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Abstract
Estimation of an unstructured covariance matrix is difficult because of the challenges posed by pa-
rameter space dimensionality and the positive-definiteness constraint that estimates should satisfy.
We consider a general nonparametric covariance estimation framework for longitudinal data using
the Cholesky decomposition of a positive-definite matrix. The covariance matrix of time-ordered
measurements is diagonalized by a lower triangular matrix with unconstrained entries that are sta-
tistically interpretable as parameters for a varying coefficient autoregressive model. Using this dual
interpretation of the Cholesky decomposition and allowing for irregular sampling time points, we
treat covariance estimation as bivariate smoothing and cast it in a regularization framework for de-
sired forms of simplicity in covariance models. Viewing stationarity as a form of simplicity or
parsimony in covariance, we model the varying coefficient function with components depending
on time lag and its orthogonal direction separately and penalize the components that capture the
nonstationarity in the fitted function. We demonstrate construction of a covariance estimator using
the smoothing spline framework. Simulation studies establish the advantage of our approach over
alternative estimators proposed in the longitudinal data setting. We analyze a longitudinal dataset
to illustrate application of the methodology and compare our estimates to those resulting from al-
ternative models.

Key Words: covariance estimation, nonparametric function estimation, longitudinal data, smooth-
ing splines, reproducing kernel Hilbert space

1. Introduction

Estimation of a covariance matrix is fundamental to the analysis of multivariate data for
mean inference, discrimination, and dimension reduction. The two primary challenges in
fulfilling this prerequisite are due to the total number of parameters to be estimated in rela-
tion to the data dimension, and a structural constraint for covariance. As compared to mean
estimation, the number of parameters grows quadratically in the dimension, and these pa-
rameters must satisfy the positive-definiteness constraint. It is well known that the widely
used the sample covariance matrix, though positive-definite and unbiased for the popula-
tion covariance matrix, is unstable in high dimensions [12]. In the applied literature, it is
common practice to specify a parametric model for the covariance structure by incorporat-
ing primary factors for variation in the data or those elements suggested by a study design.
These models are typically parsimonious and require modest computational effort for esti-
mation. However, specifying the appropriate covariance model is challenging even for the
experts, and model misspecification can lead to considerably biased estimates.

On the other hand, several regularized estimators of the sample covariance have been
proposed to balance the two extremes. There are several elementwise regularization meth-
ods for estimating a covariance matrix; see, for example, [4, 5, 29, 23]. Methods for co-
variance estimation leveraging elementwise shrinkage are attractive, in part, because they
typically present very low computational burden, but such estimators are not guaranteed to
be positive-definite with finite sample sizes.
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There has been a recent shift in covariance estimation toward regression-based ap-
proaches to eliminate the positive-definite constraint from estimation procedures altogether.
Similar to this idea is the approach of modeling various matrix decompositions directly
rather than the covariance matrix itself, including the spectral decomposition, the variance-
correlation decomposition, and the Cholesky decomposition. The Cholesky decomposi-
tion in particular has recently received much attention because of its qualities that make it
particularly attractive for its use in covariance estimation for data with naturally ordered
measurements such as time series or longitudinal data. The entries of the lower triangular
matrix and the diagonal matrix of the modified Cholesky decomposition have statistical
interpretations as autoregressive coefficients, or the generalized autoregressive parame-
ters and prediction variances, or innovation variances when regressing a measurement on
its predecessors. The unconstrained reparameterization and its statistical interpretability
makes it easy to cast covariance modeling into the generalized linear model framework
while guaranteeing that the resulting estimates are positive-definite. See [21] for a general
overview of modeling the Cholesky decomposition.

In this paper, we extend the regression model associated with the Cholesky decompo-
sition of a covariance matrix to a functional varying coefficient model. Treating covariance
estimation as bivariate smoothing, our framework naturally accommodates unbalanced lon-
gitudinal data and employs regularization as in the usual function estimation setting. The
outline of the article is as follows. In Section 2, we review the role of the modified Cholesky
decomposition in the unconstrained reparametrization of a covariance matrix. In Section 3,
we present a functional varying coefficient model for the elements of the reparameterized
covariance matrix and propose a reproducing kernel Hilbert space framework for estimation
of the varying coefficient function. We demonstrate estimation of the innovation variances
via smoothing splines in Section 4. Section 5 reviews a simulation study comparing the
performance of our estimator to other covariance estimators proposed in the literature, and
we apply our method to a dataset collected from a longitudinal study of cattle weights in
Section 6.

2. The Cholesky Decomposition

For a positive-definite covariance matrix Σ ∈ Rp×p for p variables, there exist a lower
triangular matrix T ∈ Rp×p with unit diagonal entries and a diagonal matrix D ∈ Rp×p

with positive entries such that
D = TΣT ′. (1)

This representation (1) is commonly referred to as the modified Cholesky decomposition
of Σ.

The lower triangular entries of T are unconstrained and can be interpreted as the co-
efficients of a particular regression model for ordered variables, and the diagonal of D
can be interpreted as the prediction error variances associated with the same model. Let
Y = (y1, . . . , yp)

′ denote a mean zero random vector with positive-definite covariance ma-
trix Σ, and consider regressing yt on its predecessors y1, . . . , yt−1. Let ŷt be the linear least-
squares predictor of yt based on previous measurements yt−1, . . . , y1, and let V ar (ϵt) =
σ2
t denote the variance of the corresponding prediction error, where ϵt = yt−ŷt. Regression

theory gives us that there exist unique scalars ϕtj so that

yt =

{
ϵt, t = 1∑t−1

j=1 ϕtjyj + ϵt, t = 2, . . . , p,
(2)

and the prediction errors ϵt are mean zero and independently distributed. If we negate the
regression coefficients ϕtj and place them in the lower triangle of T so that the (t, j) entry
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of T is −ϕtj , and let D = diag
(
σ2
1, . . . , σ

2
p

)
and ϵ = (ϵ1, . . . , ϵp)

′, then the sequence of
regression models in (2) can be written in matrix form as

ϵ = TY. (3)

Taking covariances on both sides of (3) gives the modified Cholesky decomposition (1).
Thus, modeling a covariance matrix is equivalent to fitting a sequence of p − 1 varying-
coefficient and varying-order regression models. Since the ϕtj are regression coefficients,
these and the log σ2

t , are unconstrained. The regression coefficients of the model in (2) are
referred to as the generalized autoregressive parameters and innovation variances [19, 20].
The powerful implication of the regression framework of decomposition (1) is the acces-
sibility of the entire portfolio of regression methods for the task of modeling covariance
matrices. Moreover, the estimator Σ̂−1 = T̂ ′D̂−1T̂ constructed from the unconstrained
parameters, ϕtj and σ2

t , is guaranteed to be positive-definite.
However, it is unclear how to apply Model (2) to irregular or incomplete data without

prior imputation. In most longitudinal studies, the functional trajectories of the involved
smooth random processes are not directly observable, and often, the observed data are
sparse and irregularly spaced measurements of these trajectories. In the case that there is
no fixed number of measurements and set of associated observation times for each subject,
it is unclear how to define the discrete lag as in the usual formulation of autoregressive
models. This makes treatment of individual subdiagonals of the Cholesky factor or the
covariance matrix itself infeasible. To handle data collected in such a manner requires
methods which are formulated in terms of continuous measurements. We address this con-
cern by extending the framework supported by the unconstrained parameterization in (1) to
naturally accommodate unbalanced longitudinal data. In the following section, we present
a functional varying coefficient model for the elements of the Cholesky decomposition and
propose regularization using a reproducing kernel Hilbert space framework.

3. A FUNCTIONAL VARYING-COEFFICIENT MODEL FOR THE MODIFIED
CHOLESKY DECOMPOSITION

Given a sample of repeated measurements on N independent subjects, we model the ob-
served data collected on an individual as a realization of a continuous-time stochastic pro-
cess Y (t) at discrete “time” points. In general, t doesn’t need to be time, but for the ease of
exposition, assume that measurements are indexed by time. Let Yi = (y(ti1), . . . , y(ti,pi))

′

denote measurements taken on the ith subject at observation times Ti = {ti1 < · · · < ti,pi},
i = 1, . . . , N . We assume that measurement times are drawn from T = [0, 1] without loss
of generality.

We extend the linear model corresponding to the Cholesky decomposition (2) with the
following functional varying-coefficient model:

y (tij) =
∑
k<j

ϕ̃ (tij , tik) y (tik) + ϵ (tij) ,
i = 1, . . . , N
j = 2, . . . , pi,

(4)

where the prediction errors ϵ (t) follow a mean-zero Gaussian process with variance func-
tion σ2 (t). In the setting where sampling points are subject-specific and varying in length,
the covariance function of the underlying process Y (t), Cov(Y (t), Y (s)) becomes the nat-
ural target of interest.

As parsimonious parametric models, [20] and [17] considered low-order polynomials
of the lag between observed time points for the generalized autoregressive coefficient func-
tion ϕ̃ and polynomials of time for log innovation variances in the analysis of longitudinal
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data. Further, [27] proposed local polynomial smoothers to individually estimate the sub-
diagonals of T for modeling ϕ̃, imposing smoothnes along the direction of lag. Short-term
dependence could be another form of parsimony for covariance models, and can be real-
ized by truncating the varying coefficient at certain time lag, which leads to a banded matrix
[11, 15].

The time lag or the sub-diagonal direction of T plays a prominent role in those parsi-
monious models for expressing the dependence structure. Rather than modelling the vary-
ing coefficient function ϕ̃ directly, we reparameterize it explicitly in terms of lag and its
orthogonal direction so that the fitted function can easily be used for suggesting parsimo-
nious or structured models for the covariance function. Specifically, we take stationarity as
a form of parsimony in covariance models, including those parameterizing the elements of
T as a function of the lag between observations [14, 17, 19, 22]. To facilitate such model
specification, we transform inputs from a pair of time points (t, s) for t > s to the lag,
l = t − s ∈ [0, 1], and additive direction, m = t+s

2 ∈ [0, 1], and model ϕ in terms of the
new arguments l and m:

ϕ (l,m) ≡ ϕ

(
t− s,

1

2
(s+ t)

)
= ϕ̃ (t, s) . (5)

In other words, the composition of ϕ and the coordinate transformation yields ϕ̃.
Model (4) corresponds to a stationary process when ϕ can be written as a function of lag

l only and the innovation variances are constant in time t. For simplicity in the covariance
model, we choose to regularize the autoregressive varying coefficient and the innovation
variance function so that heavy penalization to both ϕ and σ2 results in models which are
close to stationary covariance matrices. To estimate ϕ(l,m) and σ2(t), we employ the
smoothing spline framework [24].

In particular, we model ϕ in a structured function space that allows decomposition of
ϕ into functional components of lag l and additive direction m, and using the components,
we specify penalties that naturally yield the aforementioned models in the literature as
null models. For such a structural representation of ϕ, we adopt the smoothing spline
ANOVA models in [8] taken as a functional analogue of the classical analysis of variance
(ANOVA) model. They exhibit the same interpretability as their classical counterparts,
allowing multivariate functions to be decomposed into components similar in spirit to the
main effects and interaction terms associated with the ANOVA model. This property makes
them especially useful for verifying or eliciting parametric models [16].

3.1 Two-Way Functional ANOVA Models

To model the varying coefficient function ϕ on [0, 1]2 using the smoothing spline ANOVA
model framework, we first consider a univariate function space for lag l and additive di-
rection m separately and take their tensor product. For example, the second-order Sobolev
space W2[0, 1] = {f : [0, 1] → R |f, f ′ absolutely continuous,

∫
(f ′′(x))2dx < ∞}

can be taken as a model space for smooth univariate functions. When the curvature of
f , J(f) =

∫ 1
0 (f

′′(x))2dx is used as a roughness penalty functional for estimation of an
unknown function from the space with data, the solution to the penalized least squares
problem is known as a cubic smoothing spline. The function space H := W2[0, 1] can be
equipped with inner product such that H as a Hilbert space is a direct sum of two orthogo-
nal subspaces H0 and H1, the null space H0 consists of constant or linear functions taken
as null models, and the penalty functional J(f) corresponds to the squared norm of the pro-
jection of f onto H1 denoted by ∥P1f∥2. Further, with an appropriate averaging operator
(e.g. A(f) =

∫ 1
0 f(x)dx) and a basis k1(·) for linear functions in H0 satisfying A(k1) = 0
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(e.g. k1(x) = x − 1/2), the null space H0 can be decomposed as a direct sum of {1} and
{k1(·)}. Thus, H = {1} ⊕ {k1(·)} ⊕ H1 and each function f(x) in H admits a unique
representation of c0 + c1k1(x) + f1(x) with c0, c1 ∈ R and f1 ∈ H1. The functional de-
composition is akin to the one-way ANOVA model. In the representation, c1k1(x)+ f1(x)
is treated as a functional main effect of x, and c1k1(x) and f1(x) are called parametric and
nonparametric main effects, respectively.

Taking two structured function spaces for l and m, H[l] = {1} ⊕ {k1(l)} ⊕ H[l]
1 and

H[m] = {1} ⊕ {k1(m)} ⊕ H[m]
1 as building blocks, we can define the tensor product

space H[l] ⊗ H[m] and use it as a model space for bivariate ϕ. Analogous to the two-
way ANOVA model, the subspaces of H[l] ⊗ H[m] define a unique decomposition of ϕ
into the overall mean, main effects of l and m, and interaction of l and m: ϕ(l,m) =
µ+ ϕ1(l) + ϕ2(m) + ϕ12(l,m).

In addition, we can specify the null space as the subspace with desired simple models
(e.g. low-order polynomials of lag only), and use the functional norm associated with each
subspace to define a general “roughness” penalty functional J(ϕ) for bivariate smoothing,
which results in two-way smoothing spline ANOVA models. This penalized function esti-
mation framework is very flexible in the choice of a null space H0 and a penalty functional
J(ϕ), allowing the user to adapt these choices to the context of data analysis and modeling.

Mathematically, smoothing spline ANOVA models are rooted in the theory of repro-
ducing kernel Hilbert spaces [2, 24, 3]. Reproducing kernels are essential to the charac-
terization of function spaces, their subspaces, and related geometric notion of norms and
projections. For clear exposition of the model fitting procedure, we first review some basic
properties of reproducing kernel Hilbert spaces.

3.2 Reproducing Kernel Hilbert Spaces

A Hilbert space H of functions on a set X with inner product ⟨·, ·⟩H is defined as a complete
inner product linear space. For each x ∈ X , let [x] map f ∈ H to f (x) ∈ R, which is
known as the evaluation functional at x. A Hilbert space is called a reproducing kernel
Hilbert space if the evaluation functional [x] f = f (x) is continuous in H for all x ∈ X .
The Reisz Representation Theorem gives that there exists Kx ∈ H, the representer of the
evaluation functional [x] (·), such that ⟨Kx, f⟩H = f (x) for all f ∈ H. See Theorem 2.2
in [8].

The symmetric, bivariate function K (x1, x2) = Kx1 (x2) = ⟨Kx1 ,Kx2⟩H is called
the reproducing kernel (RK) of H. The RK satisfies that for every x ∈ X and f ∈ H,
K (x, ·) ∈ H, and f (x) = ⟨f,K (x, ·)⟩H. The second property is called the reproducing
property of K. Every reproducing kernel uniquely determines the RKHS, and in turn, every
RKHS has a unique reproducing kernel. See Theorem 2.3 in [8]. The representer of any
bounded linear functional can be obtained from the reproducing kernel K. Further, if a
reproducing kernel Hilbert space H is a direct sum of two orthogonal subspaces H0 and
H1 with RKs K0 and K1, that is, H = H0 ⊕ H1, then the reproducing kernel for H is
K(x1, x2) = K0(x1, x2) +K1(x1, x2). See [2] for other RKHS properties.

3.3 Estimation of the Generalized Varying Coefficient Function via Bivariate Smooth-
ing

For estimation of ϕ with data, we transform the observed time points to lags and addi-
tive directions. Given subject i and j > k, define vijk =

(
tij − tik,

1
2 (tij + tik)

)
=

(lijk,mijk) ∈ V = [0, 1]2 as the tuple corresponding to the transformed pair of jth and kth
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observation times on the ith subject. Let V =
∪
i,j,k

{vijk} ≡
{
v1, . . . ,v|V |

}
denote the set

of unique within-subject pairs of observation times when pooled across N subjects.
We let the auto-regressive coefficient function ϕ belong to a reproducing kernel Hilbert

space H with reproducing kernel K, which is structured as a tensor sum of the null space
H0 and penalized space H1 with reproducing kernels K0 and K1, respectively. Let the
penalty functional J (ϕ) measuring the complexity of ϕ, be ∥P1ϕ∥2, the squared norm of
the projection of ϕ onto the subspace H1.

For example, consider H = H[l] ⊗ H[m], where H[l] = W2[0, 1] = H[l]
0 ⊕ H[l]

1 with
H[l]

0 = {1} ⊕ {k1(l)} and H[m] = W2[0, 1] = H[m]
0 ⊕ H[m]

1 with H[m]
0 = {1}. This

choice results in the null space H0 comprised of linear functions of lag only and amounts
to penalizing the main effect of m, ϕ2(m), and interaction of l and m, ϕ12(l,m), altogether
in addition to the curvature of the main effect of l. It has the effect of pulling estimated
ϕ towards smooth functions of lag only treated as one form of parsimony in covariance
modeling.

Under model (4), the negative log likelihood satisfies

−2ℓ
(
ϕ̃, σ2|Y1, . . . , YN

)
=

N∑
i=1

pi∑
j=1

log σ2(tij) +
1

σ2(tij)

(
y(tij)−

∑
k<j

ϕ̃(tij , tik)y(tik)

)2


(6)
up to an additive constant.

Fixing the innovation variances σ2
ij = σ2 (tij), we take the estimator of ϕ to be the

minimizer of the penalized negative log likelihood:

− 2ℓ
(
ϕ|Y1, . . . , YN , σ2

)
+ λJ (ϕ) =

N∑
i=1

pi∑
j=2

1

σ2
ij

y(tij)−
∑
k<j

ϕ (vijk) y(tik)

2

+ λJ (ϕ) ,

(7)

where λ > 0 is a smoothing parameter, and denote it by ϕλ. The smoothing parameter λ
controls the tradeoff between the goodness of fit measure ℓ and the penalty ∥P1ϕ∥2.

The following theorem establishes the form of the minimizer of the penalized negative
log likelihood (7) and that the solution belongs to a finite-dimensional subspace despite the
minimization being carried out over an infinite-dimensional space.

Theorem 1. Let {ν1, . . . , νN0} span H0 = {ϕ ∈ H : J (ϕ) = 0}, the null space of J (ϕ) =
||P1ϕ||2. Then the minimizer ϕλ of (7) is of the form

ϕλ (v) =

N0∑
i=1

diνi (v) +

|V |∑
j=1

cjK1 (vj ,v) , (8)

where K1 (vj ,v) denotes the reproducing kernel for H1 evaluated at vj , the jth element
of V , viewed as a function of v, di ∈ R, and cj ∈ R.

This result is an example of the well-known representer theorem that holds for minimizers
of regularized empirical risk functionals in a RKHS, and obtained by the standard argu-
ment with reproducing kernel properties. The proof is left to the Appendix. Using the
representation of the minimizer, we discuss how to determine the coefficients di and cj
with data.
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3.3.1 Model Fitting

Let Y =
(
Y (−1)

1
′
, Y (−1)

2
′
, . . . , Y (−1)

N

′
)′

denote the vector of length nY =
∑

i pi −N , con-

structed by stacking the N observed response vectors, less their first element: Y (−1)

i =
(y(ti2), . . . , y(ti,pi))

′. Define Xi to be the (pi − 1)× |V | matrix containing the covariates
for subject i necessary for regressing each measurement y(ti2), . . . , y(ti,pi) on its prede-
cessors as in Model (4), and let X =

[
X ′

1 X ′
2 . . . X ′

N

]′. Define KV to be the |V |×|V |
matrix with (i, j) entry given by K1 (vi,vj), and let B denote the |V | × N0 matrix with
(i, j) element equal to νj (vi).

Assuming that σ2
ij are given for now, let D denote the nY × nY diagonal matrix of

innovation variances σ2
ij , and let Ỹ = D−1/2Y , B̃ = D−1/2XB, and K̃V = D−1/2XKV .

Using the representation of ϕλ in (8), and defining coefficient vectors c = (c1, · · · , c|V |)
′

and d = (d1, · · · , cN0)
′, the penalized negative log likelihood in (7) is given by

−2ℓ
(
c, d|Ỹ , B̃, K̃V

)
+ λJ (ϕ) =

[
Ỹ − B̃d− K̃V c

]′[
Ỹ − B̃d− K̃V c

]
+ λc′KV c. (9)

For fixed smoothing parameter, setting partial derivatives with respect to d and c equal to
zero, the solution ϕλ is obtained by finding c and d which satisfy:[

B̃′B̃ B̃′K̃V

K̃ ′
V
B̃ K̃ ′

V
K̃V + λKV

] [
d
c

]
=

[
B̃′Ỹ

K̃ ′
V
Ỹ

]
. (10)

When K̃V is full column rank, the solution can be obtained through the Cholesky decom-
position of the symmetric matrix on the left side of the equality in (10). Writing[

B̃′B̃ B̃′K̃V

K̃ ′
V
B̃ K̃ ′

V
K̃V + λKV

]
= CC ′,

the solution is given by
[
d̂′ ĉ′

]′
= C−1(C ′)−1

[
B̃ K̃V

]′
Ỹ . Singularity of K̃V demands

special computational consideration to solve (10). For detailed examination, we refer the
reader to [9].

The appropriate choice of smoothing parameter λ is crucial for effectively recovering
the true ϕ. In practice, a number of data-driven methods are available for model selection
such as the Akaike or Bayesian information criterion [6] or cross validation-based proce-
dures [24, 9] including the leave-one-subject-out cross validation (losoCV) criterion for
repeated measures data [28].

4. Estimation of the Innovation Variance Function via Smoothing Splines for
Exponential Families

Given an estimate of ϕ, we can estimate the innovation variance function σ2(t), using the
corresponding innovation errors as the new data residuals as the working innovation errors.
If the true innovations ϵ(tij) were given, then the joint likelihood in (6) would reduce to

−2ℓ
(
σ2|Y1, . . . , YN , ϕ

)
=

N∑
i=1

pi∑
j=1

(
log σ2(tij) +

ϵ2(tij)

σ2(tij)

)
(11)

for estimation of σ2(t). The fact that ϵ2(tij) is a scaled chi-square random variable and the
form of the likelihood above motivate a variance model for σ2(t) with the ϵ2(tij) serving as
the response using Gamma distributions. When a Gamma distribution with shape parameter
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α and scale parameter β is reparametrized with mean parameter µ = αβ in place of β, a
negative log likelihood of µ based on a single observation z from the distribution is shown

to be proportional to α

(
logµ+

z

µ

)
with 1/α treated as a fixed dispersion parameter.

Recognizing the connection between the Gamma likelihood and (11), we cast estimation
of the innovation variance function in a generalized linear model framework with Gamma
errors and fixed shape parameter. Further, to remove the constraint that µ > 0, we transform
µ to η = log µ and reparametrize the Gamma likelihood as α [η + z exp(−η)].

Defining η(t) = log σ2(t) and assuming a smooth log innovation variance function,
we use the smoothing spline method for regression relating squared innovations, ϵ2(tij),
as Gamma responses to time points tij . Generalized smoothing spline models that relate
the canonical parameter of an exponential family to a set of covariates have been studied
extensively. See [25], [26], and [8].

As with the estimation of the functional varying coefficient, estimation is carried out by
minimizing the penalized negative log likelihood with the working innovation errors. Given
ϕ∗, an estimate of ϕ, define the working innovation errors, ϵ̂(tij) = y(tij)−

∑
k<j

ϕ∗ (vijk) y(tik),

and the corresponding squared innovations, zij ≡ z(tij) = ϵ̂2(tij). Let Zi = (z(ti1), . . . , z(ti,pi))
′

denote the vector of squared innovations for the ith observed trajectory. With Z1, . . . , ZN ,
the negative log likelihood of η(t) becomes

−2ℓ (η|Z1, . . . , ZN ) =

N∑
i=1

pi∑
j=1

(
η(tij) + zije

−η(tij)
)
. (12)

Similar to the estimation of ϕ, we consider a function space H for η(t) on [0, 1] with an
orthogonal decomposition of H0 ⊕ H1 and define a roughness penalty J(η) that can be
written as the squared norm of the projection of η to H1. For instance, take H = W2[0, 1]
with J(η) =

∫ 1
0 (η

′(t))2dt which corresponds to H0 = {1}. Combining the likelihood with
the penalty, we define our estimator of η(t) to be the minimizer of the penalized negative
log likelihood:

−2ℓ (η|Z1, . . . , ZN ) + λJ (η) =

N∑
i=1

pi∑
j=1

(
η(tij) + zije

−η(tij)
)
+ λJ (η) . (13)

The first term in (13) serves as a measure of the goodness of fit of η to the data, and
only depends on η through the evaluation of η at observed time points. Thus, the argument
justifying the form of the minimizer in (8) applies to η. Let Tobs =

∪
i,j {tij} denote

the unique values of the observations times pooled across subjects. The minimizer of the
penalized likelihood (13) has the form

ηλ (t) =

N0∑
i=1

diνi (t) +

|Tobs|∑
j=1

cjK1 (tj , t) , (14)

where {νi} form a basis for the null space H0 and K1 (tj , t) is the reproducing kernel for
H1 evalutated at tj , the jth element of Tobs, viewed as a function of t.

To jointly estimate the autoregressive coefficient function and the innovation variance
function, we adopt an iterative approach in the spirit of [11], [10], and [20]. A procedure
for minimizing

−2ℓ (ϕ, η|Y1, . . . , YN ) + λϕJϕ (ϕ) + ληJη (η)
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starts with initializing η(tij) = 0 or σ2
ij = exp(η(tij)) = 1 for i = 1, . . . , N , j = 1, . . . , pi.

For fixed η, we find ϕ∗ minimizing the penalized negative log likelihood

−2ℓ (ϕ|Y1, . . . , YN , η) + λϕJϕ (ϕ) .

Given ϕ∗, we update our estimate of η by taking η∗ that minimizes the penalized negative
log likelihood with the working squared residuals

−2ℓ (η|Z1, . . . , ZN , ϕ∗) + ληJη (η) .

This process of iteratively updating ϕ∗ and η∗ is repeated until convergence.

5. Simulation Studies

In this section we compare our bivariate spline estimator to other methods of covariance es-
timation through simulation studies with generative models. Our primary comparisons are
that with the polynomial estimator for ϕ and σ2 proposed by [17]. Their approach, which
is also based on the Cholesky decomposition, permits unbalanced data without requiring
missing data imputation. However, the polynomial estimator assumes that ϕ̃(t, s) can be
parameterized as a (univariate) polynomial in l = t − s only. Thus, discrepancies in the
performance of the estimators may be indicative of situations in which our parameterization
(5) is advantageous. We also consider the performance of the oracle estimator under each
of the generating models, the sample covariance matrix and two of its regularized variants:
the tapered sample covariance matrix [5] and the soft thresholding estimator [23], neither
of which rely on a natural ordering among the variables.

We consider the following five covariance structures for the data generating distribu-
tion. The covariance functions as two-dimensional surfaces corresponding to each generat-
ing model are shown left to right in Figure 1. The first row displays the surface coinciding
with the appropriate discrete covariance matrix on a 10× 10 grid, and the second row dis-
plays the surfaces of the corresponding Cholesky factors (the lower triangle of −T ). The
precise model definitions are in Table 1. When Σ is not directly specified in the table, the
covariance matrices in Figure 1 are obtained by either evaluating the covariance function
σ(t, s) at 10 equally spaced points, {t1, · · · , t10}, from [0, 1] or numerically constructing
Σ = T−1DT ′−1 after forming T and D from the specified ϕ̃(t, s) and σ2(t).
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Figure 1: Heatmaps of the true covariance matrices corresponding to Model I - Model
V and ϕ defining the corresponding Cholesky factor T . The smallest elements of each
matrix correspond to dark green pixels; the light pink (white) pixels correspond to the
large (largest) elements of the matrix.

Model Σ or σ(t, s) ϕ̃(t, s) for t > s σ2(t)

I: Independence I 0 1
II: Linear Coefficient * t− 0.5 0.12

III: Banded Linear *
{

t− 0.5 if t− s ≤ 0.5
0 if t− s > 0.5

0.12

IV: Rational Quadratic
(
1 + (t−s)2

2k2

)−1

* *
with k = 0.6

V: Compound Symmetry (1− ρ) I + ρJ ϕ̃(tj , tk) =
ρ

1+(j−2)ρ
σ2(tj) = 1− (j−1)ρ2

1+(j−2)ρ

with ρ = 0.7 for j > k

Table 1: Covariance models for data generation. The true covariance function σ(t, s),
varying coefficient function ϕ̃(t, s), and innovation variance function σ2(t) are defined with
the domain T = [0, 1]. The asterisks indicate that the entries are determined numerically
when discretized.

Under each of the five covariance models, we generate data from a mean zero p-variate
Normal distribution with covariance matrix Σ = T−1DT ′−1 and construct an estimate of Σ
for each combination of p = 10, 20, 30 and sample size N = 50, 100. Since construction
of the sample covariance matrix S and regularized variants Sω (tapered) and Sλ (soft-
thresholded) requires an equal number of observations on each subject taken at a common
set of observation times, simulations were conducted using complete data, with observation
times t = 1, . . . , p mapped to the unit interval. The smoothing spline estimator Σ̂SS was
constructed by using a tensor product cubic smoothing spline for ϕ and univariate cubic
smoothing spline for σ2 (t).

[19] parsimoniously models the generalized autoregressive coefficients and the inno-
vation variances as low-order polynomials in l and t respectively. [17] extend their work,
proposing an estimator Σ̂poly which allows for subject-specific observation times. They
model ϕijk = z′ijkγ and log σ2

ij = h′ijξ, where the elements of zijk and hijk contain poly-
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nomials bases of order q and d evaluated at lijk and tij , respectively. The regression param-
eters γ and ξ are estimated via maximum likelihood, and the optimal pair of polynomial
orders (q, d) is selected using Bayesian criterion information (BIC).

To assess performance of an estimator Σ̂, we consider the entropy loss

∆
(
Σ, Σ̂

)
= tr

(
Σ−1Σ̂

)
− log |Σ−1Σ̂| − p,

which can be derived from the Wishart likelihood [1]. Given Σ, we prefer the estimator
with the smallest risk, R

(
Σ, Σ̂

)
= EΣ

[
∆

(
Σ, Σ̂

)]
. To evaluate the risk via Monte Carlo

approximation, we generate 100 replicates of Σ̂ and calculate the corresponding average
loss.

Figure 2 provides a visual summary of the qualitative differences between the estimates
resulting from each of the six methods of estimation for the five covariance structures used
for simulation. The first row in the grid shows the surface plot of each of the true covariance
structures, and each row thereafter corresponds to the five covariance estimates for the
given estimation method; oracle estimators for each covariance model were constructed
assuming that the structure of the underlying generating model is known. For example,
the oracle estimator of the covariance matrix corresponding to mutual independence with
constant variance is a diagonal matrix with the diagonal elements given by σ̂2, which is an
estimate of the variance based on all of the data, {yij}. For each simulation setting, the
risk of the oracle estimator serves as a lower bound on the risk for the given covariance
structure.

 
2131



Figure 2: Covariance Model I - Model V used for simulation and corresponding estimates
with various methods. True covariance structures are shown in the first row followed by
their estimates from the oracle estimator, smoothing spline ANOVA estimator, parametric
polynomial estimator, the sample covariance matrix, the tapered sample covariance matrix,
and the soft thresholding estimator.

A summary of the estimated entropy risk for the covariance estimators is presented in
Table 2. Smoothing parameters for Σ̂SS were chosen using the unbiased risk estimate [8,
Chapter 3.22] and leave-one-subject-out cross validation. Performance is similar under
both criteria; for brevity, results under losoCV are omitted. Tuning parameter selection
for the regularized versions of the sample covariance matrix was performed using cross
validation; for detailed discussion, see [7].

In general, our estimator outperforms the alternative estimators, particularly when the
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underlying true covariance matrix does not satisfy the implicit structural assumptions mo-
tivating their construction. While the sample covariance matrix is an unbiased estimator of
the unstructured covariance matrix, the smoothing spline estimator is better for every sim-
ulation model, and the difference is larger as p increases. The smoothing spline estimator
performs most poorly on Model III, where ϕ does not belong to the tensor product smooth-
ing spline model space due to its discontinuous first derivative. Overall, the results indicate
that the smoothing spline estimator achieves what it was designed to do; it provides a more
stable estimate than the sample covariance matrix, but is guaranteed to be positive-definite
unlike the soft thresholding estimator and the tapering estimator. It achieves this stability
with added flexibility over the polynomial estimator.

p Σ̂oracle Σ̂SS Σ̂poly S Sω Sλ

Model I

N = 50 10 0.0135 0.0685 0.1102 1.2047 0.5369 1.1742
20 0.0229 0.0834 0.1096 4.9850 1.3957 4.7796
30 0.0196 0.1102 0.1127 12.5517 2.8019 11.3175

N = 100 10 0.0105 0.0451 0.0531 0.5685 0.2045 0.5236
20 0.0105 0.0425 0.0512 2.2831 0.5724 2.1358
30 0.0139 0.0431 0.0472 5.2770 1.2430 4.9126

Model II

N = 50 10 0.0581 0.0689 4.7673 1.2832 1.4644 1.1770
20 0.0439 0.0581 97.2334 5.1665 21.6407 39.3522
30 0.0627 0.0811 153.9665 12.3582 55.3674 133.9980

N = 100 10 0.0386 0.0457 4.7911 0.5812 0.8335 0.5628
20 0.0269 0.0416 98.1989 2.3364 10.1841 10.0864
30 0.0288 0.0367 158.2480 5.2389 33.5207 62.5030

Model III

N = 50 10 0.0619 0.3296 3.0108 1.2030 1.1460 1.1467
20 0.0695 1.1100 62.7522 4.9824 17.2244 14.9189
30 0.0576 2.3215 1091.1933 12.4792 49.9135 121.7795

N = 100 10 0.0268 0.2904 3.0383 0.5699 0.5545 0.5371
20 0.0275 1.1963 62.8960 2.2700 11.8274 9.5217
30 0.0221 2.2811 1105.0449 5.2234 29.1693 60.3529

Model IV

N = 50 10 0.0217 0.3348 0.7144 1.2218 0.7397 1.1921
20 0.0286 0.9177 1.4588 4.9091 1.9786 4.9206
30 0.0283 1.5992 2.2173 12.6114 3.7440 12.1489

N = 100 10 0.0125 0.3047 0.6958 0.5570 0.3168 0.5515
20 0.0105 0.8911 1.4813 2.2659 0.9365 2.2474
30 0.0134 1.5213 2.2228 5.2106 1.9312 5.2111

Model V

N = 50 10 0.0986 0.2769 1.2420 1.2023 18.5222 2.9824
20 0.2512 0.7514 2.8557 5.0195 34.6618 13.8690
30 0.2641 1.1776 4.5791 12.3460 46.5437 26.1364

N = 100 10 0.0520 0.2416 1.1491 0.5821 16.4081 1.7397
20 0.0827 0.7286 2.9080 2.2918 32.5295 5.4649
30 0.1799 1.1813 4.4402 5.2197 39.2914 15.4295

Table 2: Multivariate normal simulations for Model I - Model V. Estimated entropy risk is
reported for the oracle estimator, our smoothing spline ANOVA estimator, the parametric
polynomial estimator of Pan and MacKenzie (2003), the sample covariance matrix, the
tapered sample covariance matrix, and the soft thresholding estimator.

6. Data Analysis

[13] reported an experiment designed to investigate the impact of the control of intestinal
parasites in cattle. To compare two methods for controlling the disease, say treatment A
and treatment B, each of 60 cattle was assigned randomly to two groups, each of size 30.
Animal subjects were put out to pasture at the start of grazing season, with each mem-
ber of the groups receiving one of the two treatments. Animals were weighed 11 times
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(p = 11) over a 133-day period; the first 10 measurements on each animal were made at
two-week intervals and the final measurement was made one week later. The longitudinal
dataset is balanced, as there were no missing observations for any of the experimental units.
Observed weights are shown in Figure 3.

Figure 3: Subject-specific weight curves over time for treatment groups A and B.

The analysis of the same dataset provided by [32] rejected equality of the two covariance
matrices corresponding to treatment group using the classical likelihood ratio test, making
it reasonable to study each treatment group’s covariance matrix separately. Following [18],
[30], and [19], we analyze the data from the cattle assigned to treatment group A (N = 30).
Given that the animals belong to the same treatment group and share a common set of
observation times, we posit common covariance matrix Σ for each subject.

The left profile plot in Figure 3 of the weights for units in treatment group A shows a
clear upward trend in weights. Variances appear to increase over time, suggesting that the
covariance structure is nonstationary.

The nonstationarity suggested in Figure 3 is also supported by the sample correlations
given in Table 3; correlations within the subdiagonals are not constant and increase over
time, a secondary indication that a stationary covariance is not appropriate for the data.
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Day
0 14 28 42 56 70 84 98 112 126 133

0 1.00
14 0.82 1.00
28 0.76 0.91 1.00
42 0.65 0.86 0.93 1.00
56 0.63 0.83 0.89 0.93 1.00
70 0.58 0.75 0.85 0.90 0.94 1.00
84 0.51 0.64 0.75 0.80 0.85 0.92 1.00
98 0.52 0.68 0.77 0.82 0.88 0.93 0.92 1.00

112 0.51 0.61 0.71 0.74 0.81 0.89 0.92 0.96 1.00
120 0.46 0.59 0.69 0.70 0.77 0.85 0.86 0.94 0.96 1.00
133 0.46 0.56 0.67 0.67 0.74 0.81 0.84 0.91 0.95 0.98 1.00

Table 3: Cattle data: treatment group A sample correlations.

As evident in Figure 3 with a trend in the observed weight trajectories, covariance
estimation generally involves simultaneous modeling of mean trajectories. We adopt an
approach akin to the dynamical conditionally linear mixed model presented in [22] and
model the observed trajectory for the ith subject, Yi, as

Yi = f (Ti) + αi1pi + ϵ∗i , i = 1, . . . , N, (15)

where f (Ti) = (f(ti1), · · · , f(ti,pi))′ is a vector of evaluation of a smooth function f(t)
that is common across the subjects at observed time points, and αi is a random intercept cor-
responding to a subject-specific shift. For the cattle data, Ti = {t1 = 0, t2 = 14, · · · , t11 =
133} same across the subjects. We assume that the random intercepts are independent and
identically distributed with N

(
0, σ2

α

)
and mutually independent of the measurement er-

rors, ϵ∗i that follow N (0,Σ). These modeling assumptions allow us to estimate f with
smoothing methods and the random intercepts based on the joint likelihood of f and αi.

Analyzing the sample regressogram and sample innovation variogram, [19] suggested
that both sample generalized autoregressive parameters and the logarithms of the innova-
tion variances can be characterized in terms of cubic functions of the lag only and time,
respectively. Figure 4 shows the estimated cubic polynomials according to the suggested
model using the detrended trajectories with estimated means.

(a) Sample generalized autoregressive parameters
ϕ̂t,s.

(b) Sample log innovation variances.

Figure 4: Cubic polynomomials fitted to the sample regressogram and log innovation vari-
ances for the cattle data from treatment group A.

 
2135



To model the mean weight trajectories, we adopt an approach akin to the dynamical
conditionally linear mixed model presented in [22]:

Yi = f (ti) + Zibi + ϵ∗i , i = 1, . . . , N, (16)

where Yi is the measurement corresponding to response vector for the ith subject, bi is a
q×1 vector of unknown random effects parameters, and Zi is a known pi×q design matrix.
f is the smooth function of t, and ti = (ti1, . . . , ti,pi)

′ is the pi × 1 vector of measurement
times for subject i. We take Zi = (1, . . . , 1)′ so that the random effects αi correspond
to subject-specific shifts. We assume to that the random intercepts are independent and
identically distributed N

(
0, σ2

α

)
. We assume that the pi × 1 vector of residuals ϵ∗i ∼

N (0,Σi) are mutually independent of the random intercepts αi. Given that the animals
belong to the same treatment group and share a common set of observation times, we
assume each subject shares common covariance matrix Σi = Σ.

Using cubic smoothing splines and the curvature penalty, we take the estimators of f ,
α = (α1, . . . , αN )′ to minimize the penalized joint log likelihood

N∑
i=1

pi∑
i=1

(yij − f (tij)− αi)
2 + α′Σ−1

α α+ λJ (f) , (17)

[18] had the same observation that the regressogram of empirical estimates of ϕ̃t,s show
consistent behaviour over l = t − s for each value of t, indicating a lack of a strong func-
tional component of m. This is consistent Pourahmadi’s choice [?]see¿wu2003nonparametric
in the specification of model the generalized autoregressive coefficients ϕtj in terms of lag
only.

To balance the consideration of previous analyses with the interest of entirely data-
driven model specification, we take our approach to estimation of the autoregressive coeffi-
cient function ϕ using a two-way ANOVA model in a tensor product space H = H[l]⊗H[m],
where penalties for H[l] and H[m] are specified to induce cubic splines and linear splines,
respectively. Figure 5 shows the estimated covariance matrix, Cholesky surface and innova-
tion variance function evaluated at pairs of observation times. The ANOVA decomposition
of ϕ̂ into the functional components is shown in Figure 6.

(a) Σ̂ = T̂−1D̂T̂ ′−1 (b) ϕ̂ (t, s) (c) log σ̂2 (t)

Figure 5: The estimated covariance matrix for the cattle weight data from treatment group A in
panel (a) and the corresponding estimated components of the Cholesky decomposition in (b) and
(c). The generalized autoregressive coefficient function ϕ (t, s) and the log innovation variances
log σ2 (t) were estimated using a tensor product cubic spline and cubic spline, respectively.
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Figure 6: Components of the two-way ANOVA decomposition of the estimated generalized autore-
gressive coefficient function ϕ evaluated on the grid defined by the observed time points. Displayed
from left to right are the estimated overall mean (µ̂), main effect of lag (ϕ̂1) and main effect of
additive direction (ϕ̂2) and their interaction (ϕ̂12).

The size of the functional components (in terms of the squared functional norm) in-
dicates a certain degree of concordance with the models proposed by [19]. The squared
norm of the main effect of lag (1.914) is over twice that of the main effect of additive di-
rection (0.790). The squared norm of the interaction term, as clearly indicated by Figure 6,
is negligible in comparison to the main effects, which suggests that parameterizing ϕ as a
univariate function of lag only is a reasonable modeling choice.

7. Conclusions

We have proposed a general nonparametric framework for longitudinal data covariance
estimation. The Cholesky decomposition supplies a reparameterization of the covariance
matrix allowing for unconstrained estimation. The elements of the reparameterization can
be interpreted as parameters for an autoregressive model. We allow for irregular, subject-
specific time points by extending this regression model to a functional varying coefficient
model. By reframing covariance estimation as the estimation of the functional varying
coefficient function and the error variance function, our approach leverages regularization
techniques that are typically reserved for function estimation. A functional ANOVA model
leads to an interpretable decomposition of the varying coefficient into its stationary and
non-stationary functional components. This parameterization naturally allows for shrink-
age of estimated covariances toward those corresponding to stationary models.

In the standard function estimation setting, penalized likelihood estimation in a repro-
ducing kernel Hilbert space with square semi norm defined by a penalty functional J is
equivalent to specifying a certain empirical Bayes model with Gaussian prior with param-
eters corresponding to the smoothing parameters associated with the penalty term. See [8,
Chapter 3.3]. A good choice of penalty functional is of key importance in penalized regres-
sion; however, in practice, penalty specification is often based on expert knowledge about
the underlying generating mechanism of the data. In the context of smoothing spline mod-
els for covariance estimation, there may be more than one sensible choice for the penalties
on ϕ and log σ2, and the optimal choice may not be obvious. In an unpublished manuscript,
[31] propose adopting a Bayesian perspective which takes all candidate penalties into con-
sideration. They propose a mixture distribution as a prior for the smoothing parameters to
model uncertainty in the choice of penalty. Their perspective presents a potential way of
choosing the appropriate class of null models for the varying coefficient function defining
the Cholesky factor in a data-driven manner.

 
2137



8. Acknowledgements

This research was supported in part by the National Science Foundation under grant DMS-
15-13566.

9. Appendix

Theorem 1. The function space H is decomposed into H0 and H1. H1 can be further
decomposed into the finite dimensional subspace spanned by {K1 (vj ,v)}, j = 1, . . . , |V |
and its orthogonal complement in H1. Considering the three subspaces, any ϕ ∈ H can be
written as

ϕ (v) =

N0∑
i=1

diνi (v) +
∑
vj∈V

cjK1 (vj ,v) + ρ (v) , (18)

where ρ ∈ H1 is perpendicular to ν1, . . . , νN0 and K1 (vj ,v) for vj ∈ V .

Using the properties of the reproducing kernel K = K0 + K1, we can show that
evaluation of any ϕ ∈ H at vℓ ∈ V does not depend on ρ:

ϕ (vℓ) = ⟨ϕ (·) ,K (vℓ, ·)⟩H

= ⟨
N0∑
i=1

diνi (·) +
∑
vj∈V

cjK1 (vj , ·) + ρ (·) ,K (vℓ, ·)⟩H

= ⟨
N0∑
i=1

diνi (·) +
∑
vj∈V

cjK1 (vj , ·) + ρ (·) ,K0 (vℓ, ·)⟩H

+ ⟨
N0∑
i=1

diνi (·) +
∑
vj∈V

cjK1 (vj , ·) + ρ (·) ,K1 (vℓ, ·)⟩H

= ⟨
N0∑
i=1

diνi (·) ,K0 (vℓ, ·)⟩H + ⟨
∑
vj∈V

cjK1 (vj , ·) ,K0 (vℓ, ·)⟩H + ⟨ρ (·) ,K0 (vℓ, ·)⟩H

+ ⟨
N0∑
i=1

diνi (·) ,K1 (vℓ, ·)⟩H + ⟨
∑
vj∈V

cjK1 (vj , ·) ,K1 (vℓ, ·)⟩H + ⟨ρ (·) ,K1 (vℓ, ·)⟩H

= ⟨
N0∑
i=1

diνi (·) ,K0 (vℓ, ·)⟩H + ⟨
∑
vj∈V

cjK1 (vj , ·) ,K1 (vℓ, ·)⟩H

=

N0∑
i=1

diνi (vℓ) +
∑
vj∈V

cjK1 (vj ,vℓ) .

The last two equalities result from the orthogonality of H0, {K1 (vj ,v)}, and ρ, and the
reproducing property of K. Thus, the negative log likelihood in (7) depends only on∑N0

i=1 diνi (v) +
∑

vj∈V cjK1 (vj ,v). On the other hand, the penalty is given by

||P1ϕ||2 = ||
∑
vj∈V

cjK1 (vj , ·) + ρ (·)||2H,

= ||
∑
vj∈V

cjK1 (vj , ·)||2H + ||ρ (·) ||2H.
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The penalized negative log likelihood is obviously minimized when ||ρ||2 = 0, or ρ (·) = 0.
This leads to the form of the minimizer for ϕλ as stated in Theorem 1.
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