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Abstract
Accelerated life tests quickly produce information on the lifetime distribution of a test unit by run-
ning the tests at higher stress levels than normal operating conditions. Using a regression model,
the lifetime parameter at the normal design stress is then estimated via extrapolation. Recently,
the design optimization of accelerated life tests has been studied by many authors but the associ-
ated inference for the regression parameters has not been. In this work, the EM algorithm is used
to determine the maximum likelihood estimates of the regression parameters for time constrained
exponential failure data from the constant-stress and step-stress accelerated life tests under inter-
val monitoring. It is demonstrated that the method is feasible as well as easy to implement. The
proposed method is illustrated using a real engineering case study.

Key Words: accelerated life tests, constant-stress loading, EM algorithm, interval monitoring,
maximum likelihood estimation, progressive Type-I censoring, step-stress loading

1. Introduction

Thanks to the innovative modern manufacturing process and technology, the product
reliability is continuously increasing, resulting in substantially long lifetimes of products.
This, in turn, makes it often difficult to obtain sufficient information about the failure time
distribution of the products under the standard life tests at normal usage conditions. This
practical barrier can be overcome by accelerated life tests (ALT) where the test units are
subjected to higher stress levels than normal so that more failure data can be collected
in a shorter period of time. Through applying more severe stresses, ALT enables rapid
collection of information on the parameters of failure time distributions. Using a stress-
response regression model, the lifetime at the normal operating stress can be estimated via
extrapolation.

Recently, the parameter estimation for ALT models at individual stress levels along
with its design optimization has been discussed by many authors; see, for instance, Miller
and Nelson (1983), Bai et al. (1989), Nelson (1990), Meeker and Escobar (1998), Bagdon-
avicius and Nikulin (2002), Han et al. (2006), Balakrishnan and Han (2008, 2009), Han and
Balakrishnan (2010), Han and Ng (2013), Han and Kundu (2015), and Han (2015). How-
ever, the associated inference for the regression parameters has not been studied in detail.
In the literature, the estimation problem has been approached by different techniques in-
cluding probability plots, method of moments, and maximum likelihood estimation (MLE).
In particular, solving a series of likelihood equations is required to obtain the MLE com-
putationally. Moreover, despite its effectiveness in time and cost savings, progressively
censored sampling has not gained popularity in ALT, partly due to the complexity of its
likelihood function; see Cohen (1963), Lawless (1982), Balakrishnan et al. (2010). The
Newton-Raphson algorithm has been one of the standard methods to calculate the MLE
of the model parameters, and to employ this algorithm, one needs to derive the second
derivatives of the log-likelihood, which may be complicated under progressive censoring.

Our research in this paper is motivated by the following real case study. A three-
level step-stress ALT was conducted under progressive Type-I censoring in order to assess
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Table 1: Progressively Type-I censored dataset from n = 30 prototypes of a solar lighting
device on a three-level step-stress ALT with τ1 = 15, τ2 = 20, and τ3 = 25

Failure Count at Failure Count at Failure Count at
Temperature Level 1 Temperature Level 2 Temperature Level 3

(x1 = 0.1) (x2 = 0.5) (x3 = 0.9)
n1 = 11 n2 = 7 n3 = 4
c1 = 4 c2 = 1 c3 = 3

n⊕ = 22, c⊕ = 8

the reliability characteristics of a solar lighting device, whose dominant failure mode is
controller failure. Here, temperature is the stress factor whose level was changed during
the test in the range of 293K to 353K with the normal operating temperature at 293K. The
standardized stress loading was x1 = 0.1, x2 = 0.5, and x3 = 0.9. The stress change
time points were τ1 = 15 (in hundred hours) and τ2 = 20 (in hundred hours) with the
termination time point at τ3 = 25 (in hundred hours). The number of devices censored at
τ1 = 15 and τ2 = 20 were c1 = 4 and c2 = 1, respectively. The dataset consists of total
n⊕ = 22 failure times from the initial sample size of n = 30 prototypes (i.e., 26.7% right
censoring). The observed number of failure times at each temperature is presented in Table
1 without exact failure times due to interval/group monitoring.

One of the objectives of the study is to assess the stress-response regression model, and
by expanding the scope, it is desired to determine the MLE of the regression parameters
for interval monitored failure data under the general k-level constant-stress and step-stress
ALT. Here, we propose to apply the expectation-maximization (EM) algorithm instead,
which has been successfully applied under various problem settings; see, for example, Ng
et al. (2002), Nandi and Dewan (2010), Balakrishnan and Ling (2012, 2013). The EM
algorithm is a powerful technique in handling the incomplete data problem, and it is partic-
ularly useful when the augmented dataset is relatively easier to analyze; see Dempster et al.
(1977), McLachlan and Krishnan (1997). It works by iterating the process of filling in the
missing data with the estimated values and updating the parameter estimates until conver-
gence. It is assumed here that the lifetimes of the products are exponentially distributed at
each stress level, and the relationship between the mean lifetime parameter and stress level
is log-linear. To explain the effect of changing stress in the step-stress ALT, the acceler-
ated failure time (AFT) model is also adopted. The proposed method is demonstrated to be
feasible as well as easy to implement for practitioners.

The rest of the paper is organized as follows. Section 2 presents the model descriptions
and formulations for Type-I censored k-level constant-stress ALT and progressively Type-
I censored k-level step-stress ALT. Section 3 describes how the EM algorithm is used to
derive the MLE of the model parameters under the unified structure of the likelihoods. In
Section 4, the proposed method is illustrated using the case study described above. Finally,
Section 5 is devoted to some concluding remarks.

2. Model Formulations and MLE

Let us denote s(t) to be the specified stress loading (a deterministic function of time)
for the ALT under consideration. We define sH to be the upper bound of stress level and
sU to be the normal use-stress level. The stress loading is then standardized as

x(t) =
s(t)− sU
sH − sU

, t ≥ 0
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so that the range of x(t) is between 0 and 1 inclusive. Now, let us define 0 ≡ x0 ≤ x1 <
x2 < · · · < xk ≤ 1 to be the ordered k standardized stress levels used in the ALT. It is
further assumed that the lifetime of a test unit follows an exponential distribution under any
stress level xi. Its probability density function (PDF) and cumulative distribution function
(CDF) are given by

fi(t) =
1

θi
exp

(
− t

θi

)
, 0 < t <∞, (1)

Fi(t) = 1− Si(t) = 1− exp

(
− t

θi

)
, 0 < t <∞, (2)

respectively. It is also assumed that under any stress level xi, the mean time to failure
(MTTF) of a test unit, θi, has a log-linear relationship with stress level, specified by

log θi = α+ βxi, (3)

where the regression parameters α and β are to be calibrated. For the accelerated exponen-
tial distribution, the log-linear link in (3) is a well-studied model. Its popularity is not only
due to its simplicity but also due to the fact that several life-stress relationships built from
physical principles are well represented by this log-linear link, which includes Arrhenius,
Eyring, inverse power law, temperature-humidity, and temperature-non-thermal; see Miller
and Nelson (1983).

Here we consider two popular classes of ALT: constant-stress and step-stress. In the
constant-stress ALT, a test unit is subjected to a certain stress level and tested until the ter-
mination time point of the life test. In the (step-up) step-stress ALT, on the other hand, the
stress levels are gradually increased at some predetermined time points during the test. The
following subsections present the likelihoods and the MLE of α and β for general k-level
constant-stress ALT and step-stress ALT under (progressively) Type-I censored interval
monitoring. For simplicity, in this paper, we do not make notational distinctions between
the random variables and their corresponding realizations. The usual conventions are also
adopted, that is

∑m−1
j=m aj ≡ 0 and

∏m−1
j=m aj ≡ 1.

2.1 k-level Step-stress ALT under Progressive Type-I Censoring

Let us denote ni to be the number of units failed at stress level xi in time interval
[τi−1, τi)) while ci denotes the number of units censored at time τi, for i = 1, 2, . . . , k.
Also, let Ni denote the number of units operating and surviving on test at the beginning of
stress level xi, such that Ni = n −

∑i−1
j=1 nj −

∑i−1
j=1 cj . Then, a step-stress ALT under

progressive Type-I censoring proceeds as follows. Initially, a total of N1 ≡ n test units
are placed at stress level x1 and they are tested until the first stress change time τ1. At
τ1, c1 functioning units are removed from the test in an arbitrary manner, and the stress
level is subsequently changed to x2. The test continues on N2 = n − n1 − c1 remaining
units until the second stress change time τ2, at which c2 live items are removed from the
test and the stress level is changed to x3, and so on. Finally, all the surviving items are
withdrawn at time τk, thereby terminating the ALT. The number of surviving items at time
τk is ck = n −

∑k
i=1 ni −

∑k−1
i=1 ci = Nk − nk since n ≡

∑k
i=1(ni + ci). The k-

level step-stress ALT under conventional Type-I right censoring is a special case when no
intermediate censoring takes place (viz., c1 = c2 = · · · = ck−1 = 0). This implies that the
k-level step-stress ALT under complete sampling is also a special case if no right censoring
takes place (viz., τk =∞ and nk = Nk).
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For a non-constant stress loading, one needs an additional model in order to represent
the effect of changing stresses. In many cases, the AFT model, also known as the additive
accumulative damage model, was proven to be appropriate. For the exponential lifetime
distribution, it also generalizes a number of well-applied models in reliability engineering,
which includes the basic (linear) cumulative exposure model and the PH model. Now,
under the AFT model along with the assumption of exponentiality, the PDF and CDF of a
test unit are

f(t) =

[
i−1∏
j=1

Sj(∆j)

]
fi(t− τi−1) if

{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1
τk−1 ≤ t <∞ for i = k

,

(4)

F (t) = 1−

[
i−1∏
j=1

Sj(∆j)

]
Si(t− τi−1)

if
{
τi−1 ≤ t ≤ τi for i = 1, 2, . . . , k − 1
τk−1 ≤ t <∞ for i = k

,

(5)

where ∆j = τj−τj−1 is the step duration at stress level xj , and fi(t) and Fi(t) are as given
in (1) and (2), respectively. Then, using (5), the joint probability mass function (JPMF) of
n = (n1, n2, . . . , nk) is obtained as

fJ(n) =
k∏
i=1

(
Ni

ni

)[
F (τi)− F (τi−1)

]ni
[
1− F (τi)

]ci
=

[
k∏
i=1

(
Ni

ni

)][ k∏
i=1

(
1− exp

(
− ∆i

θi

))ni
]

exp

(
−

k∑
i=1

∆i

θi
(Ni − ni)

)
.

(6)

Upon using (6) and the log-linear link specified in (3), the log-likelihood function of (α, β)
can be written as

l(α, β) =
k∑
i=1

ni log

(
1−e−∆i exp

[
−(α+βxi)

])
−

k∑
i=1

∆i(Ni−ni) exp
[
−(α+βxi)

]
. (7)

After differentiating (7) with respect to α and β, the MLE α̂ and β̂ are derived by solving
the following two equations simultaneously:

k∑
i=1

ni∆i

exp
(
− (α+ βxi)−∆ie

−(α+βxi)
)

1− e−∆i exp
[
−(α+βxi)

] =
k∑
i=1

∆i(Ni − ni) exp
[
− (α+ βxi)

]
,

(8)
k∑
i=1

nixi∆i

exp
(
− (α+ βxi)−∆ie

−(α+βxi)
)

1− e−∆i exp
[
−(α+βxi)

] =

k∑
i=1

xi∆i(Ni − ni) exp
[
− (α+ βxi)

]
.

(9)

It is noted that unlike progressive Type-II censoring well studied in the literature, prefix-
ing the progressive Type-I censoring scheme c = (c1, c2, . . . , ck−1) comes with an inherent
mathematical issue since there is a positive probability that all the units could fail before
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reaching the last stress level xk, resulting in an early termination of the life test as well as
failing to fully implement c; see Balakrishnan and Han (2009), Balakrishnan et al. (2010).
For this reason, the assumption of a large sample is usually required so that the planned
number of units can be withdrawn at the end of each stress level. Under this assumption,
analysis of progressively Type-I censored data is conducted in an approximate/asymptotic
manner. In a reliability test, nevertheless, the sample size is usually small and severe cen-
soring might be expected because of budgetary and/or facility constraints. Consequently,
the assumption of a large sample cannot be satisfied in such conditions, and the progressive
censoring scheme has to be modified so that its feasibility can be guaranteed.

One simple modification is to decide on a fixed proportion of unfailed items to be
censored at the end of each stress level xi, denoted by π∗ = (π∗1, π

∗
2, . . . , π

∗
k−1) with

0 ≤ π∗i < 1. Then, the actual number of items censored at the end of xi is determined
by ci = Υ((Ni − ni)π

∗
i ) where Υ(·) is a discretizing function of choice, transforming

its argument to a non-negative integer. It could be round(·), floor(·), ceiling(·), and
trunc(·), for instance. This modification essentially allows the life test to terminate before
reaching the last stress level xk. Since the number of live units at the end of each stress
level before censoring takes place is random, the actual censoring scheme c is also random
via this modification. Another modification which can be entertained in practice is first to
decide on a fixed number of items to be censored at the end of each stress level xi, say
c∗ = (c∗1, c

∗
2, . . . , c

∗
k−1) with c∗i ≥ 0 and

∑k−1
i=1 c

∗
i < n. Then, the actual number of items

censored at the end of xi is determined to be ci = min
{
c∗i , Ni − ni

}
. If the number of

remaining units at any censoring time point is less than or equal to the prefixed number
of units to be censored at that point, all the remaining units are withdrawn and the life
test is terminated. Hence, this modification also allows the life test to terminate earlier than
scheduled whenever there are insufficient live units remaining on the test. Since the number
of surviving units at the end of each stress level before censoring takes place is random, the
actual censoring scheme c is essentially random as well.

2.2 k-level Constant-stress ALT under Type-I Censoring

For illustrative simplicity, let us consider the procedure of a constant-stress ALT un-
der Type-I censoring. A constant-stress ALT under progressive Type-I censoring can be
described in a similar manner like in the previous subsection by introducing a set of time
points for intermediate censoring. For i = 1, 2, . . . , k, we allocate Ni units on test at stress
level xi such that

∑k
i=1Ni = n. The allocated units are then tested until the termination

time ∆i at which point all the surviving items are withdrawn and the life test is terminated.
Like before, let us denote ni to be the number of units failed at stress level xi in time in-
terval [0,∆i). Then, Ni − ni denotes the number of units censored at time ∆i. If there is
no right censoring (viz., ∆i = ∞ and ni = Ni), this obviously corresponds to the k-level
constant-stress ALT under complete sampling as a special case.

Then, using (2), the JPMF function of n = (n1, n2, . . . , nk) is obtained as

fJ(n) =

k∏
i=1

(
Ni

ni

)[
Fi(∆i)

]ni
[
1− Fi(∆i)

]Ni−ni

=

[
k∏
i=1

(
Ni

ni

)][ k∏
i=1

(
1− exp

(
− ∆i

θi

))ni
]

exp

(
−

k∑
i=1

∆i

θi
(Ni − ni)

)
,

which is identical to (6). Using (6) and the log-linear link in (3), the log-likelihood function
of (α, β) can be written as in (7) and as a result of this unified likelihood structure, we obtain
the MLE α̂ and β̂ as simultaneous solutions to (8) and (9).
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3. The EM Algorithm for MLE

As shown above, the MLE α̂ and β̂ do not allow explicit expressions and hence, neces-
sitate numerical procedures such as the Newton-Raphson method for estimation. To em-
ploy the Newton-Raphson method, however, the second derivatives of the log-likelihood
function are required and this may not be convenient to extend or generalize to other cen-
soring schemes. To ease or avoid this issue, we propose to use the EM algorithm to es-
timate the MLE of the model parameters by treating the unobserved exact failure times
as missing data. First, at stress level xi, let yi,l denote the l-th ordered failure time of
ni failed units for l = 1, 2, . . . , ni, under both step-stress ALT and constant-stress ALT.
Then, the set of unobserved (missing) failure times is defined by y = (y1,y2, . . . ,yk)
with yi = (yi,1, yi,2, . . . , yi,ni) while n = (n1, n2, . . . , nk) defined in the previous section
denotes the observed failure count data. Using this augmented data, the following subsec-
tions present the likelihoods for general k-level constant-stress ALT and step-stress ALT
under (progressively) Type-I censored continuous monitoring, and explain the procedure to
obtain the MLE of α and β using the EM algorithm.

3.1 k-level Step-stress ALT under Progressive Type-I Censoring

Using (4) and (5), the distribution function of the continuously-monitored data (y,n)
is derived as

fJ(y,n) =

[
k∏
i=1

Ni!

(Ni − ni)!

][
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (10)

where

Ui =

ni∑
l=1

(yi,l − τi−1) + (Ni − ni)∆i (11)

for i = 1, 2, . . . , k. Under the continuous monitoring, Ui in (11) is known as the Total Time
on Test statistic at stress level xi. Using (10) and the log-linear relationship given in (3),
the log-likelihood function of (α, β) is written as

lC(α, β) = −α
k∑
i=1

ni − β
k∑
i=1

nixi −
k∑
i=1

Ui exp
[
− (α+ βxi)

]
. (12)

Now, the E-step of the algorithm requires the computation of the conditional expecta-
tion of (12) given the observed data n along with the current estimate of the parameters(
α(h), β(h)

)
at the h-th iteration. By denoting

(
α(h+1), β(h+1)

)
as the next estimate of the

parameters, this conditional expectation is written as

E
[
lc
(
α(h+1), β(h+1)

) ∣∣∣ n;α(h), β(h)
]

= −α(h+1)
k∑
i=1

ni − β(h+1)
k∑
i=1

nixi

−
k∑
i=1

u
(h)
i exp

[
−
(
α(h+1) + β(h+1)xi

)]
, (13)

where

u
(h)
i = E

[
Ui
∣∣n;α(h), β(h)

]
=

ni∑
l=1

E
[
yi,l − τi−1

∣∣ni;α(h), β(h)
]

+ (Ni − ni)∆i. (14)
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It can be shown that given ni, yi = (yi,1, yi,2, . . . , yi,ni) are distributed jointly as order
statistics from a random sample of size ni from a left- and right-truncated distribution at
τi−1 and τi, respectively. Using (4) and (5), this truncated PDF is given by fi;trLR(t) =
f(t)/

(
F (τi) − F (τi−1)

)
for τi−1 ≤ t ≤ τi, i = 1, 2, . . . , k. After algebraic some ma-

nipulations, it is then observed that given ni, (yi,1 − τi−1, yi,2 − τi−1, . . . , yi,ni − τi−1)
are distributed jointly as order statistics from a random sample of size ni from a right-
truncated exponential distribution at ∆i. Using (1) and (2), this truncated PDF is expressed
as fi;trR(t) = fi(t)/Fi(∆i) for 0 ≤ t ≤ ∆i, i = 1, 2, . . . , k. Utilizing this distributional
property, (14) is simplified as

u
(h)
i = ni

[
θi −∆i

Si(∆i)

Fi(∆i)

]∣∣∣∣
(α,β)=

(
α(h),β(h)

) + (Ni − ni)∆i

= ni

[
exp

(
α(h) + β(h)xi

)
−∆i

(
e∆i exp

[
−
(
α(h)+β(h)xi

)]
− 1

)−1
]

+ (Ni − ni)∆i.

(15)

In the M-step of the algorithm, the next estimate of the parameters
(
α(h+1), β(h+1)

)
is

obtained by maximizing (13). Upon differentiating (13) with respect to α(h+1) and β(h+1),
the value of β(h+1) is obtained as the solution to[

k∑
i=1

ni

][
k∑
i=1

u
(h)
i xi exp

(
− β(h+1)xi

)]
=

[
k∑
i=1

nixi

][
k∑
i=1

u
(h)
i exp

(
− β(h+1)xi

)]
.

(16)
Then, the value of α(h+1) is obtained by plugging the value of β(h+1) from (16) into

α(h+1) = log

(∑k
i=1 u

(h)
i exp

(
− β(h+1)xi

)∑k
i=1 ni

)
. (17)

It is observed from (16) and (17) that at least one failure needs to be observed from at least
two different stress levels to guarantee the existence of

(
α(h+1), β(h+1)

)
. Otherwise, the

parameters cannot be estimated. Under this condition, the unique value of
(
α(h+1), β(h+1)

)
exists and it can be determined by using a simple graphical method.

Eventually, the MLE of α and β are obtained by repeating the E- and M-steps iter-
atively until convergence occurs. For a reasonable starting value

(
α(0), β(0)

)
, the esti-

mate of the parameters based on the pseudo continuously-monitored sample is suggested.
This pseudo sample is obtained by replacing the unobserved failure times y with some
pseudo failure times. For example, given the observed data n, set y∗i,l = τi−1 + ∆i

l
ni+1

for l = 1, 2, . . . , ni, i = 1, 2, . . . , k (i.e., equally-spaced failure times). Using this set
of pseudo failure times y∗ along with the observed failure counts n, Ui in (11) can be
estimated. Then, the likelihood in (12) is maximized by solving (16) and (17) simulta-
neously with u

(h)
i replaced by Ui. This solution can be used as the initial estimate of

the parameters
(
α(0), β(0)

)
. Another suggested starting value is the least squares estimate

(LSE) from (3). Han and Bai (2018) provided that the MLE of individual θi is obtained as
θ̂i = ∆i

[
logNi − log(Ni − ni)

]−1. Using this collection of pairs (xi, log θ̂i), a simple
LSE of α and β can be obtained as

β(0) =

∑k
i=1(xi − x̄)

(
log θ̂i − log θ̂

)
∑k

i=1(xi − x̄)2
and α(0) = log θ̂ − β(0)x̄,
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where x̄ =
∑k

i=1 xi/k and log θ̂ =
∑k

i=1 log θ̂i/k. This estimate can be also used to
initialize the algorithm.

In summary, the EM algorithm proceeds as follows:

Step 1. Initialize the iteration counter h = 0 and choose the initial value
(
α(0), β(0)

)
.

Step 2. Compute u(h)
i in (15) with the observed data n.

Step 3. Compute β(h+1) by solving (16).

Step 4. Compute α(h+1) in (17) with β(h+1) from Step 3.

Step 5. If
∣∣α(h+1) − α(h)

∣∣ < ε and
∣∣β(h+1) − β(h)

∣∣ < ε, break the loop and present(
α(h+1), β(h+1)

)
as the MLE (α̂, β̂).

Step 6. Otherwise, increment the counter h = h+ 1 and go to Step 2.

3.2 k-level Constant-stress ALT under Type-I Censoring

Using (1) and (2), the distribution function of the continuously-monitored data (y,n)
is obtained as in (10) where

Ui =

ni∑
l=1

yi,l + (Ni − ni)∆i. (18)

Again, Ui in (18) is known as the Total Time on Test statistic at stress level xi. Using (10)
and the log-linear link function in (3), the log-likelihood function of (α, β) can be written
as in (12). Then, the E-step of the algorithm requires the computation of the conditional
expectation given in (13) where

u
(h)
i = E

[
Ui
∣∣n;α(h), β(h)

]
=

ni∑
l=1

E
[
yi,l
∣∣ni;α(h), β(h)

]
+ (Ni − ni)∆i. (19)

Similarly, it can be shown that given ni, yi = (yi,1, yi,2, . . . , yi,ni) are distributed jointly
as order statistics from a random sample of size ni from a right-truncated exponential dis-
tribution at ∆i. Using (1) and (2), this truncated PDF is given by fi;trR(t) = fi(t)/Fi(∆i)
for 0 ≤ t ≤ ∆i, i = 1, 2, . . . , k. This property simplifies (19) to (15). In the M-step of
the algorithm,

(
α(h+1), β(h+1)

)
is then obtained as the solution to (16) and (17) for maxi-

mizing (13). Eventually, the MLE of α and β are obtained by iterating the E- and M-steps
until convergence. For an initial value

(
α(0), β(0)

)
to start the algorithm, the parameter es-

timate based on the pseudo continuously-monitored sample or the LSE for (3) is suggested
as described in the previous subsection.

4. Illustrative Example

Section 1 introduced the progressively Type-I censored three-level step-stress ALT un-
der interval monitoring for assessing the reliability characteristics of a solar lighting device.
The proposed EM algorithm discussed in Section 3 was applied to the failure count data
presented in Table 1. In the initial assessment, Weibull distributions with a uniform shape
parameter across different stress levels were preferred. However, the inference for the shape
parameter could not reject a simpler exponential lifetime for the device at any constant tem-
perature. Consistent with our model assumptions, the exponential distribution was fitted to
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the data with the log-linear parameter-stress link function in (3). The proposed estimation
procedure produced α̂ = 3.6303 and β̂ = −2.3475 after 9 iterations of the EM algorithm.
The algorithm was initialized by using the LSE for (3),

(
α(0), β(0)

)
= (3.5196,−2.1456)

as the starting values. The final results are identical to the estimates from the Newton-
Raphson method, and also agree well with the MLE (α̂, β̂) = (3.6597,−2.4131) under
continuous monitoring (when the exact failure times are available).

5. Conclusion

In the literature, the estimation problem for ALT models under (progressive) censoring
has been studied lightly if not at all. The Newton-Raphson method has traditionally been
the choice of obtaining the MLE of the model parameters. Motivated by a real case study
in reliability engineering, here we implemented the EM algorithm to determine the MLE of
the regression parameters for (progressively) Type-I censored exponential failure data from
two popular modes of ALT, namely the k-level constant-stress and step-stress ALT under
interval monitoring. The method was proven to be feasible as well as easy to apply.
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