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Abstract 
Recently, to design control charts with estimated parameters, a new perspective has 
emerged where the usual chart performance measure, the average run length (ARL), is 
recognized as a random variable that depends on the parameter estimates. In this context, 
a recent idea is to measure the chart performance with the probability of the ARL be greater 
than a specified value. This is called the exceedance probability criterion (EPC). In recent 
years, bootstrap method and approximate formulas were proposed to adjust the Xbar chart 
under normality to guarantee an in-control performance in terms of the EPC. These 
methods provide accurate, but not exact, results. Given this, in this paper, we present a 
summary of two recent papers written by us, under review, where we propose the use of 
an equation in which exact adjustments can be quickly calculated with a software such as 
RStudios. Furthermore, realizing the complexity of all these methods for a regular user, in 
these papers, we also derive a new simpler approximate formula which depends only on 
the well-known chi-square distribution. We show that this new simpler formula provides 
accurate results compared to the already existing ones.  
 
Key Words:  Xbar Control Chart Performance, Conditional Performance, Exceedance 
Probability Criterion, Control Limits Adjustments, Guaranteed In-Control Performance, 
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1. Introduction 
 
The Xbar (or �̅�) Control Chart is still one of the most used tools for monitoring the mean 
of quality characteristics of processes in many industries. To design this chart, its 
parameters (the in-control process mean and the in-control process standard deviation) 
must be estimated from 𝑚 reference (historical) samples each of size 𝑛 when process is in 
control. This is called Phase I. For a detailed literature review on Phase I, see Chakraborti 
et al. (2009) and Jones-Farmer et al. (2014).  
 
It is well-known that when parameters are estimated, the performance of the �̅� Control 
Chart is severely affected. For example, its main performance measure, the in-control 
average run length (𝐴𝑅𝐿0) will be conditioned on the estimated parameters (and, because 
of this, it is often called 𝐶𝐴𝑅𝐿0). The 𝐶𝐴𝑅𝐿0 varies depending on the estimate’s values. 
This is often called the practitioner-to-practitioner variability [see, Saleh et al. (2015a,b)], 
because each practitioner will estimate the chart´s parameters only once and these estimates 
will be different from another practitioner. 
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Saleh et al. (2015a), Jardim et al. (2018a) and others showed that when the amount of Phase 
I data used to calculate the 3-Sigma limits of the �̅� chart is small (such as 25 samples of 
size 5), the variability of the 𝐶𝐴𝑅𝐿0  is large, meaning that the 𝐶𝐴𝑅𝐿0  may be much 
different from the 370.4 (which is the 𝐴𝑅𝐿0 value in the “known parameters case” for the 
�̅�  Chart with the 3-Sigma Limits). The variability of the 𝐶𝐴𝑅𝐿0  results in a small 
probability of the 𝐶𝐴𝑅𝐿0 being smaller than the 370.4 (or a value close to 370.4). 
 
In this context, a recent idea is to adjust the �̅� Control Chart in order to have a large 
probability of the 𝐶𝐴𝑅𝐿0 being greater than a specified value (equal or close to the nominal 
when parameters are known). This is called the exceedance probability criterion (EPC), 
proposed by Albers et al. (2005). To this end, Saleh et al. (2015b) proposed EPC 
adjustments using the bootstrap approach of Gandy and Kvaloy (2013) and Goedhart et al. 
(2017 and 2018) derived approximate formulas for the EPC adjusted limits based on the 
Taylor Series approximation.  
 
In this note, we present a summary of two recent papers written by us, one accepted in the 
Journal of Quality Technology and another one under second review in the Production and 
Operation Management journal). In one paper [henceforth Jardim et al (2018b)], we 
propose the use of an equation in which exact EPC adjustments can be quickly calculated 
with a software such as RStudios. In the second paper [henceforth Jardim et al (2018a)], 
realizing the complexity of all the methods presented in the literature for a regular user, we 
derive a new simpler approximate formula which depends only on the well-known central 
chi-square distribution. We show that this new simpler formula provides accurate results 
compared to the already existing ones. 
 
Before proceeding, it is important to note that when parameters are estimated, or more 
precisely regarding the �̅� Control Chart, when the in-control process mean 𝜇0 and the in-
control process standard deviation 𝜎0  are estimated by �̂�0  and �̂�0 , all these authors 
recommend to calculated the Upper Control Limits (𝑈𝐶�̂�) and the Lower Control Limits 
(𝐿𝐶�̂�) as 
 

𝑈𝐶�̂� = �̂�0 + 𝐿∗
�̂�0

√𝑛
,                                                        (1) 

 

𝐿𝐶�̂� = �̂�0 − 𝐿∗
�̂�0

√𝑛
.                                                         (2) 

 
Where 𝐿∗ is the corrected limited factor (or the adjusted limited factor) that must be found 
to achieve an EPC performance. 𝜇0 is estimated by the well-established estimator for the 
mean: the sample grand mean (�̿�) defined as 
 

 �̂�0 = �̿� =
1

𝑚
∑ �̅�𝑖
𝑚
𝑖=1 ,                                              (3)  

 
where �̅�𝑖 =

1

𝑛
∑ 𝑋𝑖𝑗
𝑛
𝑗=1 , 𝑖 = 1,2, … ,𝑚, 𝑗 = 1,2, … , 𝑛 and 𝑋𝑖𝑗  denotes the 𝑗-th observation 

of the 𝑖-the Phase I sample. For 𝜎0, we choose the highly recommended unbiased pooled 
sample standard deviation estimator (𝑆𝑝/𝑐4,𝑏), see Mahmoud et al. (2010), which is given 
by   
 

 
825



�̂�0 =
𝑆𝑝

𝑐4,𝑏
=

√
1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1

𝑐4,𝑏
,                                                       (4) 

 
where 𝑆𝑖2 =

1

𝑛−1
∑ (𝑋𝑖,𝑗 − �̅�𝑖)

2𝑛
𝑗=1  and 𝑐4,𝑏 is the unbiasing constant for 𝑏 = 𝑚(𝑛 − 1) +

1, where 𝑐4,𝑏 = 𝛤(𝑏) 𝛤((𝑏 − 1) 2⁄ )⁄  and 𝛤 is the gamma function. A good approximation 
for 𝑐4,𝑏 can be obtained by 𝑐4,𝑏 ≈ 4(𝑏 − 1) (4𝑏 − 3)⁄  [see Montgomery (2009)]. 
 

2. Control Limits Adjustments based on the EPC 
 
As noted before, the 𝐶𝐴𝑅𝐿0  is a random variable when the process parameters are 
estimated. The distribution of the 𝐶𝐴𝑅𝐿0 has a large variance when the amount of data 
used to estimate the parameters is small to moderate, such as 𝑚 = 25  and 𝑛 = 5  [see 
Saleh et al. (2015a) and Jardim el al. (2018a)]. According to the EPC adjustments, the focus 
is on limiting the risk that the 𝐶𝐴𝑅𝐿0 value be smaller than a specified tolerated value, in 
other words, the idea is to ensure that the 𝐶𝐴𝑅𝐿0 is at least 370 (or perhaps a value slightly 
smaller), with a high probability. Formally, the EPC adjustments consists in finding the 𝐿∗ 
factor so that the 
 

                     𝑃 (𝐶𝐴𝑅𝐿0 ≥
1

(1+𝜀)
(1/ 𝛼)) = 1 − 𝑝,                                   (5)  

 
for a small value 𝑝 (such as 0.05), where 𝛼 is the nominal false alarm rate specified by the 
chart user (𝛼 = 2(1 − Φ(𝐿))), which is the false alarm rate in the known parameters case 
when the unadjusted limit factor (𝐿) is used. The quantity 𝜀 is called the tolerance factor 
(meaning that we are willing to tolerate a 𝐶𝐴𝑅𝐿0 that is at least 100( 𝜀

1+𝜀
)% smaller than 

the nominal 1 𝛼⁄  with a high probability (that is with a small specified 𝑝). This is the so-
called “Exceedance Probability” criterion [see Albers et al. (2005)].   
 
From Equation (5), it is clear that the exceedance probability depends on the c.d.f of the 
random variable 𝐶𝐴𝑅𝐿0. Taking �̂�0 = �̿� and �̂�0 = 𝑆𝑝/𝑐4,𝑏 presented in the Introduction, 
we in Jardim et al. (2018b), have shown that the exact c.d.f. of the 𝐶𝐴𝑅𝐿0 is given by 
 

𝑃(𝐶𝐴𝑅𝐿0 ≤ 𝑡) = ∫ 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)𝐹

χ1,
2 [
𝑧2

𝑚
]

−1 (1 −
1
𝑡)

(
𝐿∗

𝐶4,𝑏
)
2

)

 
 
𝜙(𝑧)𝑑𝑧

∞

−∞

, 𝑡 ≥ 1       (6) 

 
where 𝐹

χ1
2,[

𝑧2

𝑚
]

−1 (1 − 𝑡) denotes the (1 − 𝑡)-quantile of the distribution of a non-central chi-

squared random variable with 1 d.f. and non-centrality parameter 𝑧
2

𝑚
 and 𝐹χ𝑚(𝑛−1)

2  is the 
c.d.f. of a central chi-square random variable with 𝑚(𝑛 − 1) d.f. So, using (5), (6) and 
substituting [(1 + 𝜀)𝛼]−1 for 𝑡, the adjusted control limit factor (𝐿∗) can be obtained by 
solving the following equation for 𝐿∗ for a given value of 𝛼, 𝑚, 𝑛, 𝜀 and 𝑝. 
 

 
826



∫ 𝐹χ𝑚(𝑛−1)
2

(

 
 
𝑚(𝑛 − 1)𝐹

χ1,
2 [
𝑧2

𝑚
]

−1 (1 − (1 + 𝜀)𝛼)

(
𝐿∗

𝐶4,𝑏
)
2

)

 
 
𝜙(𝑧)𝑑𝑧

∞

−∞

= 𝑝.               (7) 

 
This solution is denoted 𝐿𝐶𝐸∗  and can be found with a software like RStudios.  
Note that, Equation (7) is exact, but the solution must be found using a computer, so some 
have referred to this method as the “numerical method”.  
 
Goedhart et al. (2017) derived an approximated formula for  𝐿∗ using a two-step Taylor 
approximation. Here, their approximate EPC formula for 𝐿∗  is denoted by 𝐿𝐶𝐴1∗  and is 
given by 
 

𝐿𝐶𝐴1
∗ = 𝐿 +

Φ−1(1 − 𝑝) − 𝑔(𝐿)

𝑔′(𝐿)
.                                                (8) 

 
Where 𝑔(𝐿) and 𝑔′(𝐿) are functions of the expectation and the variance of the conditional 
false alarm rate, 𝐶𝐹𝐴𝑅 (which is the reciprocal of the 𝐶𝐴𝑅𝐿0). The expressions of 𝑔(𝐿) 
and 𝑔′(𝐿) are presented in Appendix A. From (7), it is possible to derive an alternative and 
simpler approximate formula for 𝐿∗ = 𝐿𝐶𝐴2

∗  which is given by 
 

𝐿𝐶𝐴2
∗ = 𝐶4,𝑏√𝑚(𝑛 − 1)

𝐹
χ1,2 [

1
𝑚
]

−1 (1 − (1 + 𝜀)𝛼)

𝐹χ
𝑚(𝑛−1)
2
−1 (𝑝)

,                               (9) 

 
where 𝐹χ𝑚(𝑛−1)

2
−1 (𝑝)  denotes the 𝑝 -quantile of a central chi-square distribution with 

𝑚(𝑛 − 1)  degrees of freedom and 𝐹
χ1,
2 [

1

𝑚
]

−1 (1 − (1 + 𝜀)𝛼)  denotes the (1 − (1 + 𝜀)𝛼) -

quantile of a non-central chi-square distribution with 1 degree of freedom and non-
centrality parameter 1

𝑚
. Formula (9) is given by Goedhart et al. (2018). Note that 𝐿𝐶𝐴2∗  

requires the information of a non-central chi-square distribution, which is not tabulated in 
many text books in Statistics and not available in popular software such as Excel, so its 
calculation will require a relatively advanced statistical skills of the practitioner. Given 
this, we in Jardim et al. (2018a) derived the following even simpler approximate formula 
for 𝐿∗ (denoted here by 𝐿𝐶𝐴3∗ ). 
 

𝐿𝐶𝐴3
∗ = 𝐶4,𝑏√(𝑛 − 1)(𝑚 + 1)

𝐹
χ1
2
−1(1 − (1 + 𝜀)𝛼)

𝐹χ
𝑚(𝑛−1)
2
−1 (𝑝)

                                 (10) 

 
Note that there is no non-centrality parameter in (10), since 𝐹χ12

−1(1 − (1 + 𝜀)𝛼) is the 
(1 − (1 + 𝜀)𝛼)-quantile of a central chi-square distribution with 1 degree of freedom. 
 
Finally, Saleh et al. (2015b) suggested finding 𝐿∗ using the parametric bootstrap simulation 
approach of Gandy and Kvaløy (2013). In order to do this, the users, with the help of a 
software (Like SAS, RStudios, etc.), should generate 𝐵  bootstrap estimates of the in-
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control process mean and standard deviation ( 𝜇𝑘∗ ,  𝜎𝑘∗ ), 𝑘 = 1,2,… , 𝐵 , with 𝜇𝑘∗  

𝑁(�̿�, 𝑆𝑝
2 𝑛𝑚𝑐4,𝑏

2⁄ )  and 𝜎𝑘∗   √𝑆𝑝2
𝜒𝑣
2

𝑣𝑐4,𝑏
2  with 𝑣 = 𝑚(𝑛 − 1) . Considering that �̿�  and 

𝑆𝑝 𝑐4,𝑏⁄  are respectively the real in-control process mean and standard deviation and 𝜇𝑘∗  
and 𝜎𝑘∗ are respectively the estimator of �̿� and 𝑆𝑝 𝑐4,𝑏⁄  (following the bootstrap method), 
for each 𝜇𝑘∗  and 𝜎𝑘∗2, the user has to find the value of 𝐿𝑘∗  using the following equation: 
 

𝐿𝑘
∗ =

𝑆𝑝
√
𝐹

χ1,2 [
𝜇𝑘
∗−�̿�

𝑆𝑝 𝑐4,𝑏⁄ √𝑛]

2
−1 (1 − (1 + 𝜀)𝛼)

𝐶4,𝑏𝜎𝑘
∗ ,   𝑘 = 1,2,… , 𝐵                 (11) 

 
where 𝐹

χ1,
2 [

𝜇𝑘
∗ −�̿�

𝑆𝑝 𝑐4,𝑏⁄
√𝑛]

2
−1 (1 − (1 + 𝜀)𝛼)  denotes the (1 − (1 + 𝜀)𝛼) th quantile of the 

distribution of a non-central qui-square random variable with 1 degree of freedom and non-

centrality parameter given by ( 𝜇𝑘
∗−�̿�

𝑆𝑝 𝑐4,𝑏⁄
√𝑛)

2

.  Finally, the required 𝐿∗ = 𝐿𝑏𝑜𝑜𝑡
∗  is the (1 −

𝑝)th quantile of the collection of bootstrap estimators (𝐿1∗ , 𝐿2∗ , … , 𝐿𝐵
∗ ). 

 
3. Results and Discussion 

 
For brevity, we will only present the results for 𝛼 = 0.0027  (the value that, in the 
parameters-known case and under the assumption of data normality, corresponds to a 𝐴𝑅𝐿0 
of 370.4), 𝑛 = 5 , 𝜀 = 0% , 𝑝 = 5%  (i.e., the following desired exceedance 
probabilities: 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4(1 + 𝜀)−1) = 1 − 𝑝 , or equivalently 𝑃(𝐶𝐴𝑅𝐿0 ≥
370.4) = 95%). Also, we considered the estimator presented in the Introduction and the 
following values of 𝑚: 𝑚 = 25,50,75,100,150,200,250. Results for different values of 𝛼, 
𝜀, 𝑝, 𝑚 and 𝑛 can be easily generated using the equations and methods presented in this 
note. 
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Table 1 - Values of 𝐿∗ and the resulting values of 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4(1 + 𝜀)−1) for 𝑛 =
5, 𝛼 = 0.0027, 𝜀 = 0%, 𝑝 = 5% 

 

 
 

m13
3.00

38.23%
3.73

94.75%
3.70

94.56%
3.69

94.36%
3.70

94.59%
3.72

95.00%
15

3.00
38.74%

3.69
95.43%

3.65
94.80%

3.63
94.36%

3.64
94.55%

3.65
95.00%

20
3.00

39.74%
3.56

95.10%
3.54

95.06%
3.52

94.38%
3.53

94.51%
3.54

95.00%
25

3.00
40.50%

3.49
95.60%

3.47
95.15%

3.45
94.41%

3.46
94.51%

3.47
95.00%

50
3.00

42.69%
3.32

95.56%
3.31

95.11%
3.30

94.57%
3.30

94.61%
3.31

95.00%
75

3.00
43.82%

3.24
94.98%

3.24
95.03%

3.24
94.67%

3.24
94.69%

3.24
95.00%

100
3.00

44.54%
3.20

94.66%
3.20

94.99%
3.20

94.73%
3.20

94.75%
3.20

95.00%
150

3.00
45.45%

3.16
94.74%

3.16
94.94%

3.16
94.81%

3.16
94.81%

3.16
95.00%

200
3.00

46.02%
3.13

94.25%
3.14

94.92%
3.14

94.85%
3.14

94.85%
3.14

95.00%
250

3.00
46.41%

3.12
95.42%

3.12
94.91%

3.12
94.88%

3.12
94.88%

3.12
95.00%

E
xact E

quations 
[Jardim

 et al. 
(2018b)]

U
nadjusted L

im
its 

(3-Sigm
a L

im
its)

B
ootstrap        

[Saleh et al. 
(2015b)]

A
pproxim

ation 1 
[G

oedhart et al. 
(2017)]

A
pproxim

ation 2 
[G

oedhart et al. 
(2018)]

O
ur A

pproxim
ation 

[Jardim
 et al. 

(2018a)]
 

  
 
 
 
 
 
≥
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∗
  

 
 
 
 
 
≥
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∗
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∗
  

 
 
 
 
 
≥
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∗
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∗
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Table 1 shows that the five EPC adjustment methods generate extremely similar results, 
i.e., for all values of 𝐿𝑏𝑜𝑜𝑡∗  , 𝐿𝐶𝐴1∗ , 𝐿𝐶𝐴2∗ , 𝐿𝐶𝐴3∗  and 𝐿𝐶𝐸∗ , the 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) is very 
close to 95%, being the method proposed by Jardim et al. (2018b) the most precise one.  
 
As noted in the Introduction, for the unadjusted 3-Sigma Limits (𝐿 = 3), the probability of 
the 𝐶𝐴𝑅𝐿0 be larger than 370.4 is very small (see the first column in orange in Table 1), 
meaning that chances are higher that the average number of Phase 1 samples until a false 
alarm will be smaller than the target 370.4 with unadjusted limits. 
 
The bootstrap method proposed by Saleh et al. (2015b) has the disadvantage of generating 
different values of 𝐿𝑏𝑜𝑜𝑡∗  every time the bootstrap runs. As can be checked in Appendix A, 
the approximate method 1 of Goedhart et al. (2017) requires several numerical integrals 
and derivative, which makes this method the most complex one. The second approximation 
proposed by Goedhart et al. (2018) is much simpler than the first, but it still requires the 
computation of non-central chi-squared distribution which is not presented in some 
software, such the Excel, and it is not tabulated in the major statistical books. The method 
proposed by Jardim et al. (2018b) has the advantage of providing extremely accurate results 
but it still requires the computation of the quantile of a non-central chi-squared distribution, 
the computation of a numerical integral and a search algorithm. Because of this, we indicate 
𝐿𝐶𝐸
∗  to be implemented in Statical Quality Conbtrol Softwares. Finally, the simplest method 

which also provide good results is the approximate formula of Jardim et al. (2018a) which 
is only a function of central chi-squared distribution presented in many software and 
tabulated in all statistical books. 
 

6. Conclusions 
 
In the present note, we summarized two recent papers written by us which propose 
adjustments to the �̅� control chart limits with estimated parameters. These adjustments 
guarantee an in-control performance in terms of what is known as the Exceedance 
Probability Criterion (EPC), which basically guarantee that the in-control average run 
length conditioned on the estimated parameters will be greater than a nominal/target value 
with a large probability.  
 
We compare the EPC adjustment methods proposed in our two papers with other methods 
presented in the literature. Our conclusion is that all the EPC adjustment methods generate 
very similar results. We consider the Approximate Method derived in one of our papers 
[Jardim et al. (2018a)], the simplest method, because it just depends on the quantiles of a 
central chi-square distribution which is tabulated in all statistical text books and presented 
in most basic software (such as Excel). All the other adjustment methods will require a 
more advanced skill in statistics, like the calculation of the quantile of a non-central chi-
squared distribution presented in the Approximate Method 2, given by Goedhart et al. 
(2018), or numerical integrals presented in the Exact Method given by us in Jardim et al. 
(2018b) and in the Approximate Method 1 given by Goedhart et al. (2017). However, we 
think that our exact solution in Jardim et al. (2018b) is indicated to be incorporated in 
Statistical Quality Control Software which generate the control limits automatically, since 
this method generate extremely precise results without requiring much computational time.  
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Appendix A – Expressions of 𝒈( ) and 𝒈′( ) on Equation (8) 
 
Here we present the expressions of 𝑔(𝐿) and𝑔′(𝐿) to calculate the approximation showed 
in (8).  
 

𝑔(𝐿) = 3√(1 + 𝜀)𝛼
3 𝑓𝐸(𝐿)

2 3⁄

𝑓𝑉(𝐿)
1 2⁄ − 3

𝑓𝐸(𝐿)

𝑓𝑉(𝐿)
1 2⁄ +

1

3

𝑓𝑉(𝐿)
1 2⁄

𝑓𝐸(𝐿)
 and  

 

𝑔′(𝐿) = 3√(1 + 𝜀)𝛼
3

𝐵 − 3𝐶 +
1

3
𝐷 with 𝐶 =

𝑓𝐸
′(𝐿)𝑓𝑉(𝐿)

1 2⁄ −𝑓𝐸(𝐿)
1

2
𝑓𝑉(𝐿)

−1 2⁄ 𝑓𝑉
′(𝐿)

𝑓𝑉(𝐿)
, 

 

𝐵 =
2

3
𝑓𝐸(𝐿)

−1 3⁄ 𝑓𝐸
′(𝐿)𝑓𝑉(𝐿)

1 2⁄ −𝑓𝐸(𝐿)
2 3⁄ 1

2
𝑓𝑉(𝐿)

−1 2⁄ 𝑓𝑉
′(𝐿)

𝑓𝑉(𝐿)
 , 𝐷 =

1

2
𝑓𝑉(𝐿)

−1 2⁄ 𝑓𝑉
′(𝐿)𝑓𝐸(𝐿)−𝑓𝑉(𝐿)

1 2⁄ 𝑓𝐸
′(𝐿)

𝑓𝐸(𝐿)
2 .  
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Finally, 𝑓𝐸(𝐿) = 𝐸(𝐶𝐹𝐴𝑅), 𝑓𝑉(𝐿) = 𝑉(𝐶𝐹𝐴𝑅), 𝑓𝐸′(𝐿) =
𝑑𝐸(𝐶𝐹𝐴𝑅)

𝑑𝐿
 and 𝑓𝑉′(𝐿) =

𝑑𝑉(𝐶𝐹𝐴𝑅)

𝑑𝐿
.  

 
Following below, we present the expressions of 𝐸(𝐶𝐹𝐴𝑅), 𝑉(𝐶𝐹𝐴𝑅), 𝑓𝐸′(𝐿) and 𝑓𝑉′(𝐿).  
 
Since 𝐶𝐹𝐴𝑅 is expressed by  
 

𝐶𝐹𝐴𝑅 = 1 − (Φ(
𝑍

√𝑚
+

𝐿∗

𝑐4,𝑏
√

𝑌

𝑚(𝑛−1)
) − Φ(

𝑍

√𝑚
−

𝐿∗

𝑐4,𝑏
√

𝑌

𝑚(𝑛−1)
)), 

 
where 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝

2 𝜎0
2⁄  follows a central chi-square distribution with 𝑚(𝑛 −

1) and 𝑍 = (
�̿�−𝜇0

𝜎0
)√𝑚𝑛 follows a standard normal distribution, the 𝐸(𝐶𝐹𝐴𝑅) can 

be calculated by 
 

𝐸(𝐶𝐹𝐴𝑅) = ∫ ∫ (𝐶𝐹𝐴𝑅)
∞

0

∞

−∞

𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧. 

 
𝑉(𝐶𝐹𝐴𝑅) is given by 𝑉(𝐶𝐹𝐴𝑅) = 𝐸(𝐶𝐹𝐴𝑅2) − 𝐸2(𝐶𝐹𝐴𝑅), where 
 

𝐸(𝐶𝐹𝐴𝑅2) = ∫ ∫ (𝐶𝐹𝐴𝑅)2
∞

0

∞

−∞

𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧. 

 
Since 𝑓𝐸′(𝐿) =

𝑑𝐸(𝐶𝐹𝐴𝑅)

𝑑𝐿
, one has: 

 

𝑓𝐸
′(𝐿) = ∫ ∫ −

1

𝐶4,𝑏
√

𝑌

𝑚(𝑛 − 1)
𝐺

∞

0

∞

−∞

𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧, 

 

where 𝐺 = 𝜙 (
𝑍

√𝑚
+

𝐿

𝐶4,𝑏
√

𝑌

𝑚(𝑛−1)
) + 𝜙 (

𝑍

√𝑚
−

𝐿

𝐶4,𝑏
√

𝑌

𝑚(𝑛−1)
). 

 
Finally,  

𝑓𝑉
′(𝐿) =

𝑑𝑉(𝐶𝐹𝐴𝑅)

𝑑𝐿
=
𝑑𝐸(𝐶𝐹𝐴𝑅2)

𝑑𝐿
− 2 𝐸(𝐶𝐹𝐴𝑅)𝑓𝐸

′(𝐿), 
 
where 

𝑑𝐸(𝐶𝐹𝐴𝑅2)

𝑑𝐿
= ∫ ∫ 2𝐶𝐹𝐴𝑅

∞

0

∞

−∞

(−
1

𝐶4,𝑏
√

𝑌

𝑚(𝑛 − 1)
𝐺)𝜙(𝑧)𝑓𝑌(𝑦) 𝑑𝑦 𝑑𝑧. 
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