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Abstract 

Large sample properties such as law of large number, central limit theorem, asymptotic 
probability distribution, etc. play a significant role in statistical education. Given students’ 
background and mathematical skills, these properties are often very difficult to 
communicate with students theoretically at lower level statistics classes. This article 
addresses communicating these properties by simulation approaches, which enhance 
student’s understanding and learning without any ambiguity and misconceptions.  
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  1. Introduction 

Many statistical procedures are stated as large sample properties. For examples, the law of 
large number, central limit theorem, the asymptotic sampling distribution of estimators 
(e.g., sampling distribution of mean and proportion), etc. [3-4] are widely used in statistical 
education. These properties are parts of many statistical inference procedures. While their 
mathematical proofs are very difficult or beyond the scope of the classes, some empirical 
evidences should be provided to students to better understand these concepts.  

This article has been intended to communicate the large sample properties empirically via 
simulations by adapting an open source statistical software R [1-2].  Where appropriate, 
we provide sample code that are being used in teaching simulation approach using R. 

2. Methodology 

The following large sample concepts are of great use in introductory statistics classes. 

– Law of large number for proportion 
– Sampling distribution of proportion 
– Law of large number for mean 
– Sampling distribution of mean 

2.1 Law of large number for proportion 

The law of large numbers states that as the sample size gets larger and larger, an estimate 
of a population parameter gets closer and closer to the parameter. According to this law, 
the sample proportion gets closer to the population proportion as the sample size gets 
larger. The proof of this law is beyond the scope of elementary or introductory statistics 
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classes. The necessity is then to communicate this law empirically via simulation to provide 
some evidence supporting this property, which does not require any mathematical skills. 

Let us consider tossing of a coin a finite number of times, and estimate the proportion of 
successes 𝜋 by the sample proportion 𝑝. How do we provide evidence that as n gets larger 
and larger, 𝑝 gets closer and closer to 𝜋 as a consequence of the law of large number?  

In real-life, how feasible is it to repeat the tossing of a coin a large number of times? Say, 
for example, we wish to toss the coin 5,000 times. It is very inconvenient to do this and 
keep the records of outcomes favoring a success and compute the proportion of successes, 
thereby. However, with simulation, it is an easy task, particularly with the help of the 
software R. It is possible to generate the proportion of successes over a sequence of 
repetitions of the sample size 𝑛 and then to characterize associated properties. 

An R version [1-2] of the coin with two possible outcomes "H" and "T" may look like:   

coin=c("H","T") 

Suppose getting an "H", while tossing the coin, refers to a success. 

Drill Problems 

- Toss a coin 20 times and report the output. 

sample(coin,20, rep=T) 

- Toss a coin 20  times and count the number of successes. 

sum(sample(coin,20, rep=T)=="H") 

- Toss a coin 20 times and find the proportion of successes. 

sum(sample(coin,20, rep=T)=="H")/20 

- Execute the code for computing proportion of successes from 20 tosses 5 times 
and report the proportion of successes. 
 

sum(sample(coin,20, rep=T)=="H")/20 

[1] 0.25 

sum(sample(coin,20, rep=T)=="H")/20 

[1] 0.65 

sum(sample(coin,20, rep=T)=="H")/20 

[1] 0.45 

sum(sample(coin,20, rep=T)=="H")/20 

[1] 0.35 

sum(sample(coin,20, rep=T)=="H")/20 

[1] 0.50 

The first question that might be asked to students from here:  
What do you observe and learn throughout this process? 
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The answer to this question is invaluable—the outcome of the execution is a random 
variable.  
 

- Perform above execution using a loop: 

for (i in 1:5){ 

sum(sample(coin,20, rep=T)=="H")/20} 

An execution of the above code computes proportion of successes from 20 tosses 5 times, 
but it does not print or save the result of the execution. To print or save the result of above 
execution, we need to instruct results to be printed or stored: 

- Print results of execution of a loop: 
 

for (i in 1:5){ 

print(sum(sample(coin,20, rep=T)=="H")/20)} 

 
- Store 5 proportions from above execution of the loop: 

storage<-c() 

for (i in 1:5){ 

storage[i]=sum(sample(coin,20, rep=T)=="H")/20} 

 

By storing the results of an execution of the loop, one can re-use the result for graphing or 
other intended computations. Note that an empty storage is defined using the function c() 
for this purpose, which gets updated by including results of the execution throughout the 
process. 

Putting them all together, we can verify the law of large number for proportion via 
simulation and graphical representation by executing the following chunk of R codes: 

p=c(); 

n=seq(10,250,10); 

L=length(n); 

for (i in 1:L){p[i]=mean(sample(coin,n[i], rep=T)=="H")} 

plot(n,p, main="Proportions of successes out of trials \n 

in seq(10,250,10)") 

abline(h=0.5) 

 
Using above code, we estimate proportion of successes from a sequence of number of 
tosses between 10 and 250, with an increment of 10. The main objective is to note the 
behavior of proportions of successes as 𝑛 increases. To make the behavior of proportion of 
successes with the increase in sample size 𝑛 notable and visible, the proportions of 
successes so obtained are plotted against the number of tosses (i.e., the sample sizes 𝑛) in 
Figure 1. 
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Figure 1. Proportions of successes plotted against number of trials in varying sequence 

  

Above figures indicate that the estimates of the proportion stabilize around the true value 
of 𝜋 = 0.50 as 𝑛 gets larger and larger, which is the lesson of the law of the large number 
applied to the proportion of successes. 

2.2 Sampling distribution of proportion 

For a population with proportion 𝜋, the probability distribution of the sample proportions 
𝑝 over all possible samples of a given size 𝑛 is called the sampling distribution of 𝑝. The 
mean and standard deviation of the sampling distribution of 𝑝 over all possible samples of 
size 𝑛, denoted by 𝜇𝑝 and 𝜎𝑝, respectively, are given by   

𝜇𝑝 = 𝜋 

                                                                    𝜎𝑝 = √
𝜋×(1−𝜋)

𝑛
 

The standard deviation of the sampling distribution of a statistic is generally termed as the 
standard error (S.E.). Therefore, one can write 
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𝜎𝑝 = 𝑆. 𝐸. ( 𝑝) = √
𝜋 × (1 − 𝜋)

𝑛
 

The sampling distribution of 𝑝 is approximately normal with mean 𝜇𝑝 and standard 
deviation 𝜎𝑝 provided 𝑛𝜋 ≥ 10 and 𝑛(1 − 𝜋) ≥ 10, and the approximation gets better and 
better as 𝑛 gets larger and larger. This property is called the central limit theorem for 
proportion 𝑝.  
 
While the central limit theorem is of great use in statistical inference via confidence interval 
estimate and tests of hypotheses regarding proportions, the proof is beyond the scope of 
elementary or introductory statistics class. Therefore, an ideal approach could to make 
some effort to provide some evidence in the support of this statement via simulation and 
graphical representation.  
 
To make this effort realized, let us consider samples of sizes 𝑛=100, 200, 500, 1000 and 
investigate the sampling distribution of the proportion 𝑝 over 10,000 samples and explore 
how approximate the distribution is to the normal population with specified mean and 
standard error.  
 
Note that the true sampling distribution of 𝑝 for a sample of size 𝑛 will have mean and 
standard error as follows: 

𝜇𝑝 = 𝜋 = 0.50 and 𝜎𝑝 = √
𝜋×(1−𝜋)

𝑛
= √

0.5×0.5

𝑛
 

The table below summarizes true mean (𝜇𝑝) and standard error (𝜎𝑝) and their estimated 
values (𝜇̂𝑝 and 𝜎̂𝑝) from simulated sampling distribution of 𝑝 for sample sizes 𝑛 =100, 200, 
500, and 1000 over 10,000 samples. 
 

𝑛 𝜇𝑝 𝜇̂𝑝 𝜎𝑝 𝜎̂𝑝 
100 0.50 0.49963 0.05000 0.04994 
200 0.50 0.50044 0.03536 0.03524 
500 0.50 0.49984 0.02236 0.02244 
1000 0.50 0.49976 0.01581 0.01594 

 
Figure 2 below is graphical representation of the histogram and density plot corresponding 
the simulated sampling distribution with the configuration of the above table. 
 
It is evident from Figure 2 that the histograms and superimposed normal density plots with 
parameters as simulated estimates seem approximately normal. Also, as 𝑛 gets larger, the 
variability over simulated sampling distribution gets smaller and thereby approximation 
might get better and better with the increasing 𝑛. The graphical visualization of Figure 2 
leaves no doubt that the sampling distribution of 𝑝, as 𝑛 gets larger and larger, is 
approximately normal. 
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Figure 2. Histogram of sampling distribution of proportion of successes for varying sample 
sizes 

 
 
 
2.3 Law of large number (LLN) for sample mean 

Given a sample of size 𝑛 from a population with mean 𝜇, the sample mean gets closer and 
closer to the parameter 𝜇 as the sample size gets 𝑛 larger and  larger. 

Let us verify the LLN for simulation from a normal distribution with mean 10 and standard 
deviation 5, and a discrete Poisson distribution with mean 10, denoted by P(10). 

To simulate a sample of size 𝑛 from a normal distribution with mean 10 and standard 
deviation 5, we use the rnorm(n, mean=10, sd=5) function available in R: 

mean=c(); 
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n=seq(10,250,10); 

L=length(n); 

for (i in 1:L){mean[i]=mean(rnorm(n[i], mean=10,sd=5))} 

plot(n,mean, main="Means in samples of size \n in 

seq(10,250,10)") 

abline(h=10) 

In Figure 3, we plot simulated means from N(10,5) distribution for varying sample sizes. 
 
Figure 3. Means of samples from N(10, 5) distribution plotted against sample sizes in 
varying sequences 

 
As appears in Figure 3, the estimates of the mean 𝜇 form N(10,5) distribution stabilize 
around the true value of 𝜇 = 10 as 𝑛 gets larger and larger, which is the lesson of the law 
of the large number applied to the estimate of the mean. 

In order to simulate a sample of size 𝑛 from a discrete Poisson distribution with mean 10, 
we use R function rpois(n, 10) and execute the following code: 

set.seed(1) 
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par(mfrow = c(2, 2)) 

mean=c(); 

n=seq(10,250,10); 

L=length(n); 

for (i in 1:L){mean[i]=mean(rpois(n[i], 10))} 

plot(n,mean, main="Means of sample sizes \n in seq(10,250,10) 

from P(10)") 

abline(h=10) 

In Figure 4, we demonstrated plots of simulated means from P(10) distribution for varying 
sample sizes. 
 
Figure 4. Means of samples from P(10) distribution plotted against sample sizes in varying 
sequences 
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conform to the law of the large number applied to the estimate of the mean from P(10) 
distribution. 

2.4 Sampling distribution of mean 

The probability distribution of the sample mean 𝑥̅ over all possible samples of a 
given size is called the sampling distribution of 𝑥̅. For a population with mean 𝜇 
and the standard deviation 𝜎, the mean 𝜇𝑥̅ and standard deviation (i.e. standard 
error) 𝜎𝑥̅ of the sampling distribution of  𝑥̅ over all possible samples of size 𝑛 are: 

𝜇𝑥̅ = 𝜇 
                                                         𝜎𝑥̅ =

𝜎

√𝑛
 

The sampling distribution of 𝑥̅ is either (a) normal if the population the samples come from 
is normal, irrespective of the sample size 𝑛, or (b) approximately normal for large sample 
size 𝑛 if the population the samples come from is not normal. This property is what we call 
the Central Limit Theorem for 𝑥̅. 
 
The table below summarizes true mean (𝜇𝑝) and standard error (𝜎𝑝) and their estimated 
values (𝜎̂𝑝 and 𝜎̂𝑝) from simulated sampling distribution for 𝑛 =100, 200, 500, 1000 from 
N(mean=5, sd=5) distribution. 
 

𝑛 𝜇𝑥̅ 𝜇̂𝑥̅ 𝜎𝑥̅ 𝜎̂𝑥̅ 
25 10 9.9943 1.0000 0.9939 
50 10 9.9976 0.7071 0.7066 
100 10 10.0007 0.5000 0.5039 
500 10 10.0018 0.2236 0.2264 

 
The following code has been implemented to generate 10,000 sample of size n=25. 
 
set.seed(1) 

par(mfrow = c(2, 2)) 

mean=c(); 

for (i in 1:10000){mean[i]=mean(rnorm(25, mean=10,sd=5))} 

hist(mean, freq=F,main="Sampling distribution of mean and \n 

density plot when n=25") 

curve(dnorm(x, mean(mean), sd(mean)), add=TRUE, 

col="darkblue", lwd=2) 

round(c(mean(mean), sd(mean)),digits=5) 

 

In Figure 5, we provide a graphical representation of the histogram and density plot 
corresponding the simulated sampling distribution from a N(mean=10,sd=5) population 
for varying sample sizes based on 10,000 simulated samples.  
 
From Figure 5, it follows that the histograms and superimposed normal density plots with 
parameters as simulated estimates seem approximately normal. Also, as 𝑛 gets larger, the 

 
1098



variability over simulated sampling distribution gets smaller and thereby approximation 
might get better and better with the increasing 𝑛.  
 
Figure 5. Histograms and density plots of sampling distributions of means from 
N(mean=10, sd=5) for varying sample sizes. 

 

3. Conclusion 

Introducing large sample properties in elementary statistics class is a challenging task. 
Discussing large sample properties without any evidence to support them leave many 
students confused with underlying large sample concepts. Note that large sample properties 
are being  used for making inference regarding unknown population mean and proportion. 
While providing a theoretical evidence is not possible, students can have empirical 
evidence of all large sample properties via simulation, to some extent. It can be used to 
provide other large sample ideas such as consistency of estimators [5-7], as required in the 
curricula. For example, theoretically speaking, an estimator 𝜃𝑛 of the parameter 𝜃 is 
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𝐸[𝜃𝑛] = 𝜃   and lim

𝑛→∞
𝑉𝑎𝑟[𝜃𝑛] = 0, the proof of which is beyond the 

scope of the class. Such property can be presented empirically via simulation with very 
little effort from the instruction. Particularly, with an open source software such as R, such 
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efforts seem to be an easy task. It provides students with necessary introduction to the 
programming skill early, and they can explore many interesting facts that raise further 
questions towards enhancing learning. 
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