
Deep Neural Network Model for Predicting Gene Activity 

Using Three-dimensional Structures of Chemical 

Compounds 

 
 
 

Md. Mohaiminul Islam1,2, Kevin Jeffers 3, Andrew M. Hogan 4 

Qian Liu2, Rebecca Davis3, Silvia Cardona4,5, Pingzhao Hu1,2 

 
1Department of Computer Science, E2-445 EITC, University of Manitoba, Winnipeg, 

MB, R3T 2N2, Canada 

2Department of Biochemistry and Medical Genetics, 745 Bannatyne Avenue, University 
of Manitoba, Winnipeg, MB, R3E 0J9, Canada  

3Department of Chemistry, 360 Parker Building, University of Manitoba, Winnipeg, MB, 
R3T 2N2, Canada 

4Department of Microbiology, 213 Buller Building, University of Manitoba, Winnipeg, 
MB, R3T 2N2, Canada 

5Department of Medical Microbiology & Infectious Disease, University of Manitoba, 
Winnipeg, Canada 

 
Corresponding: Rebecca Davis (Rebecca.Davis@umanitoba.ca), Silvia Cardona 
(Silvia.Cardona@umanitoba.ca), Pingzhao Hu (pingzhao.hu@umanitoba.ca) 

 

 

 

Abstract 

Experimental approaches to drug discovery are time-consuming and expensive. It is well-
known that three-dimensional (3D) structures of chemical compounds contain rich 
information for drug screening. Therefore, it is critical to develop new models to measure 
compound structure-activity relationships. To solve this issue, we first developed an 
algorithm to extract compound structure-specific features from atomic coordinates of 
conformers created on a specific molecular conformation. A denoising stacked 
autoencoder model was then proposed to generate deep features. The network was built 
by stacking layers of denoising autoencoders in a convolutional way. Chemogenetic 
interactions were then predicted using a support vector machine based on the learned 
high-level feature representations of the 3D structures of the compounds. The models 
were evaluated using 59 compounds with 6413 conformers and 242 gene products 
generated by a chemical genomics strategy for mechanism-based profiling of 
antibacterial compounds. We demonstrated that the proposed model has excellent 
performance to classify chemogenetic interactions using the structure features extracted 
from the chemical compounds. 
 
Key Words: Deep neural network, chemical compounds, three-dimensional structure, 
drug discovery, gene activity 
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1. Introduction 

 
Deep learning (DL) is a branch of artificial intelligence, which creates machine learning 
(ML) models based on existing data to predict the outcomes of new data sets [1, 2, 3]. A 
DL network is an artificial neural network that takes sample data as the input to the 
network,  transforms the data into an abstract level, and provides predictions as the 
output. DL network can learn non-linear features using a different number of hidden 
layers. A hidden layer is a structure in a DL network where various types of non-linear 
operations can be performed. These layers receive weighted input from its previous layer 
and perform non-linear operations to transform the data, and pass them to the next layer. 
DL-based methods can create prediction models without any feature selection. The 
methods have already solved many problems that previously required human 
intervention, such as image classification [4], autonomous driving cars [5], face 
recognition based security [6,7], real-time object tracking and detection [8], natural 
language processing [9], and speech recognition models [10,11,12]. DL-based methods 
also achieved promising results in the field of biomedical applications, where image 
segmentation and computer aided diagnosis can directly extract features from the raw 
data and without any human engineered features [13, 14, 15]. Recently, DL-based 
methods have been applied to medical imaging processing [16], which were compared 
with predefined featured-based conventional methods [15, 17]. These comparisons 
showed that the superiority of deep learning methods to conventional machine learning 
methods.  
 
An autoencoder is one of the popular neural network based architectures, which can 
perform unsupervised feature learning. Autoencoder calculates the difference between the 
observed/input data and the predicted data. This difference is then backpropagated 
through the network to update the weights of the hidden layers. The network learns to 
approximate an identity function by limiting fewer numbers of units in the hidden layer 
than the input layer. This method is better than the PCA (Principal Component Analysis) 
technique for dimensionality reduction problems. PCA can provide only linear 
transformation, while activation functions in the hidden layers of an autoencoder 
introduce “non-linearities” in encoding. Furthermore, we can form a DL architecture by 
stacking autoencoders on top of another. Cheng et al. used a type of deep learning-based 
autoencoder called stacked denoising autoencoder (SDAE) for computer-aided diagnosis 
regarding breast lesions in images and pulmonary nodules in CT scans [18]. This type of 
autoencoder is good for automatic feature extraction as well as provides convincing noise 
tolerance. Cheng et al. showed that their proposed model achieved substantial 
performance improvements over two conventional computer-aided diagnosis methods 
[19, 20].  
 
Emerging and re-emerging infectious diseases are a critical public health issue. Infectious 
diseases are usually caused by microorganisms such as viruses, bacteria, and fungi [21]. 
Moreover, microorganisims can become drug-resistant, which suggest the need of 
screening for new antimicrobial drugs. Unfortunately, currently available tools are not 
able to provide new antimicrobial drugs at the rate required to solve the issues of 
emerging antimicrobial resistance [22]. Bueso-Bordils et al. [23] introduced a 
mathematical model which uses molecular topology to classify chemical compounds used 
to treat bacterial infections (antibiotics) and predict antibacterial activity in virtual 
compound libraries. Their proposed model used structural descriptors (non- three 
dimensional (3D) components) and linear discriminant analysis for this classification. 
While the authors identified 158 compounds as antibacterial candidates from 6,375 
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compounds, they did not use genome-wide chemical-genetic interaction data, which is 
a richer descriptor of antimicrobial activity and mechanism of action. In this study, we 
have proposed a general DL-based framework to predict chemical-genetic interactions in 
bacteria exposed to antibiotics, as a preliminary step in predicting antibiotic activity. 
Using previously published chemogenetic profiling of antibiotics in the Gram-positive 
bacterium Staphylococcus aureus (S. aureus) and 3D structural descriptors of the 
compounds, we built a chemogenetic interaction prediction model. We propose that this 
framework can be used for prediction of chemical-genetic interactions in other bacteria. 
 

 

2. Methods 

 

2.1 Dataset 

We have collected published chemogenomic profiles of Staphylococcus aureus (S. 

aureus) knockdowns exposed to 59 antibacterial compounds [24]. The study proposed a 
strategy called antisense induced strain sensitivity (AISS) to diminish the expression of 
essential genes (genes responsible for bacterial growth). The specific sensitivity of certain 
strains to the compounds reports chemical-genetic interactions. The study collected 245 
antisense strains of S. aureus from 628 strains in which essential genes were identified by 
the conditional-growth phenotype of the knockdown mutation [25]. Donald et al. used 59 
antibacterial compounds to test the AISS strategy to determine their mechanism of action 
[24]. In our experiment, we used 242 genes corresponding to these 245 antisense strains 
exposed to 59 antibacterial compounds. Donald et al. defined the chemogenetic 
interactions between genes and compounds as active (interaction) or inactive (no 
interaction) [24]. For example, the alanine racemase (alr) and D-alanine-D-alanine ligase 
(ddlA) genes are inactive for the compound called D-cycloserine. We used these genes 
and compounds and their chemogenetic interactions to build a machine learning model to 
predict the activity of these 59 antibacterial compounds against the 242 genes.  
 
2.2 Generation of machine learning samples  
It is well-known that conformational isomerism means that two isomers can be converted 
into each other by single bond rotation. These conformational isomers are called 
conformers. In our experiment, we examined the 3D structures of the 59 profiled 
antibacterial compounds generating all possible rotational isomers (conformers) of each 
molecule. This fully scanned the chemical space available for each compound, providing 
a robust set of data for comparison with other compounds and ensuring that shape 
similarities between molecules are accurately described. We generated different number 
of conformers from these compounds by list of possible dihedral angles using OMEGA 
3.0.1.2.: OpenEye Scientific Software, which forms a 3D structure for a given compound 
(Figure 1). We have generated a total of 6,413 conformers from these 59 compounds. 
Therefore, we had 6,413 conformers as our samples for building machine learning 
models for predicting chemogenomic profiles. 
 
2.3 Feature extraction for each of the samples 

To build our machine learning models, we extracted features from these 
conformer-specific samples. This required us to transform the conformer-specific 
raw data into an understandable data structure which can be used for predicting 
chemogenomic interactions. However, we did not have any specific format to 
represent the samples since they were represented as a set of Cartesian 
coordinates (Figure 1). Hence, we developed an approach to build a data structure  
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Figure 1. Generation of 3D data for molecules in training and tests sets. Conformers are 
generated through a torsion search process which examines the molecular scaffold and 
identifies the bonds that may freely rotate. A list of possible dihedral angles is then 
assigned to each rotatable bond and an exhaustive search is performed. This search is 
done using OMEGA 3.0.1.2: OpenEye Scientific Software. Each conformer is described 
by a set of Cartesian coordinates. These coordinates are used in the machine learning 
process.   
 
 
to represent the samples. This data structure was used to generate the feature 
vectors (FVs) for all of the conformer-specific samples. The approach is shown in 
Figure 2 and summarized as follows. Briefly, we first found out the unique 
information from all conformers of the compounds (coordinates with associated 
atoms). These coordinates were stored in a one-dimensional master vector (MV) 
of size 75,080. Therefore, each of the cells of the MV stored one of the unique 
coordinates with associated atoms. We then matched each conformer’s 
coordinates as well as associated atoms with the cells of the MV. If there was an 
exact match of the coordinates, we assigned “1” in the corresponding cell of the 
MV, otherwise we assigned “0”. This MV was the feature vector for this 
conformer. We repeated the above steps for all the 6,413 conformers to extract 
their 75,080-size feature vector from their associated raw Cartesian coordinates. 
Consequently, we had a 6,413 by 75,080 high dimensional matrix for all the 
samples.  
 

2D	structure
Overlay	of	all	possible	
3D	conformations

Conformer_1

C1  0.637  -1.066   1.785  

...

C37  -2.057  -5.714  -1.025  

C38  1.816  -0.321   1.694  

C39  -0.211  -6.616   0.245

Conformer_2

C1 -1.885  -4.479  -0.399

...

C37  -2.057  -5.714  -1.025  

C38  1.816  -0.321   1.694 

C39 -0.211  -6.616   0.245

Conformer_1

C1  -0.036  -5.379   0.875

...

N42  5.483  -1.441   0.094  

C43  10.556  -5.895  -0.929

C44  11.981  -1.665  -5.492

Conformer_2

C1 -1.885  -4.479  -0.399

...

N42  3.657  -3.697  -1.262

C43  4.925  -3.721  -2.059

C44 5.682  -2.470  -1.785

94	conformers

98	conformers

Cartesian	coordinates3D	structure
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Figure 2: Feature extraction for each of the conformers. 

 
2.3 Deep features generation for each of the samples 
Our extracted feature vectors were high dimensional. Some of the features may be 
redundant and these high dimensional feature vectors may introduce “overfitting” 
problem into our prediction model because of too many parameters to be estimated. 
Hence, we mapped our feature vectors into lower dimension to build an efficient machine 
learning model to predict the chemogenomic interactions. For this purpose, we used a DL 
based approach (SDCAE - Stacked Denoising Convolutional Autoencoder) to create low 
dimensional representation of our feature vectors. Denoising autoencoder can be used to 
reconstruct corrupted data, which may be common in our high dimensional data.  
Convolutional autoencoders replaces “fully-connected layer” by “convolutional layer”. 
This operation reduces the total number of hidden units which means fewer parameters to 
be learned by our network. This helps extract correlated features as well as provides the 
network less prone to the problem of “overfitting”. 
 
The proposed SDCAE (Figure 3) is briefly summarized as follows. Firstly, we 
introduced noise into a proportion of the features, which were then input into SDCAE. 
Secondly, we performed convolutional operation to capture the correlation among the 
different coordinates of a conformer as well as to capture their local patterns. This 
operation reduced the total number of parameters to be learned by the network. Following 
this convolutional operation, we performed several fully connected operations via 
different hidden layers with different number of units which eventually encoded 
information into a lower dimensional vector. After these encoding operations, we 
performed a set of fully connected operations with different number of hidden units 
which eventually decoded the information from the encoder layers. Thirdly, we 
performed a deconvolutional operation to predict our noisy input data. Finally, we 
calculated the error between the output from our last decoder layer (i.e. the output from 
deconvolution operation) and the original data (i.e. noiseless uncorrupted data). We 
trained this network in a backpropagation style.  
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After completing training the SDCAE network, we took the output from the last encoder 
layer and this gave us a low dimensional matrix of all the samples of size 6,413 × 500. 
Therefore, we had a robust deep feature vector (DFV) with size 500 for each of the 
samples and we called them as deep features. We built our SDCAE model using a deep 
learning library known as CAFFE [22]. 
 
 

 
 

Figure 3: Stacked Denoising Convolutional Autoencoder 
 

2.4 Building SVM models to predict chemogenomic interactions using deep features 
Data mining is a process which involves extracting information from raw data as well as 
using this information to reach into a decision. Classification is a data mining process 
where objects whose labels are unknown are assigned with one of the known labels. This 
supervised process requires building a machine learning model to classify data instances 
into different categories. In this experiment, we have randomly selected 5,000 conformers 
as training set to build a machine learning model to classify a test set of the remaining 
1,413 conformers into two classes: active or inactive. The depletion status (active vs 
inactive) of each gene-specific mutant was decided based on their chemogenomic 
profiles. Our goal is to build a machine learning model to predict whether a gene is active 
or not in a given conformer. This is a standard binary classification problem. We have 
101 genes with the depletion status, which means we have to build 101 models to predict 
all the chemogenetic interactions. In order to build the models, we used the feature matrix 
of 5,000 (conformer samples) by 500 (deep features) as our training set (TN) and the rest 
of the 1,413 conformers were used as our test set (TE).  
 
Although we can use a DL-based architecture to build a classification model using these 
deep features as DL achieved great success in solving the classification problems [4, 5],  
DL based models are expensive in terms of time and space requirements. A DL-based 
method takes almost an hour to build a prediction model using our dataset. So, we used 
another data mining tool known as support vector machine (SVM) [27,28] which takes 
much lesser time (i.e., ~3-4 mins) than DL-based methods to build a model with our 
dataset. This classification technique separates the data instances in a surface with a goal 
to maximize the margin of a decision boundary between the classes. SVM uses the 
knowledge from the training set to classify the test set. van de Wolfshaar et al. [29] used 
deep features to train SVM models to solve a classification problem of gender 
recognition. They achieved 94% to 96% accurate rate for the classification. Therefore, we 
built our SVM models using deep features as input to solve our binary classification 
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problem. Deep features are robust against the noisiness in the data and encoded with the 
correlations among the raw features. We used a R package called e1071 [30] to build our 
SVM models.  
 

3. Results 

 
We had 59 chemical compounds and each of these compounds had different number of 
conformers. In total, we had 6,413 conformers from these 59 compounds. In our 
experiment, we treated these 6,413 conformers as our sample set. We also had 
information about 242 genes with depletion status against antibacterials. These genes 
were divided into two sets: 141 genes with inactive status in all compounds and 101 
genes with either active or inactive in a compound. If a gene “X” is active in a compound 
“Y”, it means the gene “X” is active in all the conformers of the compound “Y”.  
 
In our dataset, a conformer was represented by a set of Cartesian coordinates (Figure 1). 
Using the approach described in Figure 2, we represented each of all the 6,413 
conformers with a 75,080-size one-dimensional vector with unique coordinates, where 1 
represented that the given coordinate was found in the conformer and 0 represented that 
the given coordinate was not found in the conformer. Furthermore, we extracted the 500-
size deep feature vector for each of the conformers using the unsupervised deep learning 
network architecture SDCAE (Figure 3). These deep features are robust against the 
unwanted noisiness and encoded with the correlation among all the 75,080 features. To 
build the SVM-based machine learning model using the selected deep features to predict 
whether a gene is active or inactive in a conformer, we randomly selected 5,000 
conformers from our sample set (i.e., 6,413 conformers) to train the model for each gene 
and the rest of the 1,413 conformers to test the model. We used the same label for all the 
conformers of a compound. For example, the compound called “Echinomycin” has a 
label “active” for the gene “metS” which means all the available 61 conformers of 
“Echinomycin” have “active” label for the gene “metS”.  
 
To simplify the analysis, we focused on only the 101 genes with either active or inactive 
status in the conformers. Overall, more than 80% of the genes had prediction accuracy 
80% or greater (Figure 4).  We can see that the prediction performances measured by 
accuracy for majority of the gene were in the range 98.8% to 100%. We also observed 
that our proposed framework provides very impressing prediction performances in terms 
of sensitivity and specificity (Figure 4.C2). More than 80% of the genes had specificity 
close to 1.  
 

4. Discussion 
 
Today human health care is facing the threat of a “Post-Antibiotic Era” by infectious 

diseases because of the emergence of drug-resistant bacteria. Hence, antibacterial drug 

discovery is an important task in current health research. However, experimental 
approaches for drug discovery are time-consuming and expensive. It is necessary to 

explore how to use highly rich 3D chemical compounds for screening new antibacterial 

drugs. Here, we proposed a new framework which predicted gene activity in chemical 
compounds. Our model used a deep learning-based architecture called SDCAE to extract 

deep features from the 3D structural descriptors of antibacterial compounds for 

classification purposes. This SDCAE overcomes the curse of high dimensionality and 
incorporates the correlations among the different coordinates required to form a 3D 

chemical compound. We used SVM as the ML method to build a classification model 
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using these robust deep features as input. Our experimental results showed that the 

framework has excellent performance for gene activity prediction. In addition, the 
proposed DL-based chemogenetic interaction prediction framework is not only limited to 

predict gene activity in S. aureus but also can be used for other bacteria. 

 

In this experiment, to extract features from the 3D chemical compounds, we used a small 
sample size with 6,413 conformers from only 59 compounds. This may not cover all the 

Cartesian coordinates in the conformers of all available compounds, which suggest that 
some Cartesian coordinates from new conformers may not be included in our training set. 
Hence, we need to explore other approaches to extract conformer-specific features and 
increase the sample size. Furthermore, we did not use DL-based architecture to build our 

binary classifiers but used time efficient SVM method to build the classifiers. In our 
future work, we will explore to build the classifiers using a DL-based architecture. 

 

 
 
Figure 4: Machine learning-based prediction of chemogenomic profiles. Column names 
are 53 compounds, rows are 82 genes. 
A) Heat map of true labels for the test set for 53 compounds and 82 genes with known 
depletion (white dots) and non-depletion (black dots) representing averaged test outputs. 
B) Heat map of the prediction for the test set representing the averaged predicted outputs. 
The predicted results for the conformers were averaged into each compound (rows). 
C.1) Prediction performance, TP, true positives; (TP), TN, true negatives; FN, false 
negatives; FP, false positives.  
C.2) Consistency of test outputs and predict outputs 
The raw data was extracted from Donald, R. G. K. et al. A Staphylococcus aureus Fitness 
Test Platform for Mechanism-Based Profiling of Antibacterial Compounds. Chem. Biol. 
16, 826–836 (2009). 
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