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Abstract 

Since some works in SPC have revealed that a large amount of Phase I data is required to 
attain an appropriate specified Phase II performance of control charts, some authors have 
proposed to adjust the control limits in order to achieve the conditional (given the 
parameter estimates) in-control performance for a given amount of Phase I data. The use 
of statistical tolerance limits as adjusted control limits is considered in the recent literature 
on �̅� charts based on the conditional performance perspective, e.g., corrected control limits 
are obtained for guaranteeing a tolerated conditional false alarm rate ( 𝐶𝐹𝐴𝑅 ) or, 
equivalently, the conditional in-control average run length, with a specified high 
probability. In this paper, assuming normality, we propose the required adjustments for the 
two-sided 𝑆2 chart control limits to ensure a specified 𝐶𝐹𝐴𝑅, where the adjusted control 
limits are based on an equal-tailed tolerance interval for sample variances. This ensures 
that the interval between the adjusted lower and upper limits contain at least a specified 
proportion of the center of the 𝑆2 distribution with a certain (specified) high confidence.  
 

Key Words: 𝑆2 control charts, adjusted control limits, estimated parameters, conditional 
control chart performance, tolerance interval, phase I 
 
 

1. Introduction 

 
The 𝑆2  control chart is one of the most extensively used tool to monitor the process 
variability in manufacturing and service processes. The in-control (𝐼𝐶) process variance 
𝜎0

2 is usually estimated from a reference sample consisting of 𝑚 independent samples or 
subgroups of size 𝑛 in what is called the Phase I analysis (for overviews of Phase I, see 
Chakraborti et al., 2009, and Jones-Farmer et al., 2014). The control limits of the 𝑆2 chart 
are constructed on the basis of the estimate of the process variance to be used in prospective 
process monitoring (called Phase II), where samples (also of size 𝑛) are collected over a 
certain period. Each Phase II sample is used to compute a corresponding sample variance 
that is compared with the control limits in order to detect an out-of-control state. When the 
𝐼𝐶  process parameters are unknown and are estimated in Phase I, the Phase II chart 
performance may be extremely different from the nominal (unrealistic parameter-known 
case in which no Phase I is needed). The review of several studies that evaluate the effect 
of estimation error on control chart performance is presented, e.g., in Jensen et al. (2006) 
and Psarakis et al. (2014). 
 
To study the performance and design of control charts when process parameters are 
estimated, most researchers focused on the unconditional run length (𝑅𝐿) distribution of 
the chart, that is, on the marginal distribution of the number of plotting statistics until a 
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signal, or, equivalently, until a variance sample falls outside the 𝑆2 control limits during 
Phase II. It is known as the unconditional perspective. One of the most customary chart 
performance measure is the average of such unconditional 𝑅𝐿 distribution, i.e., the so-
called unconditional average run length (𝐴𝑅𝐿). The 𝐴𝑅𝐿 is impacted by estimation error 
and then it becomes different from the value of the counterpart known parameter case [see, 
for the case of 𝑆2 control chart, Chen (1998), Maravelakis et al. (2002) and Castagliola et 
al. (2009)]. The unconditional 𝑅𝐿 distribution of the 𝑆2 chart can be obtained by averaging 
over the distribution of the 𝜎0

2 estimator. A performance measure under the unconditional 
perspective (an associated measure of the unconditional 𝑅𝐿 distribution) is an “average” 
performance over a too much “large” number of control charts, which are constructed with 
the same “large” number of parameter estimates, rather than a performance of a specific 
control chart. The difference of these parameter estimates, which are based on the different 
reference samples arising from the same Phase I 𝐼𝐶 process, is called by Saleh et al. (2015) 
for �̅� and 𝑋 charts the practitioner-to-practitioner variability. However, since there is only 
one reference sample in practical applications, the “real” 𝑅𝐿 distribution (and its various 
attributes) must be always conditioned on only one of these parameter estimates obtained 
from a specific Phase I reference sample. This is the rising perspective called the 
conditional perspective that considers the practitioner-to-practitioner variability and has 
been advocated in recent years (see, for the case of 𝑆2 and 𝑆 charts, Epprecht et al. (2015), 
Faraz et al. (2015, 2017) and Goedhart et al. (2017)). These authors emphasized the 
practical importance of focusing on the distribution of conditional performance measures 
(such as the conditional false-alarm rate 𝐶𝐹𝐴𝑅 or the conditional in-control average run 
length 𝐶𝐴𝑅𝐿0) and some of their properties, (such as the standard deviation of the 𝐶𝐴𝑅𝐿0 
or some extreme quantiles of the 𝐶𝐹𝐴𝑅 ) rather than on unconditional performance 
measures when analyzing the effect of Phase I estimation on control charts performance. 
 
Researches on the performance of the 𝑆2  control chart when 𝜎0

2  is estimated have 
concluded that the amount of Phase I reference data must be larger than the amount of 
recommended data in many books and manuals for achieving similar performance of charts 
with known process parameter. For instance, Montgomery (2012) suggested number of 
subgroups 𝑚 = 20  to 30  and sample size 𝑛 = 4  or 5 . This finding in the chart 
performance has been revealed based on the unconditional perspective (e.g., Chen (1998), 
Maravelakis et al. (2002) and Castagliola et al. (2009)) as well as the conditional 
perspective (see, e.g., Epprecht el al. (2015)). Since Epprecht studied only the effect of the 
amount of Phase I data on the Phase II performance of the one-sided upper 𝑆2 control chart, 
in this work, we analyze this subject for the case of the two-sided 𝑆2 control chart.   
 
Because the Phase II performance measure of charts with estimated parameter is much less 
predictable than those with known parameter and the fact that a large amount of Phase I 
data is required to attain a desired performance, which can be difficult to fulfill in practice, 
some authors have proposed to adjust the control limits (or, specifically, the chart factors). 
This adjustment can allow us to achieve either an unconditional performance close to the 
known parameter case or a specified tolerated conditional 𝐼𝐶  performance handling a 
practical amount of Phase I data.  
 
We assume normality of the underlying (process) data, and consider the charts with 
probability and equal-tailed limits (established for a specified false-alarm rate) instead of 
“three-sigma” limits, as it has been suggested and justified by Epprecht et al. (2015), 
Woodall (2017) and Diko et al. (2017). We consider that the Phase I (multi-sample) 
estimator used for the 𝐼𝐶 process variance is the pooled variance (𝑆𝑝

2). 
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The remainder of this paper is organized as follows: Section 2 presents the relation between 
the performance of the two-sided 𝑆2 control chart with estimated parameter and the two-
sided tolerance intervals for S2. This section also provided the minimum amounts of Phase 
I data that guarantee a desired conditional 𝐼𝐶 performance of the two-sided 𝑆2 chart. In 
Section 3, the adjustments of the two-sided 𝑆2 chart under the conditional perspective are 
examined. Some conclusions and a summary are given in Section 4. 
 

2. Performance of the 𝑺𝟐 control chart with estimated parameter and two-sided 

tolerance intervals for 𝐒𝟐  

 

The upper and lower control limits of the two-sided 𝑆2  control chart (𝑈𝐶�̂�  and 𝐿𝐶�̂� , 
respectively) are given by 

𝑈𝐶�̂� =
𝜒𝑛−1,1−𝛼∗ 2⁄

2

(𝑛−1)
�̂�0

2 = 𝑈∗�̂�0
2,     (1) 

𝐿𝐶�̂� =
𝜒𝑛−1,𝛼∗ 2⁄

2

(𝑛−1)
�̂�0

2 = 𝐿∗�̂�0
2,     (2) 

where 𝑛 is the sample size in Phases I and II, �̂�0
2 is the Phase I estimator of the 𝐼𝐶 process 

variance (𝜎0
2) and 𝜒𝑛−1,𝑞

2  denotes the 𝑞-quantile of the distribution of a chi-square variable 
with 𝑛 − 1 degrees of freedom (df). In addition, (𝐿∗,𝑈∗) are the adjusted two-sided lower 
and upper control limit factors. These adjusted factors depend on the value of the adjusted 
chart parameter 𝛼∗  that will be found according to a specified nominal 𝐼𝐶  chart 
performance, given the amount of Phase I data (𝑚 random samples (subgroups) each of 
size 𝑛) to estimate 𝜎0

2 and its chosen estimator (�̂�0
2). Thus, the computation of the resulting 

adjusted limits factors takes into account the parameter estimation and the practitioner-to-
practitioner variability. On the other hand, when the control limits (Equations (1)-(2)) are 
set based on the corresponding traditional (unadjusted) control limits factors, 𝛼∗ is pre-
specified and equals the nominal false alarm rate 𝛼 (frequently, 𝛼∗ = 𝛼 = 0.0027), and 
then these factors do not depend on the amount of Phase I data. In the case of adjusted 
factors, 𝛼∗ converges to the nominal value 𝛼 as the amount of Phase I data (𝑚𝑛) increases. 

When the 𝐼𝐶 process variance (𝜎0
2) is estimated, the realized values of the Phase II control 

limits and, therefore, the actual Phase II chart performance depend on the realized value of 
the estimator �̂�0

2 (that is, the particular estimate). To calculate �̂�0
2, the user must choose an 

estimator. In this paper, we consider the unbiased pooled sample variance (𝑆𝑝
2) to estimate 

𝜎0
2, that is, 𝑆𝑝

2 =
1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1 , where 𝑆𝑖

2 =
1

𝑛−1
∑ (𝑋𝑖,𝑗 − �̅�𝑖)

2𝑛
𝑗=1  is the 𝑖-th variance sample, 

�̅�𝑖 =
1

𝑛
∑ 𝑋𝑖𝑗

𝑛
𝑗=1  is the 𝑖-th mean sample (𝑖 = 1,2, … , 𝑚 and 𝑗 = 1,2, … , 𝑛) and 𝑋𝑖𝑗 is the 𝑗-

th observation of the 𝑖-th sample in Phase I. 𝑋𝑖𝑗 is considered normally distributed with 
mean 𝜇0 and variance 𝜎0

2. 
 
2.1 The conditional average run lengths 

The probability of a signal is an important property of the Phase II performance of 𝑆2 
control chart. The conditional probability of a signal (𝐶𝑃𝑆) is the probability that each 𝑙-th 
sample variance (𝑙 = 𝑚 + 1, 𝑚 + 2, …), of size 𝑛 in the monitoring process (Phase II), falls 
outside the estimated (given the particular estimate �̂�0

2 ) control limits range given by 
Equations (1)-(2). Thus, the conditional (given �̂�0

2) 𝑅𝐿 distribution [i.e., the distribution of 
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the number of Phase II sample-variance estimates (𝑆𝑙
2) until a signal] is geometric with 

probability of success equal to 𝐶𝑃𝑆. 

To express the 𝐶𝑃𝑆 in mathematical terms, let's define the variance of the Phase II analysis 
(process monitoring) as 𝜎2. Thus, according to Equations (1)-(2), with the estimator 𝑆𝑝

2 
used in place of �̂�0

2  and considering the fact that 𝑆𝑙
2(𝑛 − 1) 𝜎2⁄  follows a chi-square 

distribution with 𝑛 − 1 df, the 𝐶𝑃𝑆𝑡𝑤𝑜, for the two-sided 𝑆2 control chart is given by 

𝐶𝑃𝑆 = 1 − 𝑃(𝐿𝐶�̂�  ≤  𝑆𝑙
2 ≤ 𝑈𝐶�̂�) = 

1 − (𝐹𝜒𝑛−1
2 (

𝑆𝑝
2

𝜎0
2

𝜎0
2

𝜎2 𝜒𝑛−1,1−𝛼∗ 2⁄
2 ) − 𝐹𝜒𝑛−1

2 (
𝑆𝑝

2

𝜎0
2

𝜎0
2

𝜎2 𝜒𝑛−1,𝛼∗ 2⁄
2 )),    (3) 

where 𝐹𝜒𝑛−1
2  denotes the cumulative distribution function (cdf) of a chi-square random 

variable with 𝑛 − 1  df. Next, we represent the change in the process variance by the 
variance ratio 𝛾2 = 𝜎2 𝜎0

2⁄  , i.e., the ratio between the process variances in Phase II and 
Phase I. Also, note that 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝

2 𝜎0
2⁄  follows a chi-square distribution with 

𝑚(𝑛 − 1) df. Thus, given a value of the variance ratio (𝛾2), the 𝐶𝑃𝑆 is a function of the 
random variable 𝑌 . Since the conditional 𝑅𝐿  follows a geometric distribution, the 
conditional average run length (𝐶𝐴𝑅𝐿(𝑌; 𝛾2)) for the two-sided 𝑆2 chart is the reciprocal 
value of the 𝐶𝑃𝑆(𝑌; 𝛾2) and, from Equation (3), can be found as        

𝐶𝐴𝑅𝐿(𝑌; 𝛾2) = [𝐶𝑃𝑆(𝑌; 𝛾2)]−1 

= [1 − (𝐹𝜒𝑛−1
2 (

𝑌

𝛾2𝑚(𝑛−1)
𝜒𝑛−1,1−𝛼∗ 2⁄

2 ) − 𝐹𝜒𝑛−1
2 (

𝑌

𝛾2𝑚(𝑛−1)
𝜒𝑛−1, 𝛼∗ 2⁄  

2 ))]

−1

.    (4) 

Note that, when 𝛾2 ≠ 1, the process is out of control, i.e., the variance in Phase II is 
different from the 𝐼𝐶  variance in Phase I ( 𝜎2 ≠ 𝜎0

2 ). Accordingly, when 𝛾2 = 1  the 
process is 𝐼𝐶. In this case, the 𝐶𝑃𝑆 is named the conditional false alarm rate (𝐶𝐹𝐴𝑅), i.e., 
𝐶𝐹𝐴𝑅(𝑌) = 𝐶𝑃𝑆(𝑌; 𝛾2 = 1) and the 𝐶𝐴𝑅𝐿 is named the conditional in-control average 
run length (𝐶𝐴𝑅𝐿0), i.e., 𝐶𝐴𝑅𝐿0(𝑌) = 𝐶𝐴𝑅𝐿(𝑌; 𝛾2 = 1) = (𝐶𝐹𝐴𝑅(𝑌))

−1.  
 
2.2 Relation between the distribution of the conditional average run lengths and the 

two-sided tolerance intervals for 𝐒𝟐  

The probability of a signal is an important property of the Phase II performance of 𝑆2 
control chart. The conditional probability of a signal (𝐶𝑃𝑆) is the probability that each 𝑙-th 
sample variance (𝑙 = 𝑚 + 1, 𝑚 + 2, …), of size 𝑛 in the monitoring process (Phase II), falls 
outside the estimated (given the particular estimate �̂�0

2 ) control limits range given by 
Equations (1)-(2). Thus, the conditional (given �̂�0

2) 𝐼𝐶 𝑅𝐿 distribution [i.e., the distribution 
of the number of Phase II sample-variance estimates (𝑆𝑙

2) until a false alarm (signal)] is 
geometric with probability of success equal to 𝐶𝐹𝐴𝑅 
 

𝐹𝑪𝑨𝑹𝑳𝟎
(𝑡) = 1 − 𝐹𝐶𝐹𝐴𝑅(𝑡−1) = 1 − 𝑃(𝑃(𝐿𝐶�̂�  ≤  𝑆𝑙

2 ≤ 𝑈𝐶�̂�) ≥ 1 − 𝑡−1)       (5) 
 
Sarmiento et al. (2018) studied the exact two-sided tolerance intervals for sample variances 
(𝑆2) and they provided the lower and upper tolerance factors that are equivalent to the 
adjusted two-sided lower and upper control limit factors (𝐿∗,𝑈∗) given in Equations (1) and 
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(2). The (1 − 𝛼, 𝛾) two-sided tolerance interval (𝑆𝐿𝑡𝑤𝑜

2 , 𝑆𝑈𝑡𝑤𝑜

2 ) for the sample variance 
contains at least a specified (1 − 𝛼)100% of the population of the sample variances (or, 
equivalently, the distribution of 𝑆2) with a specified probability 𝛾, and it is given by 
 

𝑃𝑆𝑝
2 (𝑃𝑆2 (�̂�𝐿𝑡𝑤𝑜

∗
2 ≤ 𝑆2 ≤ �̂�𝑈𝑡𝑤𝑜

∗
2  | 𝑆𝑝

2) ≥ 1 − 𝛼) 

= 𝑃𝑌 (𝑃𝑊 (
𝑌

𝑚(𝑛−1)
𝜒

𝑛−1,   
𝛼𝑡𝑤𝑜

∗

2

2 ≤ 𝑊 ≤
𝑌

𝑚(𝑛−1)
𝜒

𝑛−1,   1− 
𝛼𝑡𝑤𝑜

∗

2

2 | 𝑌) ≥ 1 − 𝛼) = 𝛾          (6)       

             
where 𝑊 = (𝑛 − 1)𝑆2 𝜎2⁄  and 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝

2 𝜎2⁄ ,  so that 𝑊  and 𝑌  each follows a 
chi-square distribution with (𝑛 − 1) and 𝑚(𝑛 − 1)  d.f., respectively, and 𝑊  and 𝑌  are 

independent random variables. Also, �̂�𝐿𝑡𝑤𝑜
∗

2 = 𝐿𝑡𝑤𝑜
∗ 𝑆𝑝

2 =

𝜒
𝑛−1,

𝛼𝑡𝑤𝑜
∗

2

2

𝑛−1
𝑆𝑝

2   and  �̂�𝑈𝑡𝑤𝑜
∗

2 =

𝑈𝑡𝑤𝑜
∗ 𝑆𝑝

2 =

𝜒
𝑛−1,1−

𝛼𝑡𝑤𝑜
∗

2

2

𝑛−1
𝑆𝑝

2 are the lower and the upper tolerance limits when the variance is 
estimated, and 𝐿𝑡𝑤𝑜

∗  and 𝑈𝑡𝑤𝑜
∗ , respectively, denote the lower and upper tolerance factors. 

The adjusted value of 𝛼  is 𝛼𝑡𝑤𝑜
∗  (𝛼𝑡𝑤𝑜

∗ ≤ 𝛼) that needs to be determined to obtain the 
tolerance limits. Because the two-sided tolerance interval for 𝑆2  (Equation (6)) is 
equivalent to the cdf of the 𝐶𝐹𝐴𝑅  (Equation (5)), we can use the formulation of the 
tolerance factors from Sarmiento et al. (2018) in order to analyze the adjusted control limits 
of 𝑆2 chart.       
 
2.3 Minimum number of Phase I samples (𝒎) that guarantees a conditional 𝑰𝑪 

performance of the 𝑺𝟐 charts using 𝑬𝑷𝑪 

In the context of parameter estimation in control chart, a relevant practical question for the 
practitioner is the amount of the Phase I data that can ensure a “satisfactory” 𝐼𝐶 Phase II 
performance, that is, when the unadjusted control limits are used [using 𝛼 instead of 𝛼∗ in 
Equations (1) and (2)]. This problem can be addressed using the Exceedance Probability 
criterion (𝐸𝑃𝐶), which was proposed by Albers et al. (2005), as follow: the minimum 
number of Phase I reference samples (𝑚) that guarantees, with a specified high probability 
1 − 𝑝 (e.g., 0.9), that the 𝐶𝐴𝑅𝐿0 is at least a tolerated value, which is usually a bit smaller 
than the 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐴𝑅𝐿0  (e.g., the 90%  of 370.4 ). This formulation can be stated as 
follows: given the values of 𝑛, 𝛼∗ = 𝛼, 𝜀 and 𝑝, the minimum value of 𝑚 is found using a 
numerical (search) method 
 

𝑃 (𝐶𝐴𝑅𝐿0 ≥
1

(1+𝜀)
(

1

𝛼
)) = 𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼) = 1 − 𝑝,  (7) 

where: 𝛼 is the nominal false alarm rate; 𝜀 (0 ≤ 𝜀 < 1) is the tolerance factor, meaning 
that the largest tolerated value for the 𝐶𝐹𝐴𝑅 is (100𝜀)% larger than the nominal 𝛼 (trivial 
algebra shows that this is equivalent to saying that the smallest tolerated 𝐶𝐴𝑅𝐿0  is 
100 (

𝜀

1+𝜀
) % smaller than the nominal 𝐴𝑅𝐿0 = 1 𝛼⁄ ). In addition, p is the risk (probability) 

accepted by the practitioner that the true 𝐶𝐹𝐴𝑅 be larger than tolerated (or the 𝐶𝐴𝑅𝐿0 
smaller than tolerated). Actually, the “=” sign in Equation (7) must be replaced by the “≥” 
inequality sign because 𝑚 is an integer and a perfect match of the probability (1 − 𝑝) is 
generally not possible. In this way, in Table 1 we show the minimum number of Phase I 
samples (𝑀𝑖𝑛 𝑚) required to guarantee a conditional 𝐼𝐶 performance for the two-sided 𝑆2 
chart using the 𝐸𝑃𝐶 . 𝑚  is expressed as a function of 𝑛  with 𝜀 = {10%, 20%} , 𝑝 =
{0.05, 0.10, 0.20} and 𝛼∗ = 𝛼 = 0.0027. Figure 1 shows the results given in Table 1. 
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From Table 1, we found large and, in several cases, impractical and unfeasible minimum 
values of 𝑚, even for large values of  𝑛, such as 𝑛 = 30. For instance, for 𝑛 = 5, 𝜀 = 10 
and 𝑝 = 0.05, the minimum 𝑚 is 1325 samples. Hence, because of the large amount of 
Phase I data required to attain a specified nominal 𝐼𝐶 performance, some authors have 
proposed adjustments to the control limit(s) in order to achieve this chart performance with 
less data, which can be collected in practice. Other authors adjusted the limits focusing on 
the conditional perspective under the 𝐸𝑃𝐶 [Faraz et al. (2015, 2017) and Goedhart et al. 
(2017) only for the one-sided chart].  
 

Table 1: The minimum number of Phase I samples (𝑀𝑖𝑛 𝑚) required to guarantee a 
conditional 𝐼𝐶 performance for the two-sided 𝑆2 when 𝜀 = {10%, 20%}, 𝑝 =

{0.05, 0.10, 0.20} and 𝛼∗ = 𝛼 = 0.0027 
 

 𝜀 = 0.10  𝜀 = 0.20 
 𝑝   𝑝 
n 0.05 0.10 0.20  0.05 0.10 0.20 
2 4265 2604 1144  1268 778 347 
3 2688 1640 720  814 499 222 
4 2028 1237 542  625 383 170 
5 1653 1008 442  518 317 141 
6 1408 859 376  449 275 122 
7 1235 753 330  399 245 108 
8 1107 675 295  363 222 98 
9 1007 614 269  334 205 91 

10 928 566 248  312 191 84 
11 864 527 230  293 179 79 
12 810 494 216  277 170 75 
13 764 466 204  264 162 72 
14 725 442 193  253 155 69 
15 691 422 184  243 149 66 
16 662 403 176  234 143 64 
17 636 387 169  227 139 62 
18 612 373 163  220 135 60 
19 591 360 158  214 131 59 
20 573 349 153  208 127 58 
25 500 305 134  187 114 53 
30 452 275 122  172 106 50 
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Figure 1: The minimum number of Phase I samples (𝑀𝑖𝑛 𝑚) required to guarantee a 
conditional 𝐼𝐶 performance for the two-sided 𝑆2 when 𝜀 = {10%, 20%}, 𝑝 =

{0.05, 0.10, 0.20} and 𝛼∗ = 𝛼 = 0.0027 
 

3. Adjusting the control limits of the 𝑺𝟐 charts 

 

Since the 𝐶𝐴𝑅𝐿0 (or, equivalently, the 𝐶𝐹𝐴𝑅) is a random variable and large values of the 
𝐶𝐴𝑅𝐿0, such as 370.4 (or, small values of the 𝐶𝐹𝐴𝑅, such as 0.0027) are desired, the 
lower (or upper) probability bound may be useful in real Statistical Monitoring Process 
application (Phase II). Therefore, according to the conditional perspective using the 𝐸𝑃𝐶 
(see, for instance, Epprecht et al. (2015), Faraz et al. (2015,2017) and Goedhart et al. 
(2017)), the user considers the randomness of the 𝐶𝐴𝑅𝐿0  (or the 𝐶𝐹𝐴𝑅 ), via its 
distribution, for guaranteeing that the 𝐶𝐴𝑅𝐿0  (or the 𝐶𝐹𝐴𝑅) is at least (or at most) a 
minimum (or a maximum) performance threshold with a high probability, say 95%. This 
threshold is, generally, an exact or a slightly smaller (or larger) value of the nominal 𝐼𝐶 
performance measure, for instance, a minimum 𝐴𝑅𝐿0 = 370.4  (or maximum 𝛼 =
0.0027). Using the cdf of 𝐶𝐴𝑅𝐿0 from Equation (5) and the 𝐸𝑃𝐶 (using, e.g., in Equation 
(7)), we can obtain the adjusted chart parameter (𝛼∗) of the two-sided 𝑆2 chart based on 
exact analytical derivations and non-linear solutions. Hence, 𝛼∗ can be found solving the 
Equation (8) by a numerical (search) method 

𝑭𝑪𝑭𝑨𝑹((𝟏 + 𝜺)𝜶 ; 𝜶∗) = 𝟏 − 𝑭𝑪𝑨𝑹𝑳𝟎
((

𝟏

𝟏 + 𝜺
)

𝟏

𝜶
; 𝜶∗) 

 = 𝐹𝜒𝑚(𝑛−1)
2 (𝑌2) − 𝐹𝜒𝑚(𝑛−1)

2 (𝑌1) = 1 − 𝑝,  𝑡 < 𝑚𝑎𝑥 (𝐶𝐴𝑅𝐿0),             (8) 

where 𝑌1, 𝑌2 and 𝑚𝑎𝑥 (𝐶𝐴𝑅𝐿0) can be found as 
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i. 𝑌1 and 𝑌2 (𝑌1 < 𝑌2) are the solutions (𝑌) of 𝐶𝐴𝑅𝐿0(𝑌) = 𝑡 (see Equation (11)). It 
is due to 𝐶𝐴𝑅𝐿0 as a function of 𝑌 is increasing on < 0, 𝑌0] and decreasing on <
𝑌0, ∞ >, where 𝑌0 = 𝑚(𝑛 − 1) ln (𝑈∗ 𝐿∗⁄ ) (𝑈∗ − 𝐿∗)⁄   

ii. 𝑚𝑎𝑥(𝐶𝐴𝑅𝐿0) = 𝐶𝐴𝑅𝐿0(𝑌 = 𝑌0) (see Equation (4)) 

Since the two-sided tolerance interval for 𝑆2 (Equation (6)) is equivalent to the cdf of the 
𝐶𝐹𝐴𝑅 (Equation (5)), we can use the formulation to obtain the tolerance factors from 
Sarmiento et al. (2018) in order to adjust the control limits of 𝑆2 charts to guarantee a 
conditional 𝐼𝐶 performance using 𝐸𝑃𝐶 from Equation (8).   
 
With the resulting value of 𝛼∗ (Equation (8)), the adjusted factors and limits of the two-
sided 𝑆2 chart can be found using Equations (1) and (2). Table 2 shows the 𝛼∗ values and 
the adjusted lower and upper factors of the two-sided 𝑆2 charts (𝐿∗, 𝑈∗) that are obtained 
using the 𝐸𝑃𝐶  for 𝜀 = 0 , 𝑝 = 0.05  and 𝛼 = 0.0027  (i.e., 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 95%) 
and for 𝜀 = 0.20 and 𝑝 = 0.20 (i.e., 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 80%), and for different values 
of m and n.   
 
Table 2: Adjusted lower and upper factors of the two-sided 𝑆2 control chart required to 
guarantee a conditional 𝐼𝐶 performance (using 𝐸𝑃𝐶 for 𝜀 = 0, 0.20, 𝑝 = 0.05, 0.20 and 

𝛼 = 0.0027) for different values of m and n  
       

  𝜺 = 𝟎,  𝒑 = 𝟎. 𝟎𝟓  𝜺 = 𝟎. 𝟐𝟎,  𝒑 = 𝟎. 𝟐𝟎 

m n 𝜶∗ 𝑳∗ 𝑼∗  𝜶∗ 𝑳∗ 𝑼∗ 

25 

3 0.00038 0.0002 8.5780  0.00153 0.0008 7.1771 
5 0.00062 0.0125 5.2653  0.00184 0.0218 4.6624 
9 0.00085 0.0849 3.5353  0.00210 0.1085 3.2506 

 3 0.00085 0.0004 7.7584  0.00204 0.0010 6.8869 
50 5 0.00112 0.0169 4.9353  0.00228 0.0243 4.5433 
 9 0.00136 0.0964 3.3878  0.00248 0.1136 3.1975 
 3 0.00115 0.0006 7.4642  0.00228 0.0011 6.7789 

75 5 0.00140 0.0190 4.8134  0.00248 0.0253 4.4982 
 9 0.00162 0.1011 3.3328  0.00264 0.1156 3.1774 
 3 0.00134 0.0007 7.3079  0.00241 0.0012 6.7200 

100 5 0.00158 0.0201 4.7479  0.00259 0.0259 4.4735 
 9 0.00178 0.1037 3.3031  0.00273 0.1167 3.1664 
 3 0.00158 0.0008 7.1404  0.00257 0.0013 6.6551 

150 5 0.00179 0.0215 4.6772  0.00272 0.0265 4.4461 
                      9 0.00197 0.1066 3.2710  0.00284 0.1179 3.1543 
 3 0.00174 0.0009 7.0494  0.00267 0.0013 6.6189 

200 5 0.00192 0.0223 4.6386  0.00280 0.0269 4.4308 
 9 0.00208 0.1083 3.2536  0.00290 0.1186 3.1475 
 3 0.00184 0.0009 6.9910  0.00273 0.0014 6.5952 

250 5 0.00201 0.0228 4.6137  0.00285 0.0272 4.4208 
 9 0.00215 0.1093 3.2424  0.00294 0.1191 3.1431 
 3 0.00270 0.0014 6.6077  0.00324 0.0016 6.4253 

∞ 5 0.00270 0.0264 4.4501  0.00324 0.0290 4.3486 
 9 0.00270 0.1163 3.1701  0.00324 0.1163 3.1701 
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4. Summary and conclusions 

 
• The estimation of 𝐼𝐶 process variance (𝜎0

2) impacts on the Phase II Performance 
of the 𝑆2 control chart.   

• To attain the 𝐼𝐶 performance of 𝑆2 control chart with estimated variance close to 
the values of that with known variance, large amount of Phase I reference data is 
required.  

• To guarantee an 𝐼𝐶 performance of 𝑆2 control chart using a practical (realistic) 
amount of Phase I reference data, control limits can be adjusted. 

• Tolerance limits for the population of sample variances are equivalent to adjusted 
control limits that guarantee a 𝐶𝐹𝐴𝑅 smaller than or equal to a maximum (1 + 𝜀)𝛼 
with a confidence 1 − 𝑝. 

• The same adjusted factors of 𝑆2 control chart (Table 2) can be used in the context 
of tolerance interval (e.g., conformity assessment and acceptance of products or 
processes) as well as in the context of SPC (a guaranteed Phase II conditional 
Performance).      
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