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Abstract 
Statistical process control (SPC) and monitoring techniques are often used in applications where multiple 
sources of variation are present, as for example in a variance components model.  Control charts are useful 
in these situations and have been considered in some earlier works by Roes and Does (1995), Woodall and 
Thomas (1995) and others in the literature. We present refinements and adaptations of these charts based 
on the knowledge gained and the advancements made over the last several years on retrospective and 
prospective process monitoring. This work takes proper account of the effects of parameter estimation while 
designing and implementing the control charts.  In the sequel, we calculate the corrected (adjusted) control 
limits in both Phase I and Phase II applications, two important phases of the overall SPC regime. In Phase 
I, the correct control limits are obtained using a multivariate t (normal) distribution. In Phase II, two types 
of corrected limits are provided, following the recent literature, one based on the unconditional perspective 
and the other based on the conditional perspective and the exceedance probability criterion (EPC). Results, 
tabulations and illustrations with data make the methodologies employable in practice.  An R package is 
provided to help deployment of the new methodology.  
 
Key Words: Shewhart control chart; Statistical process control; Moving range; Phase I; Phase II; 
Conditional run length 
 

1. Introduction 

 
 Statistical Process Control (SPC) and monitoring methods are widely used in various industries.  
Many famous companies such as IBM, Phillips, Mercedes, GM and GE have successfully taken advantage 
of the technology and have revolutionized their product lines. Design of Experiments (DOE) is an important 
component of SPC where various mathematical models are used for the phenomenon under study and the 
resulting output is monitored with control charts.  So control charts need to be developed for the type of 
model one uses, the parameter(s) of interest, along with the assumptions on the error term.  Over twenty 
years ago, Roes and Does (1995), Woodall and Thomas (1995) and Park (1998), among others, considered 
various control charts including the Shewhart 𝑋̅ charts (the simplest and the most popular control charts) 
for monitoring processes that follow some general linear models, with multiple sources of variation, that 
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are commonly used in DOE. These models reflect some processes under study, the sources and the types 
of variations of interest, more accurately. Such models are used even today. While these have been 
remarkable beginnings, we need to bring this technology to the twenty first century, in view of the 
knowledge gained by the researchers in process monitoring and control over the last couple of decades.  
This includes what are now known as the retrospective phase (Phase I) and the prospective phase (Phase II) 
of SPC, where the goals of process monitoring are somewhat different.  In addition, there is a wealth of 
knowledge about the effects of parameter estimation, which is most common while setting up the control 
charts in practice, how it affects chart performance and how to adjust the control limits in order to achieve 
nominal in-control and reasonable out-of-control chart performance.  In this paper, we consider these issues 
and provide correct Phase I and Phase II control limits for the Shewhart 𝑋̅-chart for a model more general 
than the basic Shewhart model.  Under this model there are two sources of common cause variation, the 
variation between and the variation within the batches.  In the first section we describe the models, starting 
from the basic Shewhart model to the model under consideration, and provide the background for our 
methodology. 
 
1.1 The Basic Shewhart Model 

The basic Shewhart model (Montgomery, 2009) is given by 
 𝑋𝑡𝑗 = 𝜇 + 𝐸𝑡𝑗                                            (1) 

where 𝑋𝑡𝑗  is the 𝑗𝑡ℎ  observation, 𝑗 = 1,… , 𝑛, in the 𝑡𝑡ℎ  batch (subgroup), 𝑡 = 1,… , 𝑘 , 𝜇  is the process 
mean and 𝐸𝑡𝑗 is the random error that is assumed to follow a normal distribution with mean, 0 and an 
unknown variance, 𝜎𝑒2. This is the simplest and the most commonly studied model in SPC.  The plotting 
statistic for the Shewhart 𝑋̅-charts for this basic model is the subgroup mean  𝑋̅𝑡. =

1

𝑛
∑ 𝑋𝑡𝑗 
𝑛
𝑗=1 and the error 

variance 𝜎𝑒2 is estimated by the within batch variation 𝑆𝑡2 =
1

(𝑛−1)
∑ (𝑋𝑡𝑗 − 𝑋̅𝑡.)

2 𝑛
𝑗=1 . Over the last twenty 

plus years a great deal of knowledge has been acquired on how to monitor both the mean  𝜇 and the variance 
𝜎𝑒
2.  We will expand on some of these advances a little later in the paper. For example, when 𝜇 is unspecified 

or is unknown, along with 𝜎𝑒2, the Shewhart 𝑋̅-chart control limits for the mean thickness 𝜇 are given by 

𝑋̅ ±
𝑎

√𝑛
√𝑆𝑝

2 where 𝑋̅ and the 𝑆𝑝2 are, respectively, the grand mean and the pooled variance of 𝑚 Phase I 

sample variances, each sample of size 𝑛, collected when the process is deemed to be in-control.  The 
charting constant 𝑎 is determined so that the control chart has a specified nominal in-control average run 
length. 

Roes and Does (1995), hereafter written as R&D, showed that there are interesting applications in 
practice where it is more reasonable to adopt a model beyond the basic Shewhart model.  Their methodology 
was motivated by a case study with some data from Philips Semiconductors, a leading manufacturer of 
integrated circuits in Europe.  The thickness of silicon wafers, used in the production process of integrated 
circuits was the product of measurement interest.  A data set containing 30 batches with 5 observations in 
each batch from different grinder positions of wafer thickness is provided. The traditional Shewhart 𝑋̅-chart 
and R-chart were employed demonstrating in-control behavior.  However, deeper analysis uncovered batch 
to batch variation, attributed possibly to the grinder positions, which necessitated fitting a model with a 
term representing the batch effect.  This is where the basic Shewhart model needed to be extended and 
R&D considered a linear model which includes a random batch component to accommodate the variation 
among the batches. So there is possible variation both between batches and within batches.  This point was 
also introduced by Woodall and Thomas (1995). Thus, in summary, while the basic Shewhart model is 
useful and has been studied extensively in the literature, other models can be perhaps more applicable and 
useful in some applications. Hence it is important to consider process monitoring under more general 
models and we consider the model studied in R&D in the next section.  Other, more sophisticated models 
can also be studied along the same lines and will be considered elsewhere.    

 
1.2 A More General Model with Two Components for Common Cause Variability 
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 R&D state that “the observations from the example suggest the following general model of a state 
of statistical control, when the fixed differences within a batch, as well as the random between-batch 
variation, both need to be considered as a part of the common-cause variation: 
 𝑋𝑡𝑗 = 𝜇 + 𝑤𝑗 + 𝐵𝑡 + 𝐸𝑡𝑗                                 (2) 

where 𝑋𝑡𝑗  are the thickness measurements on the 𝑗 th wafer, 𝑗 =  1, . . . , 𝑛,  within the 𝑡 th batch  𝑡 =
1,2,… , 𝑘.  The 𝜇 + 𝑤𝑗 term is the fixed mean level (∑𝑤𝑗 = 0) for the 𝑗th wafer and 𝐵𝑡 represents effect of 
the 𝑡th batch which is assumed to be random. Finally, 𝐸𝑡𝑗 models the random error for the 𝑗th wafer within 
the 𝑡th batch.  It is assumed that the random variables  𝐵𝑡 and 𝐸𝑡𝑗 are mutually stochastically independent, 
and both are normally distributed with means 0 and variance 𝜎𝑏2 and 𝜎𝑒2, respectively.”   
 We consider Phase I and Phase II Shewhart 𝑋̅ -charts for the model in (2), which has two 
components of common cause variation; further generalization to other settings (and models for other 
designed experiments) such as the one in Woodall and Thomas (1995) and Park (1998) follow naturally 
and will be taken up elsewhere.  In a similar manner, as in R&D, charts for certain contrasts of interest can 
be considered and adapted as well.  Control charts for contrasts have been considered by several researchers, 
including Palm and De Amico (1995), Woodall and Gardner (1995), Blazek and Coleman (1995), and Hahn 
and Doganaksoy (1995) among others. We agree that the contrasts can be useful in process monitoring 
provided they have a meaningful interpretation.  However, we don’t pursue this line of work here. Note 
that other researchers have considered monitoring data from general models such as from a nested-random-
effect model, which has two random effects. Such a model was used by Yashchin (1994) and a CUSUM 
chart was considered.  Furthermore, note that the idea of Shewhart control charts for more general models 
has also been widely applied and extended in different areas such as manufacturing (Kim & Yum, 1999; 
Park, 2004) and the dairy industry (Ittzes, 2001).  It will be interesting to apply our work to these situations 
and other types of control charts and this will be pursued elsewhere. 

The proposed adaptations revolve around the central question of the charting constants that have 
been used for these charts until now.  In a vast majority of the Shewhart 𝑋̅-charts type charts, the traditional 
“3-sigma” limits have been used which raises questions about chart performance. The choice of 3 to be the 
charting constant does not conform to our current knowledge and understanding of retrospective and 
prospective process monitoring.  Thus we find the “correct” charting constants and set up the corrected 
control limits.  We do this for both in Phase I and in Phase II, using some well-accepted performance metrics, 
taking proper account of the effects of parameter estimation using some different perspectives. Our study 
and results provide both theoretical insights and practical results since the correct Phase I and Phase II 
analyses using control charts are important.  To the best of our knowledge, this has not been considered in 
the literature. The Shewhart 𝑋̅-charts are used in our work for simplicity and purposes of illustration.  Other 
charts such as the CUSUM and the EWMA can be considered in a similar way.  Our formulations and 
derivations can open the door for correctly monitoring the outputs of designed experiments with various 
linear models under the assumption of i.i.d. normal errors. 

Consistent with the recent literature, we distinguish between Phase I and Phase II monitoring and 
set up both Phase I and Phase II control charts which are applicable in a situation as the one considered by 
R&D.  Note that although some researchers suggest following the “3-sigma” rule, that is, using 𝑐 = 3, this 
is not correct either in Phase I or II.  This is because although the Shewhart Phase I and II limits have the 
same structure as Montgomery (2009) introduced, the charting constant is found using a different in-control 
performance metric in the two monitoring phases.  In Phase I, the retrospective phase, one uses the false 
alarm probability (FAP), defined as the probability of at least one false alarm to design control charts, 
whereas in Phase II, the prospective phase, a popular choice is the in-control average run-length.  These 
two criteria produce different constants, and therefore different control limits and charts as will be seen 
later.  We delineate these two cases (Phase I and II) and treat them separately as follows. 

2. Methodology 
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As noted earlier, R&D considered charts for the model in equation (2) for a given false nominal 
alarm rate and in addition to the unclear separation of Phases I and II, the effects of parameter estimation 
were not explicitly factored in the determination of the charting constants. This raises several performance 
issues of concern in light of the recent literature.  First, it is now agreed that different in-control chart 
performance metrics are to be used in the two phases.  Second, since the mean and the standard deviations 
are unknown, they need to be estimated from some in-control reference data from a Phase I analysis where 
Shewhart control charts of the same form are used on a trial basis (Montgomery, 2009) and the process is 
brought under control before any process monitoring based on control charts can start (Montgomery, 2009). 
Third, from a technical standpoint, when monitoring begins, the presence of the estimates of the mean and 
the variance in the control limits that the charting statistics are compared to, violates the independence of 
the so-called “signaling” events in both Phase I and II monitoring. As a consequence, the correct charting 
constant needs to be found after accounting for this dependence in both phases.  In Phase I, this implies 
that one has to work with the joint distribution of the charting statistics.  At the end of the Phase I analysis, 
when the in-control state is established, we have the parameter estimates to form the Phase II control charts.  
However, since the signaling events are dependent, the Phase II run-length distribution is not geometric 
(Quesenberry, 1993), the false alarm rate and the average run-length, two of the most popular chart 
performance measures, depend on the parameter estimators and thus are random variables. Thus these chart 
characteristics vary, sometimes very significantly, from estimator to estimator obtained from different 
Phase I samples. This variability, called the practitioner to practitioner variability, present challenges to 
design control charts with guaranteed in-control performance.    

One recommendation to address this performance variation, which arises as a result of using 
estimators in the Phase II control limits, is to find the Phase II charting constant for a given nominal in-
control average run-length, averaging over the distributions of the parameter estimators.  This is the 
unconditional or the marginal approach (perspective).  On this point, it is worth noting that in the 
discussion of the Roes and Does paper, Sullivan et al. (1995) actually noted, in their Point 3, that “There 
is much emphasis in the article, as well as in Roes, Does, and Schurink (1993), on obtaining control 
constants that will provide an exact specified probability of a false alarm.  The probability obtained 
using the authors' control-limit constants appears to be the probability that a single future observation 
falls outside the control limits with no conditioning on the control limits actually obtained in an 
application.  There is a complicating factor, however, which appears to have been overlooked.  As Ghosh 
et al. (1981) and later Quesenberry (1993) pointed out, there is a lack of independence in the successive 
values of (𝑇𝑟−𝑇)

𝑉𝑡
, 𝑡 = 𝑘 + 1,𝑘 + 2,…   This lack of independence, due to the common estimates of 

the mean and variance, implies that the run-length distribution can no longer be characterized by the 
probability of a signal. The run length is no longer geometric and, in general, the average run length is 
not the reciprocal of the signal probability as presented in their tables 3 and 4.”   

Thus, in our paper, we address these important concerns raised more than twenty years ago 
and find the proper and correct solutions. To the best of our knowledge and based on a thorough review 
of the literature, we are not aware of works addressing these concerns.   

 
2.1 Phase I Shewhart 𝑿̅ Chart for the Linear Model with Two Components for Common Cause 

Variability 

Recall that the objective of a Phase I analysis (Chakraborti et al. 2009, Jones-Farmer et al. 2009, 
Capizzi and Masarotto, 2013) is to establish process control, on the basis of retrospective data that may be 
available, using statistical tools including control charts (applied possibly more than once, on a trial basis) 
and thus generating reference data from which knowledge about the process (such as the shape of the 
underlying distribution, etc.) is gained and parameter estimates are calculated.  These estimates then are 
used in the construction of Phase II control charts and in prospective process monitoring.  During a Phase 
I study, practitioners perform exploratory analysis to better understand the nature of the process.  The more 
representative the parameter estimates are of the true process parameters, the better the performance of 
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Phase II control charts that use these parameter estimates.  Thus, as an alternative approach, the wafer 
thickness data provided by R&D will be treated as Phase I data and the Shewhart Phase I 𝑋̅-chart (Champ 
and Chou, 2003; Champ and Jones, 2004) will be applied with the proposed (correct) charting constants. 
The Phase I charts are designed for a given false alarm probability (FAP). The normal theory-based Phase 
I Shewhart 𝑋̅  charts were studied by Champ and Jones (2004) and that work was recently extended by Yao 
et al. (2017). The FAP is the probability of at least one false alarm among the subgroups examined. Typical 
nominal values of FAP include 0.05 and 0.10.   

We first determine the correct Phase I control limits for the 𝑋̅ -chart for the model in equation (2).  
Phase I Shewhart 𝑋̅ chart is given by the plotting statistic 𝑋̅𝑡. and the control limits  
 𝐿𝐶𝐿 = 𝑋̅.. − 𝑐𝐼

∗ 𝜎̂, 𝐶𝐿 =  𝑋̅.. and  𝑈𝐶𝐿 = 𝑋̅.. + 𝑐𝐼∗ 𝜎̂ (3) 
where 𝑐𝐼

∗ = 𝑐∗(𝑘, 1 − 𝐹𝐴𝑃0)  is the required Phase I charting constant, 𝜎̂ = 𝑠𝑏(𝑋)/𝑐4 =

√
1

𝑘−1
∑ (𝑋̅𝑡. − 𝑋̅..)

2𝑘
𝑡=1 /𝑐4 is based on the root-mean-square deviation recommended by recent research (see 

for example Mahmoud et al. 2010), and 𝑐4 = 𝑐4(𝜈) = (
2

𝜈
)
1/2 Γ(

𝜈+1

2
)

Γ(
𝜈

2
)

 is the unbiasing constant with 𝜈 = 𝑘 − 1. 

In order to implement this chart, the charting constant 𝑐𝐼∗ needs to be found for a given nominal FAP value, 
say 𝐹𝐴𝑃0. To this end, note that the Phase I Shewhart 𝑋̅ chart issues no signal for batch 𝑡 if  
 𝑋̅.. − 𝑐𝐼

∗ 𝜎̂ ≤ 𝑋̅𝑡. ≤ 𝑋̅.. + 𝑐𝐼
∗ 𝜎̂,      𝑡 = 1,2,… . , 𝑘 (4) 

This event, in equation (4), when there is no signal, is called a non-signaling event.  The non-signaling 
event in equation (4) can be expressed as  
 −𝑐𝐼

∗𝜎̂  ≤ 𝑋̅𝑡. − 𝑋̅.. ≤ 𝑐𝐼
∗𝜎̂,       𝑡 = 1,2,… , 𝑘 (5) 

Or, equivalently, as 
 

−𝑐𝐼
∗  ≤

𝑋̅𝑡. − 𝑋̅..
𝜎̂

≤  𝑐𝐼
∗ ,       𝑡 = 1,2,… , 𝑘 

(6) 

Both the non-signaling events (and their complements, the signaling events) are dependent events since 
they share the estimators of the mean and the standard deviation.  Hence the Phase I charting constant is 
given by  
 

𝑐𝐼
∗  = 𝑐4√

𝑘 − 1

𝑘
𝑙 

(7) 

where 𝑙 is the solution of the equation  

∫ …∫ 𝑓𝑀𝑉𝑇𝑘(𝜐,𝑃)(𝑢1…𝑢𝑘)𝑑𝑢1…𝑑𝑢𝑘

𝑙

−𝑙

𝑙

−𝑙

= 1 − 𝐹𝐴𝑃0 
(8) 

which follows from equation (6). Here  𝑓𝑀𝑉𝑇𝑘(𝜐,𝑃)  denotes the p.d.f. of a 𝑘 dimensional t distribution 
(Johnson and Kotz, 1972) with 𝜐 = 𝑘 − 1 degrees of freedom and a 𝑘𝑥𝑘 equal-correlation matrix 𝑃 and 𝑃 
has off-diagonal elements all equal to − 1

𝑘−1
.   

Equivalently, it can be shown that one can also obtain 𝑙 from the solution of 
 

∫ {∫ …∫ 𝑓𝑀𝑉𝑁𝑘(0,𝑃)(𝑢1…𝑢𝑘)
𝑙(𝑦)

−𝑙(𝑦)

𝑙(𝑦)

−𝑙(𝑦)

𝑑𝑢1…𝑑𝑢𝑘}
∞

0

𝑓𝜒𝑘−1
2 (𝑦)𝑑𝑦 = 1 − 𝐹𝐴𝑃0 

(9) 

Here, 𝑓𝑀𝑉𝑁𝑘(0,𝑃) denotes the p.d.f. of the 𝑘-dimensional normal distribution with mean  0 and the 𝑘𝑥𝑘 
equal-correlation matrix 𝑃 and 𝑓𝜒𝑘−12  denotes the p.d.f. of a chi-square distribution with 𝜐 = 𝑘 − 1 degrees 
of freedom.  We call equation (8) as the direct method, and equation (9) as the indirect method, also known 
as the method under the unconditional perspective. Though both methods are seen to yield similar results, 
the direct method is much faster for computation.  The unconditional perspective has been used in other 
situations in the literature and one advantage with this method is that it is possible to adopt other standard 
deviation estimators, such as the average moving range, or the average standard deviation (see Montgomery, 
2009) whose distributions can be approximated by the square root of a chi-square (chi) distribution in this 
framework.  
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In table 1 we show the Phase I charting constants for the Shewhart 𝑋̅-chart when the unbiased 
estimator of the process standard deviation is used based on the pooled variance 𝑆𝑏2 given in equation (3). 

 
Table 1: Two-sided charting constant 𝑐𝐼∗ for a Shewhart Phase I 𝑋̅-chart for the mean, for different 

numbers of Phase I batches and nominal 𝐹𝐴𝑃0 values 0.05 and 0.10, respectively, when the unbiased 
standard deviation estimator is used. The charting constants are calculated by the direct method. 

 
  𝐹𝐴𝑃0   𝐹𝐴𝑃0   𝐹𝐴𝑃0 

k  0.05   0.1 k  0.05  0.1 k  0.05  0.1 
3 4.2601 2.9321 9 3.2732 2.8179 50 3.4217 3.1727 
4 3.6679 2.7923 10 3.2635 2.8349 100 3.5569 3.3370 
5 3.4793 2.7664 15 3.2644 2.9080 150 3.6423 3.4343 
6 3.3692 2.7743 20 3.2862 2.9665 200 3.7044 3.5036 
7 3.3173 2.7846 25 3.3139 3.0156 250 3.7536 3.5584 
8 3.2872 2.8006 30 3.3384 3.0555 300 3.7937 3.6021 

 
 From table 1, it is noted that the charting constants are quite different from 3 and hence the popular 
“3-sigma” rule is not correct to be applied in the Shewhart Phase I 𝑋̅-chart for the mean.  Even for k = 300, 
the charting constant is 3.7936 and more remarkably the constant does not converge to 3.   

Next we present an example, using the data from R&D, to illustrate the proposed Phase I Shewhart 
𝑋̅ chart. 

 
2.2 Illustration of the Phase I Shewhart 𝑿̅ Chart with the Correct Charting Constant 
            For the case data presented in R&D, the wafer thickness measurements are collected from the MPS-
R600 grinder with 31 positions with a target thickness is 244 μm. The dataset has 𝑘 = 30 batches and each 
batch has 𝑛 = 5 observations which are taken from 5 of the 31 positions on the grinder.  We treat these data 
as Phase I data for which the grand mean  𝑋̿ equals 245.1 and the estimator 𝑠𝑏 equals 2.0367, which results 
in the unbiased estimator  𝜎̂0 = 𝑠𝑏/𝑐4 = 2.0544, where 𝑐4 = 0.9914 (Montgomery, 2009), for 𝑘 = 30.  
The Phase I Shewhart 𝑋̅-chart control limits are calculated using degrees of freedom 𝜈 = 30 − 1 = 29 and 
a nominal 𝐹𝐴𝑃0 of 0.05 and 0.1, respectively. The resulting charting constants are found from table 1 to be 
3.3384 and 3.0555, respectively, which yield the pairs of lower and upper control limits: 238.2417 and 
251.9583 as well as 238.8229 and 251.3771, respectively.  The corresponding Phase I charts, including the 
control limits and the charting statistics, 𝑋̅𝑖 are displayed in figure 1. In addition, the control limits (the 
solid lines) using the unadjusted charting constant 𝑐𝐼∗ = 3, namely 238.9369 and 251.2631, are also shown 
in figure 1, as a reference.   
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Figure 1: Phase I Shewhart 𝑋̅ charts for the R&D data on the thickness of wafers where the blue solid line 
is the center line and the red solid lines are the control limits for the unadjusted charting constant 3. The 
dashed (dotted) lines are the corrected Phase I control limits for a nominal 𝐹𝐴𝑃0 of 0.1 (0.05).  The batch 
means are shown by the open circles with the circles connected by straight lines. 
 

It is seen that both the corrected Phase I charts provide much support to the in-control state of the 
process, since no charting statistic plots outside the control limits and no patterns seem to be present.  In 
fact, for these data, even the unadjusted control limits lead to the same conclusion.  Accordingly, these data 
can be regarded as reference data and the estimates obtained for the process mean (245.1) and the standard 
deviation (2.0544) may be used in the construction of Phase II (prospective) control limits for process 
monitoring.  

While the Phase I analysis helps understand the process better and the Phase I charts help establish 
process control in order to help collect the reference data, from which to calculate the parameter estimates, 
the prospective process monitoring, with new and independent incoming samples, starts in Phase II.  The 
difference between Phase I and in Phase II charts is that while the available retrospective data is analyzed 
to establish control in Phase I, possibly on a trial and error basis, using control charts, in Phase II each 
incoming subgroup is monitored sequentially. Chakraborti (2000) analyzed the Shewhart 𝑋̅ chart in four 
categories depending on which of the two parameters, the mean or the standard deviation of the underlying 
normal distribution, are known or unknown, here we only develop Shewhart 𝑋̅ chart for the situation where 
both the mean and the standard deviation are unknown and are estimated from Phase I data.  The remaining 
cases can be treated in a similar way.    

Next we consider the Phase II Shewhart 𝑋̅-chart for the mean for the model in equation (2).   
 

2.3 Two-sided Phase II Shewhart 𝑿̅ Chart for the Linear Model with Two Components for 

Common Cause Variability 

The Phase II Shewhart 𝑋̅ control chart for the mean is given by the plotting statistic 𝑋̅𝑡. and the 
control limits 
 𝐿𝐶𝐿 = 𝑋̅.. − 𝑐𝐼𝐼

∗  𝜎̂, 𝐶𝐿 =  𝑋̅.. and  𝑈𝐶𝐿 = 𝑋̅.. + 𝑐𝐼𝐼∗  𝜎̂ (10) 
where 𝑐𝐼𝐼∗ = 𝑐𝐼𝐼∗ (𝑘, 𝐴𝑅𝐿0) is the Phase II charting constant and 𝑋̅.. and 𝜎̂ = 𝑠𝑏(𝑋)/𝑐4 are estimated by the 
mean and the standard deviation, respectively, in Phase I. Operationally, the main difference between the 
Phase I and Phase II control limits for the 𝑋̅ chart are the charting constants, which boils down to the 
underlying chart performance metric that is used to construct the charts in each phase.  Unlike in Phase I, 
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the charting constant 𝑐𝐼𝐼∗  in Phase II is determined so that the in-control average run length 𝐴𝑅𝐿0 is equal 
to some nominal value, such as 370. Other metrics of the in-control run length distribution, such as some 
percentile (for example, the median) can also be considered, but we do not pursue these here. 

Note that using equation (10), the non-signaling event in Phase II is given by  
 𝑋̅.. − 𝑐𝐼𝐼

∗ 𝜎̂ < 𝑋̅𝑠. < 𝑋̅.. + 𝑐𝐼𝐼
∗ 𝜎̂,        𝑠 = 𝑘 + 1, 𝑘 + 2,… (11) 

the Phase II run length distribution and the corresponding in-control average run length can be derived 
using the conditioning-unconditioning (CUC) method. This method recognizes that the parameter estimates 
are random variables and therefore the run-length distribution, as well as various performance 
characteristics (attributes of the run-length distribution) of the Phase II control chart are random variables, 
as functions of these estimates. As a result, one can consider the unconditional performance of the chart 
(for example, the unconditional run-length distribution, the unconditional average run-length, and so on) 
which basically averages the distributions of these characteristics over the distributions of the parameter 
estimates.  To this end, a convenient starting point is the probability of a signal conditional on the Phase I 
parameter estimates, 𝜇̂ and 𝜎̂.  This is given by 

𝑃(|𝑋̅𝑠. − 𝑋̅..| ≥ 𝑐𝐼𝐼
∗ 𝜎̂) = 1 − 𝑃(|𝑋̅𝑠. − 𝑋̅..| < 𝑐𝐼𝐼

∗ 𝜎̂)

= 1 − (Φ(
 𝑍1

√𝑘
+
𝑐𝐼𝐼
∗

𝑐4
√

𝑌

𝑘 − 1
− 𝛿) −Φ(

 𝑍1

√𝑘
−
𝑐𝐼𝐼
∗

𝑐4
√

𝑌

𝑘 − 1
− 𝛿)) (12) 

where Φ denotes the c.d.f. of the standard normal distribution, 𝑌 follows a chi-square distribution with 𝑘 −
1  degrees of freedom associated with the Phase I variance estimator, 𝑍1  follows the standard normal 
distribution associated with the Phase I sample mean, 𝑍2  follows the standard normal distribution 
associated with the Phase II sample mean, and 𝑌, 𝑍1 and 𝑍2 are mutually independent.  The quantity 𝛿 =
(𝜇2 − 𝜇)/𝜎  denotes the mean shift in Phase II in terms of the standard deviation and 𝜇2 denotes the Phase 
II mean.  If the process is in-control, 𝜇2 = 𝜇 so that 𝛿 = 0. Thus, the conditional probability of a signal 
when the process is in-control, the so-called conditional false alarm rate, denoted by 𝐶𝐹𝐴𝑅, is given by 

𝐶𝐹𝐴𝑅 = 𝑃(|𝑋̅𝑠. − 𝑋̅..| ≥ 𝑐𝐼𝐼
∗ 𝜎̂|𝐼𝐶) = 1 − (Φ(

 𝑍1

√𝑘
+
𝑐𝐼𝐼
∗

𝑐4
√

𝑌

𝑘 − 1
) −Φ(

 𝑍1

√𝑘
−
𝑐𝐼𝐼
∗

𝑐4
√

𝑌

𝑘 − 1
)) (13) 

Further, using the Probability Integral Transform (PIT), we can rewrite the 𝐶𝐹𝐴𝑅 (0 ≤ 𝐶𝐹𝐴𝑅 ≤ 1) more 
conveniently as 

𝐶𝐹𝐴𝑅 = 1 −

(

 
 
Φ(

 Φ−1(𝑈)

√𝑘
+
𝑐𝐼𝐼
∗

𝑐4
√
𝐹
𝜒𝑘−1
2
−1 (𝑉)

𝑘 − 1
) −Φ(

 Φ−1(𝑈)

√𝑘
−
𝑐𝐼𝐼
∗

𝑐4
√
𝐹
𝜒𝑘−1
2
−1 (𝑉)

𝑘 − 1
)

)

 
 

= 1 − 𝑝(𝑈, 𝑉; 𝑘, 𝑐𝐼𝐼
∗ ) = 𝑞(𝑈, 𝑉; 𝑘, 𝑐𝐼𝐼

∗ ) = 1 − 𝑝(𝑈, 𝑉, 𝑘, 𝑐𝐼𝐼
∗ ) = 𝑞(𝑈, 𝑉), 

(14) 

say, where Φ−1  denotes the quantile function of the standard normal distribution, 𝐹
𝜒𝑘−1
2
−1  denotes the 

quantile function of a chi-square distribution with 𝑘 − 1 degrees of freedom, 𝑝(𝑈, 𝑉; 𝑘, 𝑐𝐼𝐼∗ ) is the 
probability of no signal under the in-control condition, and 𝑈 and 𝑉 are two independent and identically 
distributed uniform (0,1) random variables. Unless there is any confusion, 𝑝(𝑈, 𝑉; 𝑘, 𝑐𝐼𝐼∗ ) and 𝑞(𝑈, 𝑉; 𝑘, 𝑐𝐼𝐼∗ ) 
are written as 𝑝(𝑈, 𝑉) and 𝑞(𝑈, 𝑉), respectively.  Note that the 𝐶𝐹𝐴𝑅 is a random variable, being a function 
of the random variables 𝑍1 and 𝑌 (or 𝑈 and 𝑉).  The c.d.f. of the 𝐶𝐹𝐴𝑅 is given by 

𝐹𝐶𝐹𝐴𝑅(𝑡; 𝑘, 𝑐𝐼𝐼
∗ ) = 𝑃(𝐶𝐹𝐴𝑅 ≤ 𝑡) = 𝑃(1 − 𝑝(𝑈, 𝑉) ≤ 𝑡) = 𝑃(𝑞(𝑈, 𝑉) ≤ 𝑡) (15) 

The notation 𝐹𝐶𝐹𝐴𝑅(𝑡; 𝑘, 𝑐𝐼𝐼∗ ) will be written as 𝐹𝐶𝐹𝐴𝑅(𝑡) until necessary.  
Epprecht et al. (2015) derived the cumulative distribution function (cdf) of the 𝐶𝐹𝐴𝑅 for the one-

sided Phase II S charts for the Shewhart model and used it to find a lower prediction bound and the required 
Phase I sample size for the Shewhart model. Goedhart et al. (2017), for example, studied the 𝑋̅-chart for 
the basic Shewhart model.  We use a similar approach for the Shewhart 𝑋̅-chart for the mean of our more 
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general model.  Since the conditional in-control run-length distribution is geometric with the success 
probability equal to 𝐶𝐹𝐴𝑅, various performance characteristics for the conditional run-length distribution 
can be obtained using properties of the geometric distribution.  Using this fact, the Phase II charting 
constants are determined in the next section, under each of the unconditional and the conditional 
perspectives. 

 
2.3.1 Phase II Shewhart 𝑋̅ Charting Constant under the Unconditional Perspective 

Chakraborti (2006) derived the Phase II charting constant for the Shewhart 𝑋̅ chart with estimated 
parameters, for the basic Shewhart model, using the unconditional in-control average run length. This is 
called the unconditional perspective. Under this method, the charting constants are found by equating the 

unconditional in-control average run length (denoted 𝐴𝑅𝐿𝑖𝑛), which is the expectation of the conditional 

average run length  𝐶𝐴𝑅𝐿0, which is 𝐴𝑅𝐿𝑖𝑛 to a desired nominal value say 𝐴𝑅𝐿0.  The nominal values are 
taken to be 370 or 500, as in the known parameters case.  Because the 𝐶𝐴𝑅𝐿0 is the reciprocal of the 𝐶𝐹𝐴𝑅  

𝐶𝐴𝑅𝐿0 = 𝐶𝐹𝐴𝑅
−1 = [1 − 𝑝(𝑈, 𝑉)]−1 = [𝑞(𝑈, 𝑉)]−1,       1 ≤ 𝐶𝐴𝑅𝐿0 < ∞ (16) 

Hence the unconditional in-control average run length 𝐴𝑅𝐿𝑖𝑛 can be expressed as  

𝐴𝑅𝐿𝑖𝑛 = 𝐸(𝐶𝐴𝑅𝐿0) = 𝐸(𝐶𝐹𝐴𝑅
−1) = ∫ ∫ [𝑞(𝑢, 𝑣)]−1𝑑𝑢𝑑𝑣

1

0

1

0

,     1 ≤ 𝐴𝑅𝐿𝑖𝑛 < ∞ 
(17)  

Note that in order for the expectation  𝐴𝑅𝐿𝑖𝑛 to be finite, the probability 𝑞(𝑢, 𝑣) must belong to the left-
open interval (0, 1].  However, being a probability, by definition, 𝑞(𝑢, 𝑣) belongs to the closed interval 
[0, 1].  The inclusion of the left end-point 0, which is possible under certain situations, as will be seen later, 
causes a singularity, which affects the computation of the 𝐴𝑅𝐿𝑖𝑛.  Thus whenever 𝑞(𝑢, 𝑣) is equal to 0 or 
close to being equal to 0, which happens in some cases when the 𝑘 (number of Phase I batches) is small, 
the double integral in equation (17) becomes unstable and hence the computation of the 𝐴𝑅𝐿𝑖𝑛 becomes 
infeasible. To clarify our argument, we demonstrate this problem by using the following example. Suppose 
we follow the “3-sigma” rule for our nominal average run length 𝐴𝑅𝐿0 = 370 and 𝐴𝑅𝐿0 = 500, so the 
corresponding false alarm rate 𝐹𝐴𝑅 = 0.0027 and 𝐹𝐴𝑅 = 0.002. We will visualize this situation using the 
following figure. 

 
Figure 2: Density plots of midpoints of 𝐶𝐹𝐴𝑅 for different numbers of Phase I batches with the bandwidth 
0.0001, where ‘RL’ on the legend stands for the reference lines. For Phase II charting constant c𝐼𝐼∗ = 3, 
1/370 = 0.0027 and, for Phase II charting constant, 1/500 = 0.002. 
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We can observe that the density of 𝐶𝐹𝐴𝑅 is seriously inflated in the interval close to 0 for small 𝑘 < 10, 
so 𝐶𝐴𝑅𝐿0, the inverse of 𝐶𝐹𝐴𝑅, maybe not finite. That is the expectation 𝐴𝑅𝐿𝑖𝑛 may be infinite or at least 
greater than our nominal average run length 𝐴𝑅𝐿0. This singularity problem can be released by increasing 
numbers of Phase I batches or decreasing Phase I charting constants. 

To correct the charting constant 𝑐𝐼𝐼∗ , the new approach is based on solving the equation 𝐴𝑅𝐿𝑖𝑛 =
𝐴𝑅𝐿0. From equation (17), equivalently, one solves, 

𝐴𝑅𝐿𝑖𝑛 − 𝐴𝑅𝐿0 = ∫ ∫ [𝑞(𝑢, 𝑣)]−1𝑑𝑢𝑑𝑣
1

0

1

0

− 𝐴𝑅𝐿0 = ∫ ∫ [𝑞(𝑢, 𝑣; 𝑘, 𝑐𝐼𝐼
∗ )]−1𝑑𝑢𝑑𝑣

1

0

1

0

− 𝐴𝑅𝐿0

= 0 

(18) 

using a search algorithm, such as the bisection method, for a given nominal 𝐴𝑅𝐿0 and for a given value of  
𝑘. This yields the unconditional Phase II charting constant.  The double integral in (18) is solved using two 
methods, one, the adaptive integration (AI) method and two, the Monte Carlo (MC) method.  The AI method 
cannot cover the whole domain in our computation. The domain covers from [1.00E − 11,∞) and as the 
result from the AI method forms the upper bound to the true charting constant, the result from the MC 
method may be more reliable.  For 𝑘 > 10, both AI and MC methods produce similar results but the AI 
method is much more time-efficient. However, when 𝑘 is 10 or less, the charting constants are a little 
suspect because of the larger discrepancies between the 𝐸(𝐶𝐴𝑅𝐿0) and their nominal values, and also 
because of the large 𝑆𝐷(𝐶𝐴𝑅𝐿0) values. This discrepancy is caused by the variation in the distribution of 
the in-control average run length, given by 𝑆𝐷(𝐶𝐴𝑅𝐿0), which is exacerbated by the singularity problem 
for small 𝑘.  As explained before, when 𝑘  is small, the numerical results for the in-control average run 
length 𝐸(𝐶𝐴𝑅𝐿0) are unstable, leading to a huge variation in the 𝑆𝐷(𝐶𝐴𝑅𝐿0) values. In order to reduce 
this variation further, to a manageable amount, the number of simulations was increased to 1-billion, but 
the results were found to be similar.   Hence, we calculate and tabulate the charting constants for 𝑘 ≥ 15 
in table 2 for less misunderstanding. The results shown in table 2 are obtained by the MC method. 
 

Table 2: Two-sided Phase II Shewhart 𝑋̅ charting constant c𝐼𝐼∗ , based on the unconditional perspective, 
for different Phase I batch numbers k and nominal 𝐴𝑅𝐿0 = 370 and 500, respectively, when the unbiased 

standard deviation estimator is used, along with the mean and standard deviation of 𝐶𝐴𝑅𝐿0, that is 
𝐸(𝐶𝐴𝑅𝐿0) and SD(𝐶𝐴𝑅𝐿0), respectively. 

 
  𝐴𝑅𝐿0 = 370 𝐴𝑅𝐿0 = 500 
k c𝐼𝐼

∗  𝐸(𝐶𝐴𝑅𝐿0) 𝑆𝐷(𝐶𝐴𝑅𝐿0) c𝐼𝐼
∗  𝐸(𝐶𝐴𝑅𝐿0) 𝑆𝐷(𝐶𝐴𝑅𝐿0) 

15 2.5571 370.4349 10381.82 2.6102 500.9479 19222.28 
20 2.6665 370.2784 3633.735 2.7278 500.4716 6543.182 
25 2.7330 370.1403 1869.674 2.7996 500.1107 3198.94 
30 2.7776 370.1043 1228.349 2.8479 499.9972 2008.646 
50 2.8669 369.8962 575.3241 2.9451 499.9165 869.4891 

100 2.9337 369.8861 313.6814 3.0180 499.8732 457.6177 
150 2.9558 369.8729 238.4686 3.0422 499.8916 345.055 
200 2.9669 369.9874 199.8089 3.0543 499.9705 288.004 
250 2.9735 370.002 175.2922 3.0615 499.9406 252.1142 
300 2.9778 369.8974 157.9526 3.0663 499.9339 226.9487 

 
For 𝑘 greater or equal to 15, note that the charting constants yield target nominal in-control average 

run length 𝐴𝑅𝐿0 equal to 370 or 500, respectively, consistently, on the basis of 𝐸(𝐶𝐴𝑅𝐿0) and a smaller 
𝑆𝐷(𝐶𝐴𝑅𝐿0) for increasing 𝑘 . In fact, for 𝑘  greater than or equal to 15, the charting constants seem 
reasonably acceptable. 

Now we discuss the out-of-control (OOC) performance. 

 
1441



 
Figure 3: Two-sided Phase II Shewhart 𝑋̅ control charts out-of-control average run length based on the 
unconditional perspective, for different Phase I batch numbers k, nominal 𝐴𝑅𝐿0 = 370 and 500, and shifts 
𝛿 = 0.1, 0.2 and 0.3, respectively, where solid curves for different values of k have different colors as 
written on the legend. Note that the black dashed lines are the reference lines for different nominal 𝐴𝑅𝐿0 =
370 and 500, respectively. 

From figure 3, they demonstrate two facts: 1) OOC average run length decreases with increasing 
shifts, which is desirable.  2) The sensitivity of our control charts is improved by increasing the number of 
Phase I batches. From the view of efficiency of using 𝑘, CUC method is more suitable for the relative great 
number of Phase I batches. 

 
2.3.2 Phase II Shewhart 𝑋̅ Chart under the Conditional Perspective and the Exceedance Probability 

Criterion  (EPC) 

 As 𝐶𝐴𝑅𝐿0 is a random variable with a large variability, it is quite likely to be different (sometimes 
significantly) from its expectation, the 𝐴𝑅𝐿0, as specified via the nominal value in the construction of the 
chart under the unconditional perspective.  This may be problematic from a practical point of view.  In the 
long run, the chart (charting constant) obtained under the unconditional perspective guarantees that the 
average chart performance reaches the target 𝐴𝑅𝐿0 but it does not control the variability. A more recent 
alternative option recognizes the randomness of  𝐶𝐴𝑅𝐿0 and considers various solutions.  To this end, 
several authors including Albers et al. (2005), Epprecht et al. (2015) and Goedhart et al. (2017), have 
considered setting up the control chart limits so that the 𝐶𝐴𝑅𝐿0 has a high probability of exceeding a given 
nominal value (a lower bound) such as 370. This formulation is related to the exceedance probability 

criterion (EPC) proposed by Gandy and Kvaloy (2013) in which one finds an upper bound (that can be 
tolerated in an application) to the random variable 𝐶𝐹𝐴𝑅0 with a high probability. Thus  

𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝐹𝐴𝑅0) = 𝑃(𝐶𝐴𝑅𝐿0 ≥ (1 − 𝜀̃)𝐴𝑅𝐿0) 
 
(19) 
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= 𝑃(𝐶𝐴𝑅𝐿0 ≥ 𝐴𝑅𝐿𝑏) = 𝑃([1 − 𝑝(𝑈, 𝑉)]
−1 ≥ (1 − 𝜀̃)𝐴𝑅𝐿0)

= 𝑃 ([𝑞(𝑈, 𝑉)]−1 ≥ (
1

1 + 𝜀
)𝐴𝑅𝐿0) = 1 − 𝑝0, 

where 𝑝0 (0 < 𝑝0 < 1) is a specified probability, typically a small value, such as 0.1 or 0.05, 𝜀 (0 ≤ 𝜀 <
1) is a “tolerance factor” allowing the user some flexibility for choosing a nominal conditional false alarm 
rate and 𝜀̃ = 𝜀

1+𝜀
  is the corresponding tolerance factor for a nominal conditional in-control average run 

length.  The quantity 𝐴𝑅𝐿𝑏 = (1 − 𝜀̃)𝐴𝑅𝐿0 = (
1

1+𝜀
)𝐴𝑅𝐿0  is a lower prediction bound to  𝐶𝐴𝑅𝐿0 

(equivalently, (1 + 𝜀)𝐹𝐴𝑅0 is the upper prediction bound to 𝐶𝐹𝐴𝑅).  From equation (19), it is seen that 
𝐴𝑅𝐿𝑏 is the 𝑝0-quantile of the distribution of 𝐶𝐴𝑅𝐿0.   So the lower prediction bound can be found from 
the c.d.f. of 𝐶𝐴𝑅𝐿0. 

Note that from a practical standpoint, we may be more interested in the lower prediction bound to 
𝐶𝐴𝑅𝐿0 (which is equivalent to an upper bound to 𝐶𝐹𝐴𝑅), because this bound guarantees that the in-control 
chart performance based on the in-control 𝐴𝑅𝐿 is greater than some specific desired value with a high 
probability (such as 0.9, 0.95).  This may be more easily understood by the user.  

Figure 4: Lower prediction bound 𝐴𝑅𝐿𝑏 and its corresponding tolerance factor 𝜀̃ vs. sample size 𝑘 for 
nominal 𝐴𝑅𝐿0 = 370 (𝑐𝐼𝐼∗ = 3, 3.0902),  500 (𝑐𝐼𝐼∗ = 3, 3.0902),  𝑝0 = 0.05, 0.1,  and various values of 𝑘.  
Black curves stand for 𝑝0 = 0.05 and the blue curves stand for 𝑝0 = 0.1. Solid curves stand for 𝑐𝐼𝐼∗ = 3 and 
dashed curves stand for 𝑐𝐼𝐼∗ = 3.0902. 

 

For figure 4, we use the charting constant  3 and 3.0902, which yield an in-control average run 
length of 370 and 500, respectively, corresponding to the “3-sigma” rule in the known parameter case. This 
figure indicates that 1) The lower prediction bound 𝐴𝑅𝐿𝑏 monotonically increases and the tolerance factor 
𝜀̃ monotonically decreases in  𝑘. 2) The higher charting constant leads to the lower prediction bound 𝐴𝑅𝐿𝑏 
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or the higher tolerance factor 𝜀̃. 3) The higher nominal probability 𝑝0 results in the higher lower prediction 
bound 𝐴𝑅𝐿𝑏 or the lower tolerance factor 𝜀̃. Also, even for our largest number of batches 𝑘 = 300, the 
charting constants 3 and the nominal probability 𝑝0 = 0.1 guarantee the lower prediction bound 𝐴𝑅𝐿𝑏 =
250.4748 or the tolerance factor 𝜀̃ = 0.3230 which may be much lower than our expectation of nominal 
average run length 𝐴𝑅𝐿0. That is, we may be not able to guarantee that the nominal average run length can 
be reached if we focus on the “3-sigma” rule expect for the extremely large number of batches which it may 
be not practical. Some researchers found out a new approach to give us a practical answer compared with 
the “3-sigma” rule. Before introducing the new approach, we will explain another evidence that many 
practitioners are interested in to solidify our motivation at this point.  

 
2.3.2.1 Required Number of Phase I Batches 

The number of Phase I batches 𝑘 is an important factor, because in addition to the engineering 
reasons, 𝑘, along with the subgroup size 𝑛, it determines the Phase I sample size 𝑚 = 𝑘𝑛, that is the 
required amount of Phase I data.  If data collection is expensive and/or time consuming, practitioners need 
to be very cautious about the Phase I sample size. Yet, sufficient data are needed to obtain reasonable chart 
performance.  In the present setting, the Phase I subgroup size 𝑛 is at least 1, so 𝑘 is a lower bound to the 
Phase I sample size 𝑚. Similar to computing the lower prediction bound 𝐴𝑅𝐿𝑏, the number of Phase I 
batches 𝑘 can be found from equation (19) when 𝑐𝐼𝐼∗ , 𝑝0 and 𝐴𝑅𝐿𝑏(𝜀̃ and 𝐴𝑅𝐿0) are given.  In table 3 we 
show the required number of Phase I batches for different nominal significance levels, nominal average run 
lengths (𝐴𝑅𝐿0) and some tolerance factors (𝜀̃).  

 
Table 3: Required number of Phase I batches k for the general model based on EPC, 𝜀̃ = 0, 0.1, 0.2 and a 
nominal 𝐴𝑅𝐿0 = 370(𝑐𝐼𝐼∗ = 3), 500(𝑐𝐼𝐼∗ = 3.0902)with a nominal significance level 𝑝0 = 0.05, 0.1, when 
the unbiased standard deviation estimator is used  
 

𝑝0 𝐴𝑅𝐿0 𝜀̃ = 0 𝜀̃ = 0.1 𝜀̃ = 0.2 
0.05 370 1.1333E+08 11543  2591 

500 * 13190  2927 
0.1 370 6.8833E+07 7053 1594 

500 * 8038 1795 

* indicates that the solution is “infinite” as defined by R.   

 

For example, consider 𝑝0 = 0.05, 𝜀̃ = 0.1 and 𝐴𝑅𝐿0 = 370 (𝐴𝑅𝐿𝑏 = (1 − 𝜀̃)𝐴𝑅𝐿0 = 333). If 
we apply the “3-sigma” rule, the Phase II charting constant 𝑐𝐼𝐼∗  is equal to 3. Using equation (19), from table 
3, k is found to be 11,543.  If we keep the same setting but increase 𝑝0 to 0.1, we find 𝑘 decreases to 7,053.  
Then, if 𝜀̃ is increased from 0.1 to 0.2, k is further decreased to 2,591. Also, for 𝑝0 = 0.05  and 𝜀̃ = 0.1, if 
𝐴𝑅𝐿0 is increased from 370 to 500, which means that  𝑐𝐼𝐼∗  is increased from 3 to 3.0902, k is increased to 
13,190.  In summary, the required number of Phase I batches decreases with increasing nominal 𝑝0 and 
increasing tolerance factor 𝜀̃. Our findings thus indicate that the required number of Phase I batches for the 
“3-sigma” rule are just too large and are not likely to be met in many practical applications. This raises the 
need for adjusting the control limits (charting constants) from a practical standpoint. In the next section find 
these adjusted charting constants for two well-known performance metrics.  

 
2.3.2.2 Adjusted Charting Constants for a Guaranteed Conditional In-control Performance 

           As we have shown above, the traditional “3-sigma” rule should not be used under the EPC 
perspective unless one has a huge number of Phase I batches, numbering in hundreds of thousands. This is 
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most likely to be not the case in most practical situations.  Instead, we propose finding the charting constant 
𝑐𝐼𝐼
∗  under the EPC with a guaranteed lower bound of the in-control average run length.  In table 4 we show 

the charting constants for 𝑘 ≥ 25. As we discussed, we have a serious singularity problem for smaller 
values of 𝑘 and the problem is worse under the conditional perspective. Thus, for 𝑘 ≤ 20, the average run 
length is extremely large which is less useful in practice, so we do not show these  charting constants 
hereafter. 

 

Table 4: Two-sided Phase II Shewhart 𝑋̅ charting constant c𝐼𝐼∗ , based on the conditional perspective, for 
different Phase I batch numbers k, nominal 𝐴𝑅𝐿0 = 370 and 500, the nominal probability 𝑝0 = 0.05 and 
0.1 and the tolerance factor 𝜀̃ = 0 and 0.1, respectively, when the unbiased standard deviation estimator 

is used, along with the mean and standard deviation of 𝐶𝐴𝑅𝐿0, that is 𝐸(𝐶𝐴𝑅𝐿0) and SD(𝐶𝐴𝑅𝐿0), 
respectively. 

      𝜀̃ = 0 𝜀̃ = 0.1 
𝐴𝑅𝐿0 𝑝0 k 𝑐𝐼𝐼

∗  𝐸(𝐶𝐴𝑅𝐿0) 𝑆𝐷(𝐶𝐴𝑅𝐿0) 𝑐𝐼𝐼
∗  𝐸(𝐶𝐴𝑅𝐿0) 𝑆𝐷(𝐶𝐴𝑅𝐿0) 

370 

0.05 

25 3.9868 2.54E+06 9.77E+08 3.9442 1.63E+06 5.57E+08 
30 3.8707 2.42E+05 2.69E+07 3.8293 1.73E+05 1.67E+07 
50 3.6243 1.11E+04 6.67E+04 3.5854 9.03E+03 4.97E+04 

100 3.4098 2.29E+03 3.03E+03 3.3732 1.97E+03 2.51E+03 
150 3.3241 1.42E+03 1.22E+03 3.2884 1.24E+03 1.04E+03 
200 3.2755 1.11E+03 7.53E+02 3.2403 9.76E+02 6.44E+02 
250 3.2433 9.56E+02 5.47E+02 3.2085 8.42E+02 4.70E+02 
300 3.2201 8.60E+02 4.34E+02 3.1855 7.60E+02 3.74E+02 

0.1 

25 3.7470 2.42E+05 4.50E+07 3.7069 1.69E+05 2.75E+07 
30 3.6617 4.84E+04 2.59E+06 3.6225 3.67E+04 1.70E+06 
50 3.4781 5.24E+03 2.28E+04 3.4408 4.37E+03 1.76E+04 

100 3.3160 1.56E+03 1.88E+03 3.2803 1.35E+03 1.58E+03 
150 3.2505 1.07E+03 8.71E+02 3.2156 9.39E+02 7.43E+02 
200 3.2133 8.83E+02 5.71E+02 3.1787 7.79E+02 4.91E+02 
250 3.1885 7.83E+02 4.32E+02 3.1542 6.93E+02 3.73E+02 
300 3.1706 7.21E+02 3.51E+02 3.1365 6.39E+02 3.04E+02 

500 

0.05 

25 4.1065 9.46E+06 4.92E+09 4.0649 5.93E+06 2.79E+09 
30 3.9871 6.54E+05 1.06E+08 3.9467 4.59E+05 6.56E+07 
50 3.7335 2.00E+04 1.57E+05 3.6956 1.62E+04 1.16E+05 

100 3.5127 3.53E+03 5.19E+03 3.4770 3.03E+03 4.30E+03 
150 3.4244 2.10E+03 1.97E+03 3.3896 1.83E+03 1.66E+03 
200 3.3744 1.62E+03 1.18E+03 3.3400 1.42E+03 1.01E+03 
250 3.3412 1.37E+03 8.42E+02 3.3072 1.21E+03 7.24E+02 
300 3.3173 1.23E+03 6.60E+02 3.2835 1.08E+03 5.70E+02 

0.1 

25 3.8595 6.96E+05 1.86E+08 3.8205 4.78E+05 1.13E+08 
30 3.7717 1.10E+05 8.70E+06 3.7335 8.21E+04 5.68E+06 
50 3.5829 8.91E+03 4.88E+04 3.5466 7.39E+03 3.73E+04 

100 3.4160 2.35E+03 3.13E+03 3.3813 2.03E+03 2.62E+03 
150 3.3486 1.56E+03 1.37E+03 3.3146 1.37E+03 1.17E+03 
200 3.3102 1.27E+03 8.79E+02 3.2766 1.12E+03 7.56E+02 
250 3.2847 1.11E+03 6.56E+02 3.2514 9.84E+02 5.67E+02 
300 3.2663 1.02E+03 5.29E+02 3.2331 9.02E+02 4.58E+02 
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For example, take 𝑝0 = 0.05, 𝑘 = 25 and 𝐴𝑅𝐿𝑏 = 370 (𝜀̃ = 0 and 𝐴𝑅𝐿0 = 370). For this setting, 
𝑐𝐼𝐼
∗ = 3.9868.  However, for 𝑝0 = 0.01 and the same values of the other parameters, 𝑐𝐼𝐼∗ = 3.7470. If the 

nominal 𝐴𝑅𝐿0  is increased to 500 we get 𝑐𝐼𝐼∗ = 4.1065. If k is increased to 30, 𝑐𝐼𝐼∗ = 3.8707. If 𝜀̃  is 
increased to 0.1, 𝑐𝐼𝐼∗ = 3.8293. Hence, the adjusted charting constant 𝑐𝐼𝐼∗  decreases with increasing 𝑝0, k, 𝜀̃ 
and 𝐴𝑅𝐿0.  𝐸(𝐶𝐴𝑅𝐿0) and 𝑆𝐷(𝐶𝐴𝑅𝐿0) shows a similar trend.  From table 4 two main points emerge. 
First, all the adjusted charting constants are different from 3 (or 3.0902) for a nominal 𝐴𝑅𝐿0 = 370 (or 
500). Second, even though the adjusted charting constants guarantee that the in-control average is at least 
equal to the lower bound with a high probability, the expectations of the in-control average run length 
values are so high, that it is almost impractical to be implemented, mainly due to the singularity problem 
that is seen in table 4.  Thus, if we need to have a reasonable in-control average run length value under the 
EPC perspective, we need to either diminish the lower bound (or increase the tolerance factor) or the 
nominal significance level, or increase the number of Phase I batches if the number is not costly. In other 
words, we cannot guarantee that the in-control average run-length performance is satisfactory with a desired 
lower bound and a high probability for number of Phase I batches 𝑘 ≤ 20. Hence, the adjusted control 
charts are not recommended in practice for small batch numbers such as 𝑘 ≤ 20. For moderately large 
batch numbers such as 25 < 𝑘 ≤ 50, we may need to lower the nominal significance level or decrease the 
desired lower bound for practical implementation.  

OOC performance for the charts with the EPC adjusted constants are of interest.  This is discussed 
below.  The significance levels are chosen by following the traditional strategy of hypothesis testing but 
they can be any values between 0 and 1. 
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Figure 5: Out-of-control average run lengths of two-sided Phase II Shewhart 𝑋̅ control charts based on the 
conditional perspective, for Phase I batch numbers 100 ≤ 𝑘 ≤ 300 and different parameters, where the red 
solid curves, the yellow solid curves, the green solid curves, the blue solid curves, the purple solid curves 
are for 𝑘 = 100,150,200, 300, respectively. Notice that the black dashed lines are the reference lines for 
different corresponding nominal average run length. 

 
From figure 5, 1) it is clear that as expected, the OOC average run length decreases with increasing 

shifts. 2) The signals will be detected quicker with the higher number of Phase I batches  3) Also, we can 
see an interesting phenomenon here. The slopes will fall more gentle if users have the greater number of 
Phase I batches. In other words, the margin of detection of signals is lower, which contradicts what was 
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observed under the unconditional perspective. From the view of the efficiency of using k, the method under 
the conditional perspective is more suitable for the relative small number of Phase I batches, compared with 
the unconditional perspective.   

We have shown two ways to finding the Phase II charting constants based on the unconditional and 
the conditional perspective based on the EPC, respectively.  In the next section, we apply these charting 
constants in an illustrative example using some simulated data.  

 
2.3.3 Phase II Example 

As mentioned in the introduction, in this paper we find the “correct” charting constants and the 
“correct” process of building the Phase I and II 𝑋̅ control charts for the model in equation (2).  In Phase II, 
we use the parameter estimates obtained from our Phase I reference data: 𝑋̿ = 245.1, 𝜎̂0 = 2.0544 for 𝑘 =
30.  Note that the estimator 𝜎̂0, is adjusted to be unbiased by using the relevant constant 𝑐4 = 0.9914.  The 
Phase II charting statistics (the batch means) of the next 20 batches are simulated in two stages.   In the first 
stage, 10 observations (means of Phase II batches 1 through 10) are simulated from a normal distribution 
with a mean 245.1 and a standard deviation 2.0544. In the second stage, 10 more observations (means of 
Phase II batches 11 through 20) are simulated from a normal distribution with a mean 247.55 (with a 1% 
increase from 245.1) and the same standard deviation as in stage one.  The batch means are shown in table 
5. 

Table 5: Simulated batch means for the Phase II example 

Batch 
Batch 

Means 
Batch 

Batch 

Means 
Batch 

Batch 

Means 
Batch 

Batch 

Means 

1 246.303 6 241.365 11 247.312 16 249.229 
2 246.558 7 246.395 12 251.285 17 245.73 
3 244.875 8 244.533 13 248.312 18 246.87 
4 244.168 9 244.516 14 248.62 19 249.853 
5 246.345 10 243.211 15 246.009 20 248.165 

 
The control charts are shown in figure 6.  Because we have two types of charting constants 

(unconditional and the conditional) that may be used in Phase II, two pairs of control charts (limits) are 
shown. First, under the unconditional perspective, for a nominal 𝐴𝑅𝐿0 = 370, the charting constant 𝑐𝐼𝐼∗ =
2.7776 is found from table 2, which leads to the lower and upper control limits, 239.3938 and 250.8062, 
respectively. Second, given under the EPC perspective, the control limits are obtained as 237.1490 and 
253.0510 for  𝐴𝑅𝐿0 = 370, 𝑝 = 0.05, 𝜀̃ = 0 and the charting constant 𝑐𝐼𝐼∗ = 3.8703 from table 4. Also, 
shown are the reference control limits, 38.9369 and 251.2631, calculated with the charting constant 3, under 
the “3-sigma” rule.  
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Figure 6: Phase II Shewhart 𝑋̅ charts for simulated data  

 
In figure 6, the blue solid line is the central line. The solid red lines are the control limits for the 

charting constant, 3. The dashed lines are the control limits for the charting constant, 2.7776. The dotted 
lines are the control limits for the charting constant, 3.8703 from table 4. The solid curve with dots (from 
batch 1 to batch 10) shows simulated batch means with no shift. The dashed curve with dots (from batch 
11 to batch 20) show simulated batch means with 1% shift in the mean.  Besides, the range of the control 
limits under the unconditional perspective is slightly smaller than the one of the traditional control limits 
which is much smaller than the one under the EPC. Also, we can observe that there is a signal under the 
unconditional perspective and the “3-sigma” rule at batch 12, but no signal occurs at the same place under 
the EPC. First of all, we discuss this event under the unconditional perspective and the “3-sigma” rule. 
Because the batch mean at batch 12 is much closer to the upper limit under the “3-sigma” rule compared to 
the one under the unconditional perspective, which the distance is 0.0214 compared to 0.4783, we consider 
that this event may have higher probability as a false alarm under the “3-sigma” rule. Second, we discuss 
this event under the unconditional perspective and the EPC. In the long run, the process is guaranteed to 
have 𝐴𝑅𝐿0, 370, via the limits under the unconditional perspective, and the 𝐴𝑅𝐿0 is much greater than 370 
if the limits are based on EPC. In the short run, the limits based on the EPC will have fewer signals which 
may lead to fewer false alarm. Because we have no clue about how long is long enough for the runs and, in 
practice, whether we have enough budget to support this long run, if users need to keep fewer false alarms, 
the limits under EPC may be a better option. 

 

3. Summary and Conclusions 

 

 In this paper we consider control charts for II monitoring the mean in both Phase I and Phase II for 
a linear model with two variance components.  We obtain the adjusted control limits correcting for the 
effects of parameter estimation, in each phase, and using the proper performance metric, as recommended 
in the recent literature.  Control charts in Phase I are to initialize and establish a process control. To achieve 
this purpose, charts are determined for a given false alarm probability, the charting statistics and its central 
tendency and dispersion as well as appropriate charting constants. Traditionally, the Shewhart charts 
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monitor the process “subgroup by subgroup” with a chunk of data, and the parameters come from this idea 
as well. In this case, the univariate normal distribution as a framework participates in the estimation and 
the judgement. In section 2.1, we monitor the process all at once, and extend the traditional Shewhart chart 
to our exact Shewhart chart under the multivariate normal distribution with a model that the “between-
batch” variance is involved, comparing with the traditional ignorance of this variance. Many researchers 
upheld the “3-sigma” rule or other similar rule as the decision of the charting constants. However, according 
to our careful study, this rule may be not suitable in our case anymore. The charting constants shall be as 
table 1, whose parts are far from 3. 
 In Phase II, we monitor the process with the control limits developed with the estimated parameters 
in Phase I.  In this Phase, the limitation of the traditional “3-sigma” rule, although popular, is shown here.  
In tables 2 and 4, our results are close to the traditional ones, such as 3 for 𝐴𝑅𝐿0 = 370, only for very large 
number of Phase I batches under the unconditional perspective or the EPC. However, this may not be very 
practical in many applications and exact charting constants are needed. Under the unconditional 
perspective, all charting constants are less than 3 for 𝐴𝑅𝐿0 = 370 in our study and increase as the number 
of Phase I batches increase, so if users keep using the traditional 3-sigma rule, this may cause the inaccuracy 
of their control charts with the relatively small number of Phase I batches in the long run. For example, for 
𝑘 = 20 and 𝐴𝑅𝐿0 = 370, the adjusted Phase II charting constant equals to 2.6665, from table 2, which is 
less than 3. That means users will have lower FAR’s if they chart their data with 3. That is to say that it 
may be not as “powerful” as we expected. We have fewer signals that may lead to a late decision in practice. 
This waste may be costly for many fields.  In the short run, EPC shows us that the traditional method with 
the relatively small number of Phase I batches may cause more false alarms than what is expected. Take 
the number of Phase I batches 𝑘 = 20, the nominal 𝐴𝑅𝐿0 = 370, the nominal 𝑝0 = 0.1 and the tolerance 
factor 𝜀̃ = 0.1. From table 4, the Phase II charting constant equals to 3.8296, which is much greater than 3. 
So the users will have more signals if they insist using 3 which will increase the false alarm rate.  Also, we 
obtain several interesting constants: (1) the lower bound 𝐴𝑅𝐿𝑏. 𝐴𝑅𝐿𝑏 guarantees that the Phase II chart 
runs at the appropriate performance level in the production process with a high probability. (2) The number 
of Phase I batches k. k is potentially related with the cost of examination in Phase I. (3) the adjusted charting 
constants 𝑐𝐼𝐼∗  with affordable the number of Phase I batches k via EPC. 𝑐𝐼𝐼∗  is the major output of our study 
in this study which shows evidences and doubts the “3-sigma” rule. 
 In conclusion, we show that monitoring the average output of a process described by a multiple 
components of variation model, with the Shewhart 𝑋̅ chart, follows a structure similar to that in the case of 
the basic Shewhart model in Phase I and Phase II.   In Phase I, the traditional “3-sigma” charts are not very 
useful and new charting constants are needed.   In Phase II, the “3-sigma” charts can work if one has a very 
large Phase I dataset with a large number of batches, which may be available in some applications. But it 
is a completely different story if the number of Phase I batches available for prospective process monitoring 
is moderate to small.  Here the correct charting constants must be calculated and used as shown here.   
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