is the activation function where we empir-
ically decide to be rectified linear unit (ReLU) activation for f1 · · · fm−1 and g1 · · · gm−1.
We set linear activation for the terminal layers fm and gm (i.e. no rectification).

The assumption we introduced for the definition of the graphical autoencoder is, how-
ever, non-trivial. In fact, the formation of V is not trivial because there are, in principle,
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infinitely many different ways of sampling (or discretizing) manifolds. Therefore, the ele-
ments of V (i) and V (j) for i ̸= j are not necessarily compatible to each other, and even the
dimensionality of V (i) and V (j) can differ if different sampling rate is used.

Therefore, we apply a consistent mesh reparameterization as a data preprocessing step.
To this end, we utilize the deformable manifold registration scheme, which is widely ac-
cepted in the areas of computational geometry and computer graphics. The pipeline of
the deformable manifold registration scheme is as follows. First a template graph G(S)

is defined. The template can be selected from among the dataset or can be chosen from
the outside (e.g. a model created by an artist). The selection of template does not have
significant influence on the outcome, but it is recommendable to use a model with an “av-
erage” shape. The template graph G(S) now then undergoes a deformation to conform its
shape to a target shape G(T ) from the database. The deformation occurs in a way that
the semantically-corresponding elements on the manifolds become coincident. Once this
process is completed for all S ∈ {1, . . . , N}, one can achieve deformed versions of the
template graph possessing different shapes that match with G(T ) but persisting the same
topology (i.e. mesh connectivity, {E ,F}) with the template graph G(S). In such way,
one can guarantee the semantic correspondence of vertices across the data points in the
database.
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B. Empirical Results

Variable Mean Median S.D. Min Max

Family Income ($) 76085 70000 41470 7500 150000

Reported Height (mm) 1798.2 1803.4 82.5409 1498.6 2108.2

Reported Weight (kg) 86.0371 83.9 17.2545 48.526 188.21

Reported BMI (kg/m2) 26.5490 25.793 4.6236 13.996 59.535

Height (mm) 1782.6 1778.5 78.0516 1497 2084

Weight (kg) 86.7672 83.9 17.5487 45.805 181.41

BMI (kg/m2) 27.2289 26.37 4.7529 17.364 55.068

Experience (years) 17.5401 17 10.2097 0 47

Education (years) 16.2997 16 2.5055 12 24

# of Children 1.2894 1 1.3758 0 7

Fitness (hours) 4.2448 2.5 2.9750 0.5 10

Variable # of Samples Variable # of Samples

Marital Status (Single) 240 Race (White) 644

Marital Status (Married) 473 Race (Hispanic) 18

Marital Status (Div./Wid.) 61 Race (Black) 68

Occupation (White Collar) 461 Race (Asian) 44

Occupation (Management) 144

Occupation (Blue Collar) 101

Occupation (Service) 68

Birth Region (Foreign) 159

Birth Region (Midwest) 275

Birth Region (Northeast) 106

Birth Region (South) 106

Birth Region (West) 128

# of Total Observations 774

Table 1: Summary Statistics (Men)
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Variable Mean Median S.D. Min Max

Family Income ( $) 65998 52500 38853 7500 150000

Reported Height (mm) 1649.6 1651 76.1120 1320.8 1930.4

Reported Weight (kg) 67.8881 63.492 16.8577 37.188 172.34

Reported BMI (kg/m2) 24.9442 23.259 5.8871 12.937 57.768

Height (mm) 1642.2 1640 71.2502 1382 1879

Weight (kg) 68.8191 64.853 17.2744 39.229 156.46

BMI (kg/m2) 25.4989 23.845 6.0504 15.248 57.123

Experience (years) 18.6286 19 10.7665 0 50

Education (years) 15.7529 16 2.1041 12 24

# of Children 0.9620 0 1.1937 0 6

Fitness (hours) 3.7440 2.5 2.7438 0.5 10

Variable # of Samples Variable # of Samples

Marital Status (Single) 248 Race (White) 644

Marital Status (Married) 407 Race (Hispanic) 11

Marital Status (Div./Wid.) 134 Race (Black) 88

Occupation (White Collar) 607 Race (Asian) 46

Occupation (Management) 52

Occupation (Blue Collar) 49

Occupation (Service) 81

Birth Region (Foreign) 105

Birth Region (Midwest) 318

Birth Region (Northeast) 103

Birth Region (South) 122

Birth Region (West) 141

# of Total Observations 789

Table 2: Summary Statistics (Women)
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Variable (mm) Variable (mm)

Acromial Height, Sitting Head Length

Ankle Circumference Hip Breadth, Sitting

Arm Length
(Spine to Wrist)

Hip Circumference, Maximum

Arm Length
(Shoulder to Wrist)

Hip Circumference Max Height

Arm Length
(Shoulder to Elbow)

Knee Height

Armscye Circumference
(Scye Circumference Over Acromion)

Neck Base Circumference

Bizygomatic Breadth Shoulder Breadth

Chest Circumference Sitting Height

Bust/Chest Circumference Under Bust Height

Buttock-Knee Length Subscapular Skinfold

Chest Girth at Scye
(Chest Circumference at Scye)

Thigh Circumference

Crotch Height Thigh Circumference Max Sitting

Elbow Height, Sitting Thumb Tip Reach

Eye Height, Sitting Triceps Skinfold

Face Length
Total Crotch Length

(Crotch Length)

Foot Length Vertical Trunk Circumference

Hand Circumference Waist Circumference, Preferred

Hand Length Waist Front Length

Head Breadth Waist Height, Preferred

Head Circumference Weight (kg)

Table 3: List of Various Body Measures
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Variable
Error in Height (Eq. (2)) Error in Weight (Eq. (3))

Men Women Men Women

Intercept
114.48000***

(34.80300)
41.82600

(33.84900)
8.57370*
(4.45660)

4.05600*
(2.39040)

Height
-0.00595
(0.01385)

0.00391
(0.01542)

Weight
-0.05583***

(0.01026)
-0.03973***

(0.00581)

Family Income
-5.84750***

(2.16600)
-0.10463
(2.23650)

-0.47672
(0.36098)

-0.11247
(0.20293)

Age
-1.06690
(0.77007)

-1.80120**
(0.78433)

0.07413
(0.12859)

0.01752
(0.07102)

Age2
0.01405

(0.00913)
0.02120**
(0.00937)

-0.00076
(0.00152)

-5.0707e-07
(0.00085)

Occupation
(Management)

-1.40050
(2.86120)

-2.37560
(4.25520)

-0.56637
(0.47686)

-0.17237
(0.38638)

Occupation
(Blue Collar)

-0.39780
(3.31950)

-4.48590
(4.40060)

-0.18148
(0.55099)

0.21053
(0.39849)

Occupation
(Service)

3.73570
(3.74900)

2.05140
(3.40920)

-1.44420**
(0.62457)

-0.69837**
(0.31136)

Education
-0.61200
(0.44867)

-0.39305
(0.52185)

-0.03859
(0.07562)

-0.06481
(0.04726)

Marital Status
(Married)

5.1457*
(2.74930)

-1.53780
(2.92350)

0.18477
(0.45794)

-0.28547
(0.26573)

Marital Status
(Div./Wid.)

-2.96020
(4.29890)

-1.02590
(3.33830)

-0.00334
(0.72404)

-0.76094**
(0.30424)

Fitness
0.14551

(0.35359)
0.68249*
(0.37469)

0.02027
(0.05938)

-0.07491**
(0.03438)

Race
(Hispanic)

-9.34010
(6.91530)

6.93650
(8.95170)

-0.03566
(1.14720)

0.04459
(0.80995)

Race
(Black)

-2.38250
(3.92890)

3.05000
(3.55700)

-0.06598
(0.65264)

-0.61016*
(0.32486)

Race
(Asian)

-2.50630
(4.80900)

11.20800**
(4.91110)

-1.14280
(0.78746)

-0.67003
(0.44047)

Birth Region
(Foreign)

1.59670
(2.96160)

1.27680
(3.54710)

0.11881
(0.49421)

-0.00828
(0.32102)

Birth Region
(Northeast)

6.66830**
(3.25110)

0.54603
(3.31100)

0.01911
(0.54250)

0.34354
(0.29837)

Birth Region
(South)

4.89350
(3.45630)

-1.40470
(3.28830)

-0.42492
(0.57472)

-0.15078
(0.29838)

Birth Region
(West)

1.56240
(3.11350)

-0.61730
(2.94900)

-0.43777
(0.51843)

-0.00893
(0.26830)

R̄2 0.011 0.010 0.034 0.070

F -statistic vs.
constant model

1.47 1.42 2.50 4.33

p-value 0.094 0.114 0.001 6.42e-09

N 778 793 776 792

Table 4: The Association between Reporting Error in Height/Weight and Personal Back-
ground

 
2807



Variable
Eq. (4) Eq. (5)

Men Women Men Women

Intercept
9.14380***
(0.42515)

8.73870***
(0.39782)

9.31220***
(0.43633)

8.63930***
(0.39904)

Reported Height
(mm)

0.00036*
(0.00022)

0.00054**
(0.00023)

0.00017
(0.00025)

0.00071***
(0.00024)

Reported Weight
(kg)

0.00195*
(0.00116)

-0.00219**
(0.00111)

Experience
0.00533

(0.00618)
0.01589***
(0.00568)

0.00488
(0.00619)

0.01772***
(0.00571)

Experience2
7.9921e-05
(0.00015)

-0.00040***
(0.00014)

7.8186e-05
(0.00015)

-0.00043***
(0.00014)

Occupation
(Management)

0.28353***
(0.04669)

0.31637***
(0.06739)

0.28675***
(0.04670)

0.31390***
(0.06713)

Occupation
(Blue Collar)

-0.14600***
(0.05541)

-0.10882
(0.07054)

-0.14677***
(0.05548)

-0.10668
(0.07028)

Occupation
(Service)

-0.03492
(0.06288)

-0.00979
(0.05474)

-0.03107
(0.06289)

-0.00318
(0.05491)

Education
0.05254***
(0.00742)

0.05202***
(0.00844)

0.05382***
(0.00745)

0.04980***
(0.00843)

Marital Status
(Married)

0.42164***
(0.04821)

0.69124***
(0.04288)

0.41918***
(0.04824)

0.68130***
(0.04296)

Marital Status
(Div./Wid.)

-0.01969
(0.07396)

0.10194*
(0.05464)

-0.02427
(0.07489)

0.10321*
(0.05462)

# of Children
-0.00729
(0.01600)

-0.00564
(0.01712)

-0.00710
(0.01601)

-0.00559
(0.01707)

Fitness
0.00527

(0.00593)
-0.00214
(0.00603)

0.00647
(0.00599)

-0.00477
(0.00609)

Race
(Hispanic)

-0.11077
(0.11606)

-0.01312
(0.14373)

-0.11221
(0.11600)

-0.01030
(0.14314)

Race
(Black)

-0.14098**
(0.06562)

-0.17709***
(0.05726)

-0.14673**
(0.06569)

-0.15956***
(0.05794)

Race
(Asian)

-0.12998
(0.08049)

-0.04405
(0.07806)

-0.12269
(0.08060)

-0.05666
(0.07809)

Birth Region
(Foreign)

-0.00364
(0.04977)

0.01664
(0.05692)

0.00168
(0.04987)

0.01220
(0.05669)

Birth Region
(Northeast)

0.12594**
(0.05443)

0.10717**
(0.05301)

0.13181**
(0.05455)

0.10037*
(0.05283)

Birth Region
(South)

0.00561
(0.05795)

0.03653
(0.05294)

0.01217
(0.05804)

0.04118
(0.05287)

Birth Region
(West)

0.04961
(0.05208)

-0.01185
(0.04749)

0.04966
(0.05208)

-0.01561
(0.04744)

R̄2 0.333 0.409 0.334 0.410

F -statistic vs.
constant model

22.5 31.3 21.4 29.8

p-value 1.14e-58 1.69e-79 1.97e-58 3.55e-79

N 776 791 774 789

Table 5: The Association between Reported Height/Weight and Family Income
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Variable
Eq. (4) Eq. (5)

Men Women Men Women

Intercept
8.63720***
(0.44067)

8.57320***
(0.42391)

8.82560***
(0.45392)

8.44960***
(0.42651)

Height
(mm)

0.00065***
(0.00023)

0.00064***
(0.00025)

0.00044*
(0.00026)

0.00082***
(0.00026)

Weight
(kg)

0.00192*
(0.00113)

-0.00237**
(0.00107)

Experience
0.00516

(0.00615)
0.01550***
(0.00566)

0.00462
(0.00615)

0.017043***
(0.00569)

Experience2
9.0868e-05
(0.00015)

-0.00039***
(0.00014)

9.3121e-05
(0.00015)

-0.00040***
(0.00014)

Occupation
(Management)

0.28509***
(0.04645)

0.31529***
(0.06729)

0.28735***
(0.04642)

0.31185***
(0.06714)

Occupation
(Blue Collar)

-0.13858**
(0.05523)

-0.10890
(0.07039)

-0.14135**
(0.05519)

-0.10575
(0.07023)

Occupation
(Service)

-0.03348
(0.06263)

-0.00783
(0.05466)

-0.03430
(0.06255)

-0.01183
(0.05456)

Education
0.05266***
(0.00738)

0.05156***
(0.00843)

0.05366***
(0.00739)

0.05041***
(0.00843)

Marital Status
(Married)

0.42131***
(0.04798)

0.69213***
(0.04283)

0.41772***
(0.04797)

0.68293***
(0.04292)

Marital Status
(Div./Wid.)

-0.02190
(0.07368)

0.10303*
(0.05456)

-0.02516
(0.07361)

0.09854*
(0.05446)

# of Children
-0.00824
(0.01594)

-0.00649
(0.01709)

-0.00769
(0.01593)

-0.00774
(0.01705)

Fitness
0.00529

(0.00590)
-0.00178
(0.00602)

0.00671
(0.00595)

-0.00375
(0.00607)

Race
(Hispanic)

-0.09847
(0.11548)

-0.00376
(0.14373)

-0.09849
(0.11534)

0.00194
(0.14339)

Race
(Black)

-0.13484**
(0.06536)

-0.17510***
(0.05701)

-0.14081**
(0.06537)

-0.15090***
(0.05791)

Race
(Asian)

-0.10691
(0.08037)

-0.03066
(0.07864)

-0.10113
(0.08034)

-0.04254
(0.07863)

Birth Region
(Foreign)

-0.00074
(0.04956)

0.01928
(0.05689)

0.00431
(0.04964)

0.01684
(0.05676)

Birth Region
(Northeast)

0.12853**
(0.05420)

0.10813**
(0.05280)

0.13309**
(0.05420)

0.10295*
(0.05272)

Birth Region
(South)

0.002390
(0.05770)

0.03762
(0.05285)

0.00719
(0.05765)

0.04635
(0.05286)

Birth Region
(West)

0.04547
(0.05185)

-0.01112
(0.04743)

0.04441
(0.05179)

-0.01208
(0.04731)

R̄2 0.337 0.411 0.339 0.414

F -statistic vs.
constant model

23.0 31.6 21.9 30.4

p-value 7.14e-60 3.25e-80 8.78e-60 1.74e-80

N 777 792 777 792

Table 6: The Association between Height/Weight and Family Income
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Variable
Eq. (6) Eq. (7) Eq. (8)

Men Women Men Women Men Women

Intercept
9.62480***
(0.17636)

9.80910***
(0.17062)

9.61240***
(0.17633)

9.80740***
(0.17025)

8.96590***
(0.43925)

8.95580***
(0.41212)

Reported BMI
0.00640*
(0.00383)

-0.00658**
(0.00306)

-0.00523
(0.00811)

-0.02031***
(0.00721)

0.00641*
(0.00383)

-0.00597*
(0.00306)

Reported Height
(mm)

0.00036
(0.00022)

0.00051**
(0.00023)

Reported Weight
(kg)

0.00356
(0.00219)

0.00523**
(0.00249)

Experience
0.00481

(0.00620)
0.01843***
(0.00570)

0.00485
(0.00619)

0.01736***
(0.00571)

0.00490
(0.00619)

0.01759***
(0.00570)

Experience2
7.264e-05
(0.00015)

-0.00045***
(0.00014)

7.8376e-05
(0.00015)

-0.00042***
(0.00014)

7.785e-05
(0.00015)

-0.00043***
(0.00014)

Occupation
(Management)

0.28145***
(0.04665)

0.31245***
(0.06730)

0.28695***
(0.04672)

0.31512***
(0.06716)

0.28637***
(0.04669)

0.31433***
(0.06713)

Occupation
(Blue Collar)

-0.15572***
(0.05527)

-0.11968*
(0.07023)

-0.14707***
(0.05546)

-0.10634
(0.07036)

-0.14670***
(0.05548)

-0.10614
(0.07029)

Occupation
(Service)

-0.02971
(0.06296)

-0.00581
(0.05506)

-0.03124
(0.06290)

-0.00450
(0.05494)

-0.03080
(0.06289)

-0.00348
(0.05492)

Education
0.05304***
(0.00744)

0.05108***
(0.00844)

0.05382***
(0.00745)

0.05009***
(0.00843)

0.05379***
(0.00744)

0.04985***
(0.00843)

Marital Status
(Married)

0.42253***
(0.04825)

0.67695***
(0.04303)

0.41926***
(0.04824)

0.68130***
(0.04298)

0.41916***
(0.04824)

0.68146***
(0.04296)

Marital Status
(Div./Wid.)

-0.02326
(0.07497)

0.10009*
(0.05473)

-0.02417
(0.07490)

0.10486*
(0.05465)

-0.02438
(0.07489)

0.10383*
(0.05460)

# of Children
-0.00607
(0.01601)

-0.00693
(0.01710)

-0.00711
(0.01601)

-0.00480
(0.01709)

-0.00705
(0.01601)

-0.00530
(0.01707)

Fitness
0.00666

(0.00600)
-0.00481
(0.00611)

0.00645
(0.00599)

-0.00491
(0.00610)

0.00650
(0.00599)

-0.00481
(0.00609)

Race
(Hispanic)

-0.13396
(0.11535)

-0.02931
(0.14328)

-0.11289
(0.11595)

-0.01099
(0.14323)

-0.11207
(0.11600)

-0.00987
(0.14315)

Race
(Black)

-0.15483**
(0.06551)

-0.16605***
(0.05799)

-0.14769**
(0.06559)

-0.16284***
(0.05788)

-0.14588**
(0.06567)

-0.16038***
(0.05789)

Race
(Asian)

-0.15095**
(0.07865)

-0.08814
(0.07733)

-0.12485
(0.08018)

-0.06701
(0.07782)

-0.12091
(0.08068)

-0.05872
(0.07820)

Birth Region
(Foreign)

-0.00143
(0.04989)

0.00106
(0.05668)

0.00160
(0.04987)

0.00841
(0.05666)

0.00172
(0.04987)

0.01143
(0.05671)

Birth Region
(Northeast)

0.13268**
(0.05461)

0.08802*
(0.05272)

0.13173**
(0.05456)

0.09796*
(0.05281)

0.13198**
(0.05455)

0.10006*
(0.05284)

Birth Region
(South)

0.01892
(0.05793)

0.03344
(0.05291)

0.01276
(0.05799)

0.03846
(0.05284)

0.01172
(0.05803)

0.04060
(0.05286)

Birth Region
(West)

0.05479
(0.05204)

-0.02103
(0.04752)

0.04993
(0.05207)

-0.01798
(0.04744)

0.04949
(0.05208)

-0.0161
(0.04744)

R̄2 0.333 0.407 0.334 0.410 0.334 0.410

F -statistic vs.
constant model

22.4 31.0 21.4 29.8 21.4 29.8

p-value 1.48e-58 7.92e-79 2.01e-58 5.29e-79 1.98e-58 3.69e-79

N 774 789 774 789 774 789

Table 7: The Association between Reported BMI and Family Income
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Variable
Eq. (6) Eq. (7) Eq. (8)

Men Women Men Women Men Women

Intercept
9.62040***
(0.17629)

9.79760***
(0.16973)

9.62550***
(0.17548)

9.81170***
(0.16929)

8.50030***
(0.44821)

8.79210***
(0.43412)

BMI
0.00657*
(0.00370)

-0.00685**
(0.00293)

-0.01586*
(0.00871)

-0.02468***
(0.00788)

0.00598
(0.00369)

-0.00651**
(0.00293)

Height
(mm)

0.00063***
(0.00023)

0.00062**
(0.00025)

Weight
(kg)

0.00673***
(0.00237)

0.00667**
(0.00274)

Experience
0.00470

(0.00618)
0.01828***
(0.00569)

0.00458
(0.00615)

0.01683***
(0.00570)

0.00466
(0.00615)

0.01698***
(0.00569)

Experience2
7.6348e-05
(0.00015)

-0.00044***
( 0.00014)

9.5263e-05
(0.00015)

-0.00040***
(0.00014)

9.2372e-05
(0.00015)

-0.00040***
(0.00014)

Occupation
(Management)

0.28051***
(0.04655)

0.31158***
(0.06737)

0.28830***
(0.04642)

0.31308***
(0.06716)

0.28694***
(0.04642)

0.31216***
(0.06714)

Occupation
(Blue Collar)

-0.15765***
(0.05509)

-0.12013*
(0.07025)

-0.14080**
(0.05516)

-0.10873
(0.07018)

-0.14122**
(0.05524)

-0.10629
(0.07022)

Occupation
(Service)

-0.03485
(0.06282)

-0.01550
(0.05474)

-0.03426
(0.06253)

-0.01457
(0.05457)

-0.03427
(0.06256)

-0.01249
(0.05456)

Education
0.05281***
(0.00742)

0.05219***
(0.00842)

0.05376***
(0.00739)

0.05058***
(0.00842)

0.05358***
(0.00739)

0.05041***
(0.00842)

Marital Status
(Married)

0.42101***
(0.04817)

0.67780***
(0.04303)

0.41853***
(0.04795)

0.68202***
(0.04293)

0.41757***
(0.04798)

0.68270***
(0.04293)

Marital Status
(Div./Wid.)

-0.02300
(0.07393)

0.09475*
(0.05462)

-0.02414
(0.07359)

0.09905*
(0.05448)

-0.02540
(0.07363)

0.09871*
(0.05446)

# of Children
-0.00557
(0.01598)

-0.00831
(0.01711)

-0.00813
(0.01593)

-0.00706
(0.01706)

-0.00758
(0.01593)

-0.00756
(0.01705)

Fitness
0.00705

(0.00598)
-0.00411
(0.00609)

0.00652
(0.00596)

-0.00394
(0.00607)

0.00670
(0.00596)

-0.00380
(0.00607)

Race
(Hispanic)

-0.13192
(0.11519)

-0.02558
(0.14343)

-0.09714
(0.11531)

0.00367
(0.14348)

-0.09861
(0.11536)

0.00290
(0.14339)

Race
(Black)

-0.15533**
(0.06540)

-0.16086***
(0.05795)

-0.14136**
(0.06528)

-0.15260***
(0.05787)

-0.14010**
(0.06537)

-0.15101***
(0.05789)

Race
(Asian)

-0.15101*
(0.07850)

-0.08605
(0.07725)

-0.10323
(0.07993)

-0.05378
(0.07814)

-0.10007
(0.08039)

-0.04492
(0.07870)

Birth Region
(Foreign)

-0.00175
(0.04976)

0.00333
(0.05673)

0.00470
(0.04958)

0.01409
(0.05672)

0.00396
(0.04959)

0.01631
(0.05677)

Birth Region
(Northeast)

0.13130**
(0.05443)

0.08876*
(0.05260)

0.13297**
(0.05418)

0.10224*
(0.05272)

0.13290**
(0.05421)

0.10296*
(0.05272)

Birth Region
(South)

0.01695
(0.05776)

0.03778
(0.05293)

0.00777
(0.05758)

0.04467
(0.05284)

0.00659
(0.05764)

0.04611
(0.05285)

Birth Region
(West)

0.05309
(0.05192)

-0.01800
(0.04742)

0.04463
(0.05176)

-0.01308
(0.04731)

0.04429
(0.05180)

-0.01226
(0.04731)

R̄2 0.333 0.410 0.339 0.413 0.339 0.414

F -statistic vs.
constant model

22.5 31.5 22.0 30.3 21.9 30.4

p-value 6.9e-59 6.33e-80 7.08e-60 2.05e-80 9.86e-60 1.7e-80

N 777 792 777 792 777 792

Table 8: The Association between BMI and Family Income
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Variable Men Women

Intercept
7.47360***
(1.34810)

9.07410***
(1.30210)

Acromial Height
(Sitting)

0.00541**
(0.00254)

Arm Length
(Shoulder-to-Elbow)

-0.00396*
(0.00239)

Buttock
(Knee Length)

-0.00401**
(0.00170)

Elbow Height
(Sitting)

-0.00552**
(0.00231)

Hip Cir Max Height
-0.00147*
(0.00078)

Subscapular Skinfold
-0.00610*
(0.00343)

Waist Height
(Preferred)

0.00266**
(0.00126)

Face Length
-0.00550*
(0.00308)

Hand Length
-0.00704**
(0.00308)

Neck Base Circumference
-0.00211**
(0.00104)

Shoulder Breadth
0.00257**
(0.00107)

Waist Circumference
(Preferred)

-0.00103**
(0.00052)

Experience
0.00510

(0.00654)
0.01791***
(0.00611)

Experience2
0.00012

(0.00015)
-0.00034**
(0.00014)

Occupation
(Management)

0.28239***
(0.04805)

0.28616***
(0.06908)

Occupation
(Blue Collar)

-0.13278**
(0.05680)

-0.07467
(0.07249)

Occupation
(Service)

-0.03850
(0.06381)

-0.00650
(0.05615)

Table 9: The Association between Various Body Measures and
Family Income
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Variable Men Women

Education
0.04972***
(0.00779)

0.05281***
(0.00887)

Marital Status
(Married)

0.41079***
(0.04937)

0.68310***
(0.04424)

Marital Status
(Div./Wid.)

-0.00970
(0.07525)

0.09279*
(0.05628)

# of Children
-0.00955
(0.01635)

-0.01495
(0.01776)

Fitness
-0.00127
(0.00648)

-0.00555
(0.00636 )

Race
(Hispanic)

-0.08031
(0.11937)

0.08950
(0.14854)

Race
(Black)

-0.15812*
(0.08524)

-0.12905
(0.07972)

Race
(Asian)

-0.07307
(0.09658)

-0.04112
(0.09182)

Birth Region
(Foreign)

0.00771
(0.05807)

0.00940
(0.06067)

Birth Region
(Northeast)

0.14286**
(0.05685)

0.08340
(0.05626)

Birth Region
(South)

0.04102
(0.06006)

0.04387
(0.05568)

Birth Region
(West)

0.05341
(0.05469)

-0.04005
(0.05139)

R̄2 0.348 0.418

F -statistic vs.
constant model

8.38 10.8

p-value 1.49e-48 7.4e-65

N 774 782

Table 9: The Association between Various Body Measures and
Family Income (Continued)
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Variable
Eq. (11) Eq. (12) Eq. (13)

Men Women Men Women Men Women

Intercept
9.79400***
(0.13821)

9.6287***
(0.15008)

9.81260***
(0.13889)

9.63470***
(0.14895)

9.79290***
(0.13838)

9.64730***
(0.14940)

P1
0.05444***
(0.01870)

0.03374*
(0.01791)

0.05432***
(0.01872)

0.02145
(0.01861)

P2
0.00553

(0.01809)
-0.06582***

(0.01790)
0.00411

(0.01800)
-0.06120***

(0.01841)

P3
0.00886

(0.01697)

Experience
0.00478

(0.00615)
0.01549***
(0.00570)

0.00520
(0.00618)

0.01922***
(0.00566)

0.00474
(0.00616)

0.01830***
(0.00572)

Experience2
8.517e-05
(0.00015)

-0.00039***
(0.00014)

7.3124e-05
(0.00015)

-0.00045***
(0.00013)

8.4438e-05
(0.00015)

-0.00043***
(0.00014)

Occupation
(Management)

0.28565***
(0.04644)

0.31460***
(0.06743)

0.27805***
( 0.04663)

0.31305***
(0.06701)

0.28551***
(0.04648)

0.31242***
(0.06704)

Occupation
(Blue Collar)

-0.14032**
(0.05513)

-0.11445
(0.07048)

-0.15654***
(0.05532)

-0.11562*
(0.06990)

-0.14123**
(0.05531)

-0.11135
(0.07007)

Occupation
(Service)

-0.03006
(0.06262)

-0.00812
(0.05478)

-0.03395
(0.06295)

-0.00858
(0.05442)

-0.03002
(0.06266)

-0.00592
(0.05451)

Education
0.05261***
(0.00738)

0.05194***
(0.00846)

0.05187***
(0.00742)

0.05034***
(0.00841)

0.05268***
(0.00739)

0.04940***
(0.00845)

Marital Status
(Married)

0.41859***
(0.04800)

0.69098***
(0.04292)

0.42544***
(0.04821)

0.68356***
(0.04262)

0.41873***
(0.04803)

0.68693***
(0.04274)

Marital Status
(Div./Wid.)

-0.02413
(0.07366)

0.10158*
(0.05467)

-0.01908
(0.07405)

0.10258*
(0.05432)

-0.02413
(0.07371)

0.10376*
(0.05435)

# of Children
-0.00821
(0.01593)

-0.00601
(0.01713)

-0.00614
(0.01601)

-0.00963
(0.01702)

-0.00815
(0.01595)

-0.00885
(0.01705)

Fitness
0.00597

(0.00590)
-0.00158
(0.00603)

0.00578
(0.00599)

-0.00497
(0.00605)

0.00616
(0.00600)

-0.00432
(0.00608)

Race
(Hispanic)

-0.11108
(0.11503)

-0.00532
(0.14436)

-0.13324
(0.11542)

-0.01484
(0.14275)

-0.11128
(0.11511)

0.00016
(0.14351)

Race
(Black)

-0.12265*
(0.06579)

-0.17774***
(0.05715)

-0.14928**
(0.06553)

-0.16930***
(0.05679)

-0.12208*
(0.06588)

-0.16535***
(0.05694)

Race
(Asian)

-0.10885
(0.08004)

-0.04311
(0.07873)

-0.16166**
(0.07857)

-0.07901
(0.07666)

-0.10983
(0.08020)

-0.05994
(0.07849)

Birth Region
(Foreign)

0.00341
(0.04962)

0.01552
(0.05701)

-0.00679
(0.04978)

0.00750
(0.05642)

0.00365
(0.04966)

0.01272
(0.05668)

Birth Region
(Northeast)

0.13423**
(0.05424)

0.10457**
(0.05294)

0.12721**
(0.05453)

0.09095*
(0.05229)

0.13479**
(0.05433)

0.09929*
(0.05278)

Birth Region
(South)

0.01011
(0.05752)

0.03300
(0.05290)

0.01357
(0.05789)

0.05057
(0.05285)

0.01075
(0.05762)

0.05307
(0.05295)

Birth Region
(West)

0.04700
(0.05180)

-0.01177
(0.04756 )

0.05427
(0.05204)

-0.01616
(0.04718)

0.04668
(0.05185)

-0.01391
(0.04730)

R̄2 0.338 0.408 0.331 0.416 0.337 0.415

F -statistic vs.
constant model

23 31.3 22.3 32.3 21.8 29.1

p-value 5.46e-60 1.59e-79 2.99e-58 1.32e-81 2.6e-59 2.14e-80

N 777 792 777 792 777 792

Table 10: The Association between Body-type Parameters and Family Income
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