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Abstract
Using an array of sensors with well calibrated but different tuning curves, it is possible to appre-

ciate a wide range of stimuli. In this work, we first revisit the statistical estimation of the stimuli
concentrations given the responses of a sensor array. Since it is not a typical regression problem,
the Bayesian concept is adopted to develop an estimation method by elucidating the dynamic and
uncertain nature of the environment-dependent stimuli with a proper choice of the probability dis-
tribution. Other studies confirm that the proposed method can demonstrate a superior performance
in terms of accuracy and precision when compared to the popular frequentist methods in addition to
the theoretical soundness it enjoys as a statistical estimation problem. Under the proposed frame-
work, the design optimization of an artificial sensory system is also formulated using the expected
Bayes risk as an objective function to minimize. The same approach may be equally applied to
any sensory system in order to optimize its performance within a population of sensors. Finally, an
illustrative example is provided to describe how the proposed method can be applied for the optimal
configuration of a sensory system for a given sensing task.

Key Words: Bayesian analysis, chemical sensors, noninformative prior, optimal design of sensory
arrays, sensitivity, statistical inference

1. Introduction

A chemical olfactory system is a sensor array consisting of hundreds of olfactory re-
ceptor neurons. Generally, these receptor neurons do not exhibit specificity to any single
chemical compound but rather provide varying levels of response to multiple compounds.
The precise mechanism for olfactory perception remains still unclear but the aggregate re-
sponses from a sensor array can provide the fundamental chemical information to detect
tens of thousands of unique chemical vapors. By combining non-specific, general-purpose
sensors with well calibrated but different tuning curves, it is possible to distinguish a wide
range of stimuli or achieve a given sensing task without striving to develop fully selective
or specific sensors to each chemical analyte [4]. Hence, sensor arrays are often proposed as
potentially powerful and relatively inexpensive methods to characterize complex chemical
mixtures.

Moreover, using information theoretic approaches, neural receptor systems have been
explored in order to understand how these systems are structured, how the structure informs
chemical recognition capability, and what the resulting implications are when designing a
sensor-based chemical detection system [1, 6]. Despite these efforts, the literature and
application of non-specific sensor arrays for general-purpose chemical detection present
general disappointment upon implementation. Even though such arrays have been reported
frequently and have been the subject of numerous reviews over the past decades, relatively
few instances of successfully commercialized devices exist to date. One reason is because
the research community has mainly focused on the development of individual sensors or on
the application for which the sensor array is to be used without considering the design and
evaluation issues of sensor arrays. Consequently, design, optimization, and implementation
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of sensor arrays still remain time-intensive and costly, leading to sensory systems which
tend to underperform when fielded, compared to their laboratory performance.

In this work, we revisit the statistical estimation problem of chemical stimuli given
the responses of a sensor array, discussed in [18]. The concept of Bayesian analysis is
adopted to develop an estimation method by explaining the dynamic and uncertain nature
of the environment-dependent stimuli through a choice of the prior distribution. Under the
proposed framework, the optimal configuration of an artificial sensory system is then dis-
cussed using the expected Bayes risk as a suitable objective function to characterize the
performance of the sensory system. The proposed approach is generalizable and could be
applied to other sensory systems for the stimuli estimation and/or the optimal sensory sys-
tem designs. The rest of the paper is organized as follows. The formal model based on the
Bayesian framework is developed in Section 2, and the estimation of analyte concentrations
is discussed in Section 3 while Section 4 addresses the optimal design of a sensory system
using the expected Bayes risk. An illustrative example is provided in Section 5 to describe
how the proposed method can be applied for the optimal configuration of a sensory system.
Finally, Section 6 concludes the paper.

2. Bayesian-based Model

Since the stimulus population and their respective concentrations can vary greatly from
environment to environment the sensor array is exposed to, the covariate vector x cannot be
treated as static parameters to be estimated like in [18]. Rather, its dynamic and uncertain
nature has to be elucidated in the model via a proper choice of its probabilistic distribution
(i.e., prior). For the efficient estimation of the unknown stimuli given an observed set of
the sensory responses, here we adopt the concept of the Bayesian framework by treating the
unknown stimuli vector as a random vector X . We also express the prior historical infor-
mation, the experts’ opinions or beliefs about the stimuli through a distribution function of
choice, denoted by f

X
(x;ψ) with predetermined hyperparameters ψ. Then, by the Bayes’

theorem, the (posterior) probability distribution function of 〈X|y〉 is expressed as

f
X|Y (x|y;θ,ψ) =

f
Y |X (y|x;θ)f

X
(x;ψ)∫

x fY |X (y|x;θ)f
X

(x;ψ)dx
, (1)

where f
Y |X (y|x;θ) is the joint distribution function of 〈Y |x〉 or the likelihood function of

θ while the denominator is called the marginal likelihood. Based on our previous assump-
tion, f

Y |X (y|x;θ) is the joint density function of the multivariate normal distribution with
the mean vector specified by h∗(θ∗,x) and the variance-covariance matrix by Σ.

As shown in Eq. (1), the posterior distribution is a combination of the prior (determined
by the researcher) and the likelihood (determined by the data). The contribution of these
two quantities to the posterior is not equal though. With more sensory responses (i.e.,
m >> n), the likelihood is given much more relative weight in calculating the posterior
for the unknown stimuli [21]. This may seem trivial but it can have enormous implications
when the number of sensors is small as the posterior distribution is highly reliant on how the
prior was specified. When the information contained in the likelihood is relatively small due
to a limited number of the sensory responses, the prior will play a key role in the posterior
for estimating the stimuli and each additional piece of information will have a pronounced
impact. Thus, it is necessary to include external information in the form of informative
(or subjective) priors. For instance, one might need to consult application-specific experts,
meta-analyses, or review studies in the area of interest to obtain informative, accurate priors
that can meaningfully contribute to the posterior distribution ofX . Previous knowledge or
information about the environment the sensor array is exposed to can also be incorporated
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in the prior. Specifying the priors of X based on expert opinions or previous studies can
potentially improve the inferential performance since it allows to base results on more
information than what is strictly provided in the sensory responses, which is especially
helpful with small data sizes.

If one has very little or no prior information about the potential stimuli, noninformative
priors such as Jeffreys prior, which is proportional to the square root of the Fisher infor-
mation, or a reference prior, which maximizes the expected Kullback-Leibler divergence
(i.e., mutual information), can be employed to conduct the objective Bayesian inference.
Gelman [8] also recommended using half-Cauchy priors for variance components while
O’Malley & Zaslavsky [16] outlined a multivariate extension to the half-Cauchy prior. If
the prior is set in the vague vicinity of the population value of X , even with a fairly large
variance, the advantages of the Bayesian framework can be realized. Previous studies in the
literature reported that in terms of bias, power, appropriateness of coverage intervals, and
efficiency, the weakly informative prior performs nearly as well as a strongly informative
prior or the frequentist maximum likelihood estimators with small sample corrections. This
finding is particularly helpful because weakly informative priors are widely applicable to
various model types, are not overly difficult to implement, and reduce the chance that the
posterior can be misleading due to an overly precise or extensive prior distribution.

3. Estimation of Analytes

Once the posterior is specified, the inference for 〈X|y〉 can be performed using the
decision theoretic approach with a loss function of choice. The usual quantity of interest
is the measurement of central tendency or location of the posterior distribution. Then,
Bayes estimator (or action) is an estimator or decision rule that minimizes the posterior
expected loss (viz., Bayes risk). Equivalently, it maximizes the posterior expected utility
function. Depending on the property of the posterior, one could utilize the posterior mean,
which minimizes the expected loss with respect to the quadratic error loss function while
the posterior median is the robust estimator and minimizes the expected loss under the
absolute difference loss function in a univariate case. If a value with the greatest posterior
probability is desired, the maximum a posteriori (MAP) estimate (i.e., posterior mode(s))
can be used as the measurement of center, and it also minimizes the expected loss with
respect to the 0-1 loss function. If one wants to quantify the uncertainty about the posterior
center in addition to a point estimate, the HPD (highest posterior density) credible interval
or set can be derived, which is analogous to the frequentist confidence interval but has a
more intuitive interpretation [10].

As an illustration, let us consider n analyte concentrations to sense with a sensor ar-
ray composed of n (not necessarily identical) sensors. It is also assumed that a special
linear regression model holds for Y given x such that h∗(θ∗,x) = Bx where B is the
n× n orthogonal matrix of the parameters θ∗, and 〈Y |x〉 consists of independent and ho-
moscedastic random responses with the common variance σ2, which has no dependence
upon the stimulus. Moreover, to represent the lack of information on the potential analytes
to sense, equal likelihood is assigned on all possible analyte concentrations by defining a
flat, uniform prior over the domain ofX (i.e., noninformative), expressed as

f
X

(x;ψ) =

{
1/ψ if xi ≥ 0, ∀i = 1, 2, . . . , n
0 otherwise

,

where xi is the i-th element of x and ψ is the normalizing constant of the joint density
function of X . Since f

X
(x;ψ) does not integrate to 1 or a finite value, it is an improper

prior while the posterior is still proper. Then, it can be shown that the posterior distribution
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of X given y is a product of left truncated normal probability densities at zero. Using the
decision theoretic approach, the expected quadratic loss is minimized by the posterior mean
vector given as µEQL = (eEQL

1 , eEQL
2 , . . . , eEQL

n )> where

eEQL
i = µi + σ

φ(−µi/σ)

1− Φ(−µi/σ)
, i = 1, 2, . . . , n (2)

with µi = b>i y and bi is the i-th column vector of B. Here, φ(·) and Φ(·) are the stan-
dard normal density and cumulative distribution functions, respectively. If one utilizes the
expected absolute difference loss to base the estimation decision, the mean loss could be
minimized by the posterior median vector given as µEAL = (eEAL

1 , eEAL
2 , . . . , eEAL

n )> where

eEAL
i = µi + σ Φ−1

(
1 + Φ(−µi/σ)

2

)
, i = 1, 2, . . . , n (3)

with µi as defined above. The posterior joint density of 〈X|y〉 is also maximized by the
MAP vector given as µMAP = (eMAP

1 , eMAP
2 , . . . , eMAP

n )> where

eMAP
i =

{
µi if µi ≥ 0
0 otherwise

. (4)

It is not surprising to see that all the estimators of the stimuli concentrations presented
above heavily depend on the accuracy and precision of the estimates of the parameters
θ in the likelihood portion of the posterior. In the case these estimators cannot be ob-
tained analytically, one could utilize a popular stochastic simulation based approach such as
the Markov chain Monte Carlo (MCMC) sampling method implementing the Metropolis-
Hastings algorithm with the Gibbs sampler in order to elicit the posterior distribution of the
stimuli concentrations. Through appropriate selection of a prior for X that is restricted to
have non-negative support, the proposed method can also prevent inadmissible estimates
(e.g., negative variances). Models that are difficult or inestimable with frequentist methods
(i.e., m < n) can be fit straightforwardly under the Bayesian framework [14, 15]. Since
Bayesian methods do not rely on large sample asymptotics, they are also better equipped to
handle small sample situations but the estimates can be sensitive to the specification of the
prior. Hence, if one decides to utilize informative priors, it is important to make sure that
the information on which such priors are based is accurate with small samples. Otherwise,
the resulting estimates and variance can be biased due to misleading informative priors [5].

4. Optimal Design of Sensory System

In the process of selecting which sensors to be incorporated into a custom, sensing
task-driven chemical olfactory system, a typical objective is to maximize the accuracy and
precision with which the sensory system can estimate the stimulus or optimally discrimi-
nate between neighboring stimuli [17]. Sanchez-Montanes & Pearce [18] discussed how
Fisher information matrix could be used to achieve this objective. However, the Cramer-
Rao lower bound obtained by inverting the Fisher information is useful as a performance
metric only if the variance of the chosen estimator for a given sensory system can actually
attain the lower bound. In the statistical inferential theory, even the best unbiased estima-
tor for a given system may not achieve the lower bound as its variance. Therefore, if the
Cramer-Rao lower bound or the Fisher information is used to characterize or compare the
performance of sensor arrays, it could dangerously overestimate the true merit of the sys-
tems in an unequal manner and mislead the system design to a non-optimal, inferior one.
Also, if one desires to achieve the lower bound, it usually requires an unrealistically large
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number of s-independent and identical (iid) sensors per sensor array, which is practically
impossible due to the cost and technology constraints. In addition, the Fisher informa-
tion as a function depends on the (true) stimulus types and/or concentrations, which are
unknown. Thus, calculation of the Fisher information requires the estimation of these un-
known quantities first, hence carries a certain but unknown amount of propagated error in
an uncontrolled manner. Moreover, treating the stimulus types and/or concentrations as the
parameters of a statistical model for estimation in the first place is problematic as a theo-
retically sound approach since the stimulus types and their respective concentrations can
change dynamically depending on the environment to which the sensory system is exposed
in the field studies.

Addressing all these fundamental issues, a new way of estimating the stimulus using the
sensory receptor responses was proposed in the previous sections by adopting the Bayesian
framework. For estimating the individual stimulus within a complex chemical vapor mix-
ture, the optimal estimator is obtained by minimizing the expected loss, also known as the
Bayes risk. We now steer our attention to the optimal configuration of a sensory system un-
der the same framework. Here we propose the expected Bayes risk as a metric to determine
the merit of a sensory system and discuss its connection to the chemometric sensitivity.
This can be used to characterize the analytical capability of a sensory system and to quan-
tify its performance. It can be also used as part of an optimization procedure for selecting
noisy olfactory sensors within a population in order to make as accurate and precise esti-
mate of the real chemical stimulus exposed to the overall sensory system as possible. The
expected Bayes risk serves as a suitable objective function to achieve the optimization pur-
pose, and a sensory system which minimizes the expected Bayes risk can be considered the
optimally configured system for a given task.

As a simple motivating example, let us consider estimating the concentration of a single
analyte of interest X with a sensor array composed of m iid sensors. It is also assumed
that the receptor response of a sensor was linearly calibrated to changes in the stimulus con-
centration (in the dynamic range of interest) so that 〈Yj |x〉 is normally distributed with the
conditional mean response of (θ0 +θ1x) and the common variance σ2

Y
for j = 1, 2, . . . ,m.

These assumptions are valid for olfactory sensors based on electrochemical cell technol-
ogy as well as for measurements from metal-oxide semiconductor and conducting polymer
chemosensors [2]. If one wishes to model fluorescence-based optical chemosensors used in
the artificial olfactory systems, Laplace or double-exponential distribution could be utilized
while Poisson (discrete) distribution is appropriate for approximating the spiking counts of
olfactory receptor neurons [3, 18]. Here, θ0 is a constant contribution to the measured re-
sponse (background or constant interfering constituents) while the slope of the calibration
curve, θ1 is precisely the chemometric figure of merit, known as sensitivity to the presence
of the analyte. In addition, a normal conjugate prior is assumed for X with mean ψX and
variance σ2

X
. With this prior, one could express the lack of information on the analyte by

assigning an arbitrarily large value to σX with a suitable choice of ψX to favor the objective
inference for X (i.e., noninformative).

Then, it can be shown that the posterior distribution of X given the observed responses
y1, y2, . . . , ym is identical to that of 〈X|ȳ〉, which is again normal. Here, ȳ is the arithmetic
sample average of y1, y2, . . . , ym. Using the decision theoretic approach, the estimator of
the analyte concentration, which minimizes the Bayes risk with respect to the squared error
loss, is the posterior mean of X expressed by

µ
X |ȳ =

(
ȳ − θ0

θ1

)
θ2

1σ
2
X

σ2
Y
/m+ θ2

1σ
2
X

+ ψX

σ2
Y
/m

σ2
Y
/m+ θ2

1σ
2
X

, (5)

and the corresponding minimum Bayes risk, Rmin
B

is the posterior mean squared error
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(MSE) or the posterior variance of X , expressed as the inverse of precision
(
mθ2

1σ
−2
Y

+

σ−2
X

)
. Since it is a constant in this case, the expected Bayes risk is still

E
[
Rmin

B

]
=

σ2
X
σ2

Y

mθ2
1σ

2
X

+ σ2
Y

, (6)

and it depends on m, the number of iid sensor responses, and the sensitivity θ1 along with
the measurement error parameter σY . As σX tends to ∞ for the objective inference, the
estimator in Eq. (5) becomes the classical MLE from the likelihood based approach with
the observed responses y1, y2, . . . , ym, and the expected Bayes risk in Eq. (6) reduces
to σ2

Y
/(mθ2

1). Hence, if one needs to choose a sensor to construct a sensor array from an
arbitrary population of sensors, each with well calibrated response curves, the sensor which
minimizes this quantity should be selected in order to maximize the accuracy and precision
in estimating the analyte of interest. Clearly, there is no unique solution but the idea is
that for a given task, the best sensor is the one with the highest sensitivity and the smallest
measurement error, and the estimate precision can be further improved by increasing the
sensor density of a sensor array (viz., increasing m).

Let us now revisit the example considered in Section 3. In this situation, the estimator
to minimize the Bayes risk under the squared error loss is the posterior mean vector eEQL

i

specified in Eq. (2) and the corresponding minimum Bayes risk isRmin
B

(y) =
∑n

i=1 σ
2
Xi|y,

where σ2
Xi|y is the posterior MSE or the posterior variance of Xi given by

σ2
Xi|y = σ2

{
1− b

>
i y

σ

φ(−b>i y/σ)[
1− Φ(−b>i y/σ)

] −[ φ(−b>i y/σ)

1− Φ(−b>i y/σ)

]2
}
, i = 1, 2, . . . , n.

(7)
Here, the minimum Bayes risk is equivalent to the trace of the variance-covariance matrix
ofX given y, and it can be understood as theA-optimality criterion of the statistical design
of experiment. It provides an overall measure of the average posterior variance and gives
the sum of the eigenvalues of the variance-covariance matrix. The expected Bayes risk is
then defined by

E
[
Rmin

B
(Y )

]
=

∫
y
Rmin

B
(y)f

Y
(y)dy

=

∫
y

∫
x
Rmin

B
(y)f

Y |X (y|x;θ∗, σ2)f
X

(x;ψ)dxdy, (8)

where f
Y

(y) is the marginal distribution of Y as defined in the denominator of Eq. (1).
The resulting expected risk in Eq. (8) is highly nonlinear but depends only on the known
calibration parameters, thus a similar observation can be made as in the previous exam-
ple. It can be understood how different tuning curves within a sensor array can affect the
accuracy and precision of stimulus estimation. If one desires to construct a sensor array
composed of n sensors selected from a population, then the set of sensors which minimizes
the expected Bayes risk should be utilized (i.e., sensors with high sensitivities and small
measurement errors). It is noted that the same techniques described here can be applied to
analyze any sensory system, including biological and artificial chemical olfactory systems,
that exploits a population coding of the stimulus to optimize its performance. The expected
Bayes risk provides a quantitative measure regarding the fundamental capability of a given
measurement system to estimate the chemical mixture composition. This measure is also
independent of the post hoc data analysis techniques used to estimate the analyte concen-
trations. Hence, it can be used to measure the potential analytical capability of a sensory
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Table 1: Sensitivity values of 24 simulated linear sensors in [11] for estimating three po-
tential analytes

Sensor Number Analyte 1 Analyte 2 Analyte 3
1 0.0476 0.5864 0.7360
2 0.3488 0.6751 0.7947
3 0.4513 0.3610 0.5449
4 0.2409 0.6203 0.6862
5 0.7150 0.8112 0.8936
6 0.8562 0.0193 0.0548
7 0.2815 0.0839 0.3037
8 0.7311 0.9748 0.0462
9 0.1378 0.6513 0.1955

10 0.8367 0.2312 0.7202
11 0.1386 0.4035 0.7218
12 0.5882 0.1220 0.8778
13 0.3662 0.2684 0.5824
14 0.8068 0.2578 0.0707
15 0.5038 0.3317 0.9227
16 0.4896 0.1522 0.8004
17 0.8770 0.3480 0.2859
18 0.3531 0.1217 0.5437
19 0.4494 0.8842 0.9848
20 0.9635 0.0943 0.7157
21 0.0423 0.9300 0.8390
22 0.9730 0.3990 0.4333
23 0.1892 0.0474 0.4706
24 0.6671 0.3424 0.5607

system under consideration, rather than a direct prediction of what may be observed in
practice.

5. Illustrative Examples

Let us consider the design optimization of a simulated sensor array described in [17].
It is desired to select three sensors from a pool of 125 possible sensor types encompass-
ing every possible permutation of five different sensitivities {0, 0.25, 0.50, 0.75, 1} for

each of three analytes. This creates a total of
(

125

3

)
= 317, 750 sensor array configura-

tions. It is assumed that the sensor response is additive in the presence of multiple ana-
lytes with the concentration-independent measurement error distributed as standard normal
(viz., zero mean and unit variance). Further, a proper conjugate multivariate normal prior
is assumed with the generalized variance tending to∞ for the objective inference. Then,
it can be shown that the posterior variance-covariance matrix of the analyte concentra-
tions is obtained as

(
B>B

)−1
, where B is an array configuration of the chosen sensors.

The expected Bayes risk is then calculated as the expected sum of the diagonal entries of(
B>B

)−1
. In such a system, the array configuration that minimizes the expected Bayes

risk consists of three different sensors, each of which exhibits the minimum sensitivity of
zero for one of the three analytes and the maximum sensitivity of one for the other two.
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This configuration can be represented by a matrix of sensitivity values, given by 0 1 1
1 0 1
1 1 0


where each column corresponds to a different analyte and each row corresponds to a differ-
ent sensor. The expected Bayes risk of this array configuration is 2.250 with the marginal
variance for each analyte being 0.750. Minimizing the expected Bayes risk to optimize the
sensor array design assumes that one wishes to quantify all three analytes. If one wishes to
quantify only a particular analyte, however, it is possible to find other array configurations
that are optimal for that sensing task. Consider a scenario where quantification of analyte
1 only is of interest with the other two regarded as an interfering background. The array
configuration which minimizes the marginal variance for analyte 1 is obtained as 0 1 1

1 0 0.25
1 0.25 0


with the marginal variance of 0.516. Compared to the array configuration with the min-
imum expected Bayes risk, this configuration improves the performance capability when
the sensing task is to determine analyte 1. This 31.2% reduction in the marginal variance
for analyte 1 comes at a substantial cost, however, since the marginal variances for the
other two analytes drastically increase to 8.250 or 1100%. The expected Bayes risk of this
array configuration is 17.016, which is considerably worse than the previous configuration.
Nevertheless, this may not be an issue if precise quantification of the other analytes is not
desired. For instance, a sensor array configured with three identical sensors, each specific
to analyte 1 with the sensitivity of one, has a decreased variance of 0.333 via signal aver-
aging but with no collateral capabilities to sense analytes 2 or 3. This clearly demonstrates
that the effective sensor array optimization is highly contingent upon proper consideration
of the analytical task to be addressed.

As pointed out in [11], the design of a sensory system is often significantly more con-
strained than the previous example. Sensors exhibiting specificity for a target analyte or
analyte set are often not available, leaving a sensor array designer to select a subset of ar-
rays from a pool of candidate sensors with considerable cross-sensitivities, especially as
the set of potential analytes gets larger. Let us revisit the synthetic example considered in
[11], where a sensor array is drawn from a pool of candidate sensors with linear response
functions. The sensitivity values for each sensor-analyte pair were generated from a stan-
dard uniform distribution. Table 1 reproduces the sensitivity values of these 24 simulated
linear sensors for each of three potential analytes.

For a sensor array with m sensors, there are
(

24

m

)
possible array configurations, pro-

ducing a total of nearly 17 million configurations with three or more sensors. In order to
independently estimate three analytes from a mixture, a sensor array should consist of at
least three sensors, and a total of 2,024 configurations is possible for this minimal-sized
sensor array. The expected Bayes risk spans a wider range of orders of magnitude over
different configurations. Table 2 details the three-sensor array configurations selected from
the sensor library in Table 1 under different design criteria. The optimal array configuration
which minimizes the expected Bayes risk consists of the sensors 8, 20, and 21, each ex-
hibiting relatively low sensitivity to one analyte compared to the other two. Examining the
marginal variance of each analyte, one can see that the optimal configuration for estimating
analyte 1 only reduces the marginal variance for analyte 1 to less than three quarters of that
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Table 2: Various design criteria for a three-sensor system and the corresponding expected
Bayes risks, analyte-specific marginal variances along with the optimal array configurations
drawn from the sensor library in Table 1

Optimal Sensor Array Sensor Expected Marginal Variances
Design Criterion Numbers Bayes Risk Analyte 1 Analyte 2 Analyte 3

minimum expected Bayes risk (8,20,21) 3.498 1.085 0.920 1.493
minimum variance for analyte 1 (6,17,21) 890.0 0.760 393.7 495.5
minimum variance for analyte 2 (8,20,21) 3.498 1.085 0.920 1.493
minimum variance for analyte 3 (1,8,15) 8.967 4.926 2.994 1.047

observed under the minimum expected Bayes risk. However, this produces much greater
Bayes risk due to significant increases in error for analytes 2 and 3. Similarly, the optimal
configuration for estimating analyte 3 only presents an improved marginal variance for an-
alyte 3 at the expense of greater error for analytes 1 and 2. Since the optimal configuration
for estimating analyte 2 only happens to minimize the expected Bayes risk, it exhibits the
best compromise, should all analytes need to be estimated using the sensor array.

It is demonstrated that the expected Bayes risk of the optimal array configuration mono-
tonically decreases with the array size, but by selecting larger array subsets, the expected
Bayes risk associated with the worst performing array decreases much more rapidly than
for the optimal configurations. Hence, if one chooses sensor array subsets at random, se-
lecting larger arrays would present a significant risk mitigation against selecting a poor
performing sensor array. When designing the optimal sensor arrays, this assessment would
enable the quantitative cost versus performance trade off analysis regarding the array size.
Other analytical tasks such as single-analyte estimation could be similarly assessed by first
associating that analytical task with an orientation in the sample space and then calculating
the marginal variance along that axis [11].

6. Conclusion

In this work, the estimation problem of the stimuli concentrations was revisited. Since
it is actually not a typical regression problem, we developed a statistical method to analyze
the chemical stimuli given the responses of cross-sensitive arrays, using the concept of
Bayesian analysis. The dynamic and uncertain nature of the environment-dependent stimuli
was elucidated via a choice of the prior distribution. Under this framework, the expected
Bayes risk was proposed as a performance metric of a sensor array for a given sensing
task, and it can be used to select an optimal combination of sensors when designing a
sensor array. The proposed approach is generalizable and could be applied to other sensory
systems for the stimuli estimation and/or the optimal sensory system designs. Future work
will explore the general variance-covariance matrix of X given y as a metric to determine
the merit of a sensory system and its connection to the chemometric concepts of net analyte
signal, sensitivity and selectivity.
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