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Abstract 
An exponentiated Weibull-geometric distribution is defined and studied. Some of its 
properties, such as unimodality and moments are discussed. The method of maximum 
likelihood estimation is proposed for estimating the model parameters. A count data 
regression model, based on the exponentiated Weibull-geometric distribution, is also 
defined. The regression model can be applied to fit an under-dispersed or an over-dispersed 
count data. Two numerical data sets are used to illustrate the applications of the 
exponentiated Weibull-geometric regression model. 
 
Key Words and Phrases: Estimation; goodness-of-fit; under- and over-dispersion; zero-
inflation. 
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1. Introduction 
 Many techniques for generating families of discrete distributions have been developed 
in the literature. See for examples the books by Balakrishnan and Nevzorov (2003), 
Johnson et al. (2005), Consul and Famoye (2006), and the references therein. These 
discrete distributions are found useful in many different areas of life. Frome et al. (1973) 
considered the Poisson distribution in the context of non-linear regression analysis for 
count data where the sample mean and sample variance are about equal. When the sample 
mean and sample variance are about equal, we have an equi-dispersion situation. When the 
sample mean is smaller (or greater) than the sample variance, we have over-dispersion (or 
under-dispersion) situation. 
 Many researchers obtained discrete distributions by discretizing continuous 
distributions. Nekoukhou and Bidram (2015) gave a long list of these works. Another 
method to generalize an existing distribution is by adding parameters to the distribution to 
form an exponentiated family (Lee et al., 2013 and the references therein). By 
exponentiating the cumulative distribution function of discrete Weibull distribution 
(Nakagawa and Osaki, 1975), Nekoukhou and Bidram (2015) defined the exponentiated 
discrete Weibull distribution. 
 Mahmoudi and Shiran (2012) defined an exponentiated Weibull-geometric distribution 
by compounding the exponentiated Weibull and geometric distribution to form a 
continuous distribution. In this paper, we define an exponentiated Weibull-geometric 
distribution by using the T-R framework proposed by Alzaatreh et al. (2013). This new 
distribution is a discrete distribution and it is the discrete analogue of the continuous 
exponentiated Weibull distribution. This is like calling the geometric distribution a discrete 
analogue of the exponential distribution. 
 Alzaatreh et al. (2013) introduced a general method for generating a probability 
distribution. Suppose we have a probability density function (PDF), ( )Tf t , of a continuous 
random variable [ , ],  T a b a b∈ − ∞ ≤ < ≤ ∞  and a monotonic and absolutely continuous 
function ( )( )RW F y  of the cumulative distribution function (CDF) ( )RF y  for any random 
variable R. The CDF ( )YF y  of a new random variable Y is given by  

 ( )
[ ( )]

( ) ( ) [ ( )]RW F y

Y T T Ra
F y f t dt F W F y= =∫ . (1.1) 
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The distribution in (1.1) belongs to the T-R family. Many continuous distributions have 
been defined and studied by using the result in (1.1). In particular, Alzaatreh et al. (2012) 
defined the T-geometric family. This family consists of the discrete analogue to the 
distribution of the non-negative continuous random variable T. Furthermore, the authors 
defined and studied the exponentiated-exponential geometric distribution (EEGD). 
 In this article, an exponentiated Weibull-geometric distribution (EWGD) is defined 
and studied. The paper is organized as follows: In Section 2, the definition and some 
properties of EWGD are given. In Section 3, estimation of the parameters is considered 
along with some test and goodness-of-fit statistics for EWGD. An exponentiated Weibull-
geometric regression (EWGR) model to fit a count response variable that follows the 
EWGD is defined in Section 4. A zero-inflated EWGR is also given in Section 4. In Section 
5, the EWGR model is applied to two real life data sets and the results are compared with 
other count data regression models. Some concluding remarks are provided in Section 6. 
 
2. Definition and some properties of EWGD 
 The Weibull CDF is given by 1 exp[ ( / ) ]ct γ− −  and the exponentiated Weibull CDF is 

given as ( / )( ) 1
c a

t
TF t e γ−= − 

  , for t > 0 and γ, c > 0. The CDF of geometric distribution 

with probability p of success is 1( ) 1 y
RF y q += −  for y = 0, 1, 2, … and 0 < q = 1 – p < 1. By 

using equation (1.1), the CDF of the exponentiated Weibull-geometric distribution 
(EWGD) is given by ( ) ( [ ( )])Y T RF y F W F y= , where 

1[ ( )] ln[1 ( )] ln[ ] ( 1) ln( )y
R RW F y F y q y q+= − − = − = − + . Hence, 

 ( ){ } { }( 1)( ) { ln( )[ 1]} 1 exp[ ( ln ) / ( 1) ] 1
c aac c y

Y TF y F q y q yγ θ += − + = − − − + = − , 

where c > 0, a > 0, and ( )0 exp[ ( ln ) / ] 1cqθ γ< = − − < . Therefore, the CDF of EWGD is 
given by 

 { }( 1)( ) 1
c a

y
YF y θ += − , for y = 0, 1, 2, 3, … (2.1) 

The corresponding probability mass function (PMF) for EWGD is given as 
( 1)( ) ( ) ( ) ( 1) 1 1

c ca a
y y

Y Y Yf y f y F y F y θ θ+= = − − = − − −   
    , for y = 0, 1, 2, 3, … (2.2) 

Observe that (0) (0) (1 )a
Yf F θ= = − . The EWGD in (2.1) is the same as the exponentiated 

discrete Weibull distribution (Nekoukhou and Bidram, 2015). The two distributions are 
derived through different methods. In this paper, different properties and applications to 
count data modeling are emphasized. 
 When c = 1, EWGD reduces to the exponentiated exponential-geometric distribution 
(EEGD) defined and studied by Alzaatreh et al. (2012). When c = a = 1, the EWGD reduces 
to the geometric distribution with parameter θ. When a = 1, the EWGD reduces to the 
discrete Weibull distribution defined and studied by Nakagawa and Osaki (1975). When a 
= 1 and c = 2, the EWGD reduces to the discrete Rayleigh distribution defined by Roy 
(2004).  
 The sum of all probabilities in Equation (2.2) is 1. Thus, we have 

 2 3 2

0

( ) (1 ) 0 (1 ) (1 ) (1 ) (1 )
c c ca a a a a

y

f y θ θ θ θ θ
∞

=

= − − + − − − + − − −         ∑  

  ( 1)(1 ) (1 )
c ck a k aθ θ++ + − − − + 

  
 = 1. 
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From the above, the second term in the second square bracket cancels out with the first 
term of the first square bracket. This action will continue and the last term that remains in 
the last square bracket will be the term (1 ) 1aθ ∞− = , because 0 < θ < 1. Hence, the 
probabilities sum to 1. 
 
Transformations: 
 The following propositions show the relationships between EWGD and some 
continuous distributions. These relationships can be used to simulate random variates from 
the EWGD. 

Proposition 1: If U is a uniform (0, 1) random variable, then { }1/1/log (1 )
caY uθ

 
  

= − , 

where [v] is the largest integer less than or equal to v, follows an EWGD with parameters 
a, c, and θ. 
Proof: ( ) ( )1/ 1/ 1/ 1/( ) [{log (1 )} ] {log (1 )} 1a c a cP Y y P U y P y U yθ θ= = − = = ≤ − < +  

 = ( ) ( ) ( )( 1) ( 1)(1 ) (1 ) 1 1
c c c ca a

y a y a y yP Uθ θ θ θ+ +− ≤ < − = − − − , on simplification. 

Hence, Y follows the EWGD in Equation (2.2).   
 
By using the technique in the proof of Proposition 1, the following propositions can be 
proved. 
Proposition 2: If V follows a standard exponential distribution, then the random variable 

( ){ }1/1/log 1 (1 )
cv aY eθ

−= − − 
 

 follows an EWGD with parameters a, c, and θ. 

Proposition 3: Let V be an exponentiated exponential random variable with CDF 

( ) (1 )v dF v e−= − , then ( ){ }1//log 1 (1 )
cv d aY eθ

−= − − 
 

 follows an EWGD with parameters 

g(=d/a), c, and θ. 
Proposition 4: Let V be a standard Pareto random variable with CDF 1( ) 1F v v−= − , then 

( ){ }1/1 1/log 1 (1 )
caY vθ

−= − − 
 

 follows an EWGD with parameters a, c, and θ. 

Proposition 5: Let V be a Gumbel random variable with CDF ( ) exp( )vF v e−= − , then 

( ){ }1/1log 1 exp( )
cvY a eθ

− −= − − 
 

 follows an EWGD with parameters a, c, and θ. 

Proposition 6: Let V be a Fréchet random variable with CDF 1/( ) exp( )vF v e−= − , then 

( ){ }1/1 1/log 1 exp( )
cvY a eθ

− −= − − 
 

 follows an EWGD with parameters a, c, and θ. 

 
Quantile Function: 
 By using Proposition 1, the quantile function of EWGD is 

{ }1/1/( ) log (1 )
ca

Yy Q u uθ= = − 
  , where [v] is the largest integer less than or equal to v. 

This result can be used to simulate a random sample from EWGD. In order to do this, 
simulate random variate u from the uniform (0, 1) and compute ( )YQ u  to obtain a random 
variate y from the EWGD. 
 The exponentiated Weibull distribution with the PDF 
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1

1
( / ) ( / )( ) 1

c c
c

a
t tac t

g t e eγ γ

γ γ

−
−

− −= −
       

, (2.3) 

is monotonically decreasing for all values of γ, c < 1 and a < 1. Hence, the exponentiated 
Weibull-geometric distribution is monotonically decreasing for all values of c < 1 and a < 
1. This result is based on Lemma 2 of Alzaatreh et al. (2012) for any T-geometric 
distribution. Note that there are other values of the parameters c and a for which the EWGD 
is monotonically decreasing even though the distribution of T (i.e., exponentiated Weibull 
distribution) is not monotonically decreasing. 

 The hazard function of EWGD is given by 
( 1)

( 1)

( ) (1 ) (1 )
( )

1 ( ) 1 (1 )

c c

c

y a y a

Y

y a
Y

f y
h y

F y

θ θ

θ

+

+

− − −
= =

− − −
. 

Nekoukhou and Bidram (2015) illustrated the hazard rate function of EWGD for different 
values of the parameters a, c and θ . They noted that the hazard rate function could be 
decreasing, increasing, bathtub-shaped, and upside-down bathtub. This shows that the 
EWGD, characterized by two shape parameters, is more flexible than many other discrete 
distributions. 
 By using Theorem 2 in Alzaatreh et al. (2012), if the distribution of T is unimodal, so 
also is the distribution of the T-geometric distribution. We only need to show that the 
distribution of the exponentiated Weibull distribution is unimodal. 
 
Proposition 7: The distribution of the exponentiated Weibull distribution is unimodal. 
Proof: On differentiating the PDF g(t) in Equation (2.3) and setting it to zero, we obtain 
 ( 1)(1 )u uc e cu acue− −− − − = , where ( / )cu t γ= . 
If a < 1 and c < 1, it is obvious that ( ) 0g t′ < . Hence, the exponentiated Weibull is 
monotonically decreasing. We only need to consider other cases. The left hand side, 
( 1)(1 )uc e cu−− − − , is an increasing function of u, since the derivative of the left hand side 
expression is always positive. Its minimum is when 0u → . The right hand side, uacue− , 
is a concave down function since its derivative is first positive and then becomes negative. 
Thus, the function first increases to a point of maximum and then decreases. The minimum 
of the right hand side expression is at 0 when 0u →  and u → ∞ . The maximum is at u = 
1 when the function reaches the maximum of 1ace− . Both the left hand side and the right 
hand side expressions start from zero and since one is concave down and the other is strictly 
increasing, they can only intersect at only a single point greater than 0. This point of 
intersection is the mode of the exponentiated Weibull distribution. Hence, the 
exponentiated Weibull distribution is unimodal, and this ends the proof.   
 
By using Theorem 2 in Alzaatreh et al. (2012) and Proposition 7, the EWGD is unimodal. 
Thus, the EWGD is either monotonically decreasing or concave down. 
 
Moments and dispersion: 
 The moments and the moment generating function cannot be expressed in closed 
forms. However, the rth central moments can be computed numerically by evaluating 

( )r
r E Xµ µ= − , where 0 ( )x xP X xµ ∞

== Σ = . The summation is evaluated when the 
probability 1 ( )P X x− ≤  is at most 1.0E–10. The mean, variance, skewness and kurtosis 
are computed for some parameter values. We consider the values a = 0.2(0.1)10.0, c = 
0.5(0.1)10.0, and θ = 0.1(0.1)0.9. From this computation, we observe the following 
patterns between the mean, variance, skewness, kurtosis and the parameters: When both a 
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and c are fixed, the mean and variance are increasing functions of θ and there is no observed 
pattern for skewness and kurtosis. For fixed a and θ, the mean, variance, skewness and 
kurtosis are decreasing functions of c. When c and θ are fixed, the mean is an increasing 
function of a and there is no observed pattern for the variance, skewness and kurtosis. A 
small portion of these values are presented in Table 1. A more detailed table is presented 
in Famoye (2018). 
 When 2a ≤  and 1c ≤ , the EWGD is over-dispersed. For all other values of a and c, 
the distribution is either under-dispersed, equi-dispersed or over-dispersed. 
 

Table 1: Moments of EWGD for some parameter values 
 
c a 

 θ = 0.2 
 µ  σ  sk  ku 

 θ = 0.6 
 µ  σ  sk  ku 

0.5 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 

 0.27 1.43 10.09 191.23 
 0.52 2.70 7.29 102.40 
 0.75 3.84 6.08 72.94 
 0.97 4.87 5.38 58.32 
 1.18 5.80 4.92 49.62 
 1.38 6.64 4.59 43.87 

 3.88 160.29 8.95 156.22 
 7.26 292.35 6.65 88.37 
 10.25 404.67 5.68 65.62 
 12.93 502.59 5.12 54.15 
 15.37 589.62 4.76 47.17 
 17.60 668.15 4.49 42.45 

1.0 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 

 0.13 0.18 3.97 23.31 
 0.25 0.31 2.68 12.20 
 0.36 0.42 2.10 8.65 
 0.46 0.49 1.75 6.99 
 0.55 0.55 1.51 6.08 
 0.63 0.60 1.34 5.56 

 0.85 2.47 2.90 14.85 
 1.50 3.75 2.07 9.27 
 2.02 4.45 1.74 7.65 
 2.44 4.86 1.58 6.96 
 2.79 5.13 1.48 6.59 
 3.09 5.31 1.43 6.36 

1.5 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 

 0.11 0.11 2.94 11.38 
 0.21 0.19 1.83 5.50 
 0.30 0.24 1.29 3.68 
 0.38 0.28 0.95 2.89 
 0.45 0.30 0.70 2.52 
 0.52 0.32 0.50 2.38 

 0.54 0.71 1.78 6.50 
 0.93 0.95 1.10 4.28 
 1.21 1.02 0.84 3.87 
 1.43 1.02 0.74 3.81 
 1.61 1.00 0.70 3.82 
 1.75 0.98 0.69 3.82 

1.75 0.5 
 1.0 
 1.5 
 2.0 
 2.5 
 3.0 

 0.11 0.10 2.74 9.34 
 0.20 0.17 1.65 4.31 
 0.29 0.22 1.12 2.76 
 0.37 0.25 0.76 2.10 
 0.44 0.27 0.49 1.80 
 0.50 0.28 0.27 1.70 

 0.48 0.51 1.49 5.01 
 0.81 0.65 0.82 3.42 
 1.05 0.67 0.57 3.29 
 1.23 0.65 0.49 3.38 
 1.37 0.62 0.48 3.45 
 1.48 0.60 0.50 3.46 

 
3. Statistical Inference 
 We consider parameter estimation, test of hypothesis and goodness-of-fit tests. In sub-
section 3.1, we address the maximum likelihood estimation of the three parameters of 
EWGD. In sub-section 3.2, we compare the EWGD with its sub-models and briefly 
describe some goodness-of-fit statistics. 
 
3.1 Maximum likelihood estimation 
 Suppose a random sample 1 2, , , nY Y Y  of size n is taken from the EWGD. The log-
likelihood function of the EWGD in Equation (2.2) is given by 

 { }( 1)

1

log ( , , ) log [1 ] [1 ]
c c

i i

n
y ya a

i

L a c θ θ θ+

=

= = − − −∑ . (3.1) 

The partial derivatives of the log-likelihood function with respect to a, c, and θ are, 
respectively, given by 
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( 1) ( 1)

( 1)
1

{[1 ] log(1 ) [1 ] log(1 )}

[1 ] [1 ]

c c c c
i i i i

c c
i i

y y y ya an

y ya a
ia

θ θ θ θ

θ θ

+ +

+
=

∂ − − − − −
=

∂ − − −
∑

, (3.2) 

{ }( 1) ( 1)1 1

( 1)
1

log  [1 ] ( 1) log( 1)[1 ] log

[1 ] [1 ]

c c c c
i i i i

c c
i i

y y y yc a c a
n i i i i

y ya a
i

y y y y a

c

θ θ θ θ θ

θ θ

+ +− −

+
=

− − + + −∂
=

∂ − − −
∑

, (3.3) 

1 ( 1) 1 ( 1)1 1

( 1)
1

{ [1 ] ( 1) [1 ] }

[1 ] [1 ]

c c c c
i i i i

c c
i i

y y y yc a c an
i i

y ya a
i

y y aθ θ θ θ
θ θ θ

− + − +− −

+
=

− − + −∂
=

∂ − − −
∑

. (3.4) 

 The maximum likelihood estimates ĉ , â , and θ̂  of the parameters can be obtained by 
setting Equations (3.2)-(3.4) to zero and solving the equations iteratively through an 
optimization routine. In this paper, we used PROC NLMIXED in SAS to maximize the 
log-likelihood function in Equation (3.1). 
 When a = c = 1, the EWGD reduces to the geometric distribution. We consider the data 
to be from geometric distribution and use the moment estimate of the geometric distribution 
to obtain the initial estimate of θ. Thus, the initial estimate of θ is given by equating the 
sample mean from the data to the geometric population mean. This is given as 

/ (1 ) yµ θ θ= − = . On solving for θ, we obtain 0 / (1 )y yθ = + . Hence, one set of initial 
estimates will be a = c = 1 and 0θ . We can use the zero frequency from the EWGD to find 

the initial estimate for parameter a. We solve equation (1 )a
of θ= −  for a to obtain 

0 0 0ln / ln(1 )a f θ= − , where 0f  is the zero frequency from the sample. In order to find the 
initial estimate for the parameter c, we equate the first frequency from the sample to the 
population probability of Y = 1. This leads to solving the equation 2

1 0(1 )
c af fθ= − − . On 

solving the equation, the initial estimate of c is given by 
{ }01/

0 0 1 0ln ln[1 ( ) ] / (ln ) / ln(2)ac f f θ= − + . These second initial estimates are based on the 

assumption that both 0f  and 1f  are non-zero. 
 
3.2 Tests and goodness-of-fit statistics 
 The EWGD reduces to EEGD when c = 1. To compare the EWGD with EEGD, we 
test the hypothesis 0 : 1H c =  against 1 : 1H c ≠ . The null hypothesis can be tested by using 
the t-statistic ˆ ˆ( 1) / ( )t c se c= − , where ˆ( )se c  is the standard error of ĉ . By using the 
asymptotic normality of the maximum likelihood estimate (MLE), the statistic has an 
approximate normal distribution. Alternatively, one can use a likelihood ratio statistic with 
1 degree of freedom. 
 The EWGD reduces to the geometric distribution when a = c = 1. Thus, we test 

0 : 1H c a= =  against 1 0:  is falseH H . We use the likelihood ratio test. We define 0 ( )L θ , 

the likelihood statistic when a = c = 1 and 1
ˆˆ ˆ( , , )L c a θ  is the likelihood statistic when 0H  is 

false. The test statistic is defined as 0 1
ˆ ˆˆ ˆ( ) / ( , , )L L c aλ θ θ=  and 2 log( )λ−  is approximately 

chi-squared with 2 degrees of freedom. 
 The goodness-of-fit statistic can be based on the log-likelihood statistic, Akaike 
Information criterion (AIC), the Bayesian Information criterion (BIC), the Pearson chi-
square statistic with its p-value and the ranked probability score (RPS). The AIC and the 
BIC are respectively defined as AIC 2 log( ) 2L p= − +  and BIC 2 log( ) log( )L p n= − + , 
where n is the sample size, p is the number of estimated parameters and L is the likelihood 
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statistic. The smaller the AIC (or BIC), the better the model. The chi-square statistic is 

given by 2 2
1

1

( ) /
k

k p i i i
i

O E Eχ − −
=

= −∑ , where iO  is the observed frequency in cell i, iE  is the 

expected frequency in cell i and k is the total number of cells. The degree of freedom for 
the chi-square distribution is k – p – 1. 
 The ranked probability score (RPS) is not often used. According to Weigel et al. 
(2006), “The RPS (Epstein 1969; Murphy 1969, 1971) is a squared measure that compares 
the cumulative [distribution] function (CDF) of a probabilistic forecast with the CDF of 
the corresponding observation over a given number of discrete probability categories.” 
Thus, RPS measures the discrepancy between the theoretical CDF and empirical CDF 
given by 

  
2

1 1 1

RPS
k m m

i i
m i i

e o
= = =

= − 
 
 

∑ ∑ ∑ , (3.5) 

where ie  is the predicted (or forecasted, or theoretical) probability and io  is the observed 
(empirical) proportion in category i. The smaller the measure, the better the model. 
 
4. Count data regression 
 Suppose that Y is a count response variable that follows the EWGD in Equation (2.2) 
and Y is associated with a set of predictors. We wish to fit the response variable Y by using 
the predictors. Suppose we have a k – 1 row vector of predictors 

0 1 2 ,( 1)( 1, , , , )i i i i i kx x x x x −= =  . In count data modeling, it is common to model the mean 
by a log-linear relationship. The mean of EWGD is not in closed form, but it is a function 
of parameter θ . We assume that the parameter θ of EWGD is a function of ix  given by 

( ) ( , )i i ix f xθ θ β= = , where 0 ( , ) 1if x β< <  is a known function of ix  and a k-
dimensional column vector 0 1 2 1( , , , , )kβ β β β β −=   of regression parameters. Since 
0 1θ< < , we take ( , )if x β  to be the logit function 

  ( ) ( , ) / (1 )i ix x
i i ix f x e eβ βθ θ β= = = + . (4.1) 

 This leads to the exponentiated Weibull-geometric regression (EWGR) model given 
by 

 ( 1)( | ) ( ) 1 1
c c

i i
a a

y y
i i i i iP Y y x yω θ θ+= = = − − −   

    , iy  = 0, 1, 2, …, (4.2) 

where ( )i ixθ θ=  is given in Equation (4.1). The estimation of the parameters can be carried 
out by using the maximum likelihood estimation method. The log-likelihood function is 
given by 

 { }( 1)
*

1

log ( , , | ) log [1 ] [1 ]
c c

i i

n
y ya a

i i i
i

L a c xβ θ θ+

=

= = − − −∑ . 

The derivatives with respect to a and c are the same as in equations (3.2) and (3.3) 
respectively for the EWGD. The derivative with respect to the k parameters 

0 1 2 1( , , , , )kβ β β β β −=   are as follows: 
1 ( 1) 1 ( 1)1 1

*

( 1)
1

{ [1 ] ( 1) [1 ] }

[1 ] [1 ]

c c c c
i i i i

c c
i i

y y y yc a c an
i i i i i i i

y ya a
ij ji i

y y aθ θ θ θ θ
β βθ θ

− + − +− −

+
=

− − + − ∂∂
=

∂ ∂− − −
∑

, 0,1, 2, , 1j k= − , 

where / (1 )i j i i ijxθ β θ θ∂ ∂ = − . 
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 A count data may have an inflated number of k value in the data. The most common k 
value is the zero which leads to zero-inflated regression model. Similarly, the count data 
may not have a zero count and this leads to zero-truncated regression model. In this section, 
we will define a zero-inflated regression model for the EWGR model. A zero-inflated 
EWGR (ZIEWGR) model is a mixture model with the probability mass function 

  
(1 ) ( ), 0

( | , )
(1 ) ( ), 1, 2,3, ,

i i i i
i i i

i i i

y y
P Y y x z

y y

ϕ ϕ ω

ϕ ω

+ − =
= =

− =



 

 (4.3) 

where ( )iyω  is the EWGR model given in Equation (4.2) and 0 < iϕ  < 1. The probability 

iϕ  may be taken as a nuisance parameter when the data set is small or a function of 
predictors when the sample size is large. If iϕ  is a function of predictors 

0 1 2 ,( 1)( 1, , , , )i i i i i rz z z z z −= =  , then iϕ  can be defined as exp( ) / [1 exp( )]i i iz zϕ δ δ= + , 

where δ  is an r-dimensional column vector 0 1 2 1( , , , , )rδ δ δ δ δ −=   of parameters. In 
general, iz  may be a subset of ix  or different from ix . 
 
5. Applications 
 In this section, we apply the generalized Poisson regression (GPR) model defined by 
Famoye (1993), the exponentiated exponential geometric regression (EEGR) model 
defined by Famoye and Lee (2017) and the EWGR model to two count data sets. These 
two models are chosen because both can be over- or under-dispersed. Because the data sets 
have high proportion of zero, the zero-inflated versions of the models were also applied 
and the results are compared. 
 
5.1 Health Care Data: 
 Cameron et al. (1988) used the data from 1977-78 Australian Health Survey to analyze 
various measures of health-care utilization. The data can be obtained from the Journal of 
Applied Econometrics 1997 Data Archive. Many authors, including Mullahy (1997) and 
Cameron and Johansson (1997), fitted the data to univariate regression models. A detailed 
description of the predictor variables can be found in Gurmu and Elder (2000). A summary 
statistics for the predictor variables were provided in Cameron et al. (1988). 
 We model the response variable y, the total number of non-prescribed medications used 
in the past two days. The complete data set has six response variables. All the six variables 
were adequately fitted by the EWGR and ZIEWGR models. The SAS NLMIXED 
procedure was used to fit the regression models to the response variables. There is an 
adequate fit when the optimization program converged and the gradient for each of the 
parameter estimates is less than 1.0E-6. When we considered GPR and EEGR and their 
inflated models, these two models adequately fitted the response variable y and one other 
response variable (the number of admissions to a hospital, psychiatric hospital, nursing or 
convalescent home in the past 12 months). The results from this other response variable is 
similar to the variable y reported in Table 2. The response variable y ranges from 0 to 8 
with a mean of 0.3557 and a standard deviation of 0.507. The variable is over-dispersed 
and it is highly skewed to the right with skewness of 3.05 and kurtosis of 15.11. 
 The results of fitting ZIEEGR and ZIEWGR are presented in Table 2. For all models 
(that of ZIGPR is not provided in the table), the predictors sex, age and illness are positively 
associated with total number of non-prescribed medications used. However, the predictor 
freerepa is negatively associated with the response variable. The dispersion parameter a in 
both ZIGPR and ZIEEGR are significantly different from 1. In the ZIEWGR model, the 
dispersion parameter c is significantly different from 1 but the parameter a is not 
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significantly different from 1. The ZIEEGR is nested within the ZIEWGR model. Thus, 
we can compare ZIEWGR with ZIEEGR by testing if the parameter c = 1 under a null 
hypothesis. Since the null hypothesis is rejected, one should use the ZIEWGR to model the 
data. The log-likelihood statistics for ZIEEGR and ZIEWGR models in Table 2 support 
the assertion. The log-likelihood statistic and the RPS for ZIGPR model are respectively -
3904.55 and 5.7E-5. By using the RPS and the log-likelihood statistics, we notice that 
ZIEWGR provided the best fit among all the three models. 
 The log-likelihood statistics for the GPR, EEGR and EWGR models are respectively -
3930.16, -3929.87, and -3918.31. In comparing these values with the corresponding ones 
for the zero-inflated models, we observe that the zero-inflated models performed better 
than the non-inflated (ordinary) models. The ordinary models are all nested within the zero-
inflated models. The likelihood ratio statistics for testing if all the parameters of the zero-
inflation part are all zeros are rejected at 5% level for all models. 
 

Table 2. Parameter estimates (standard errors in parentheses) for health-care data. 
Variable 
x/z 

ZIEEGR 
 β δ 

ZIEWGR 
 β δ 

Constant 
Sex 
Age 
Agesq 
Income 
Levyplus 
Freepoor 
Freerepa 
Illness 
Actdays 
Hscore 
Chcond1 
Chcond2 
â  
ĉ  

 -2.3555 (0.226)* 0.0916 (1.495) 
 0.1935 (0.066)* -0.7508 (0.480) 
 4.9383 (1.211)* 0.5814 (9.637) 
 -6.1885 (1.351)* -1.9508 (11.07) 
 0.1181 (0.100) 0.0878 (0.778) 
 -0.0556 (0.076) -0.1172 (0.481) 
 -0.0390 (0.161) -0.1319 (1.198) 
 -0.2756 (0.116)* 0.6015 (0.861) 
 0.1478 (0.027)* -3.3287 (1.351)* 
 0.0075 (0.010) 0.2838 (0.156) 
 0.0203 (0.013) -1.1435 (1.313) 
 0.1063 (0.070) -0.3559 (0.548) 
 -0.0556 (0.100) -1.1609 (1.502) 
 1.3611 (0.090)* 
  

-4.4433 (0.740)* -0.5237 (1.872) 
 0.1926 (0.060)* -0.9426 (0.515) 
 5.2423 (1.126)* 9.2446 (11.42) 
 -6.6473 (1.267)* -13.6344 (13.99) 
 0.0208 (0.090) -0.7611 (0.706) 
 -0.0796 (0.069) -0.4022 (0.484) 
 -0.1433 (0.148) -1.4247 (1.657) 
 -0.2872 (0.107)* 0.7172 (1.063) 
 0.1622 (0.022)* -17.0050 (31.47) 
 -0.0018 (0.009) 1.3707 (2.246) 
 0.0212 (0.012) -29.9175 (260.2) 
 0.0934 (0.066) -0.5457 (0.591) 
 -0.0447 (0.095) -1.9216 (2.342) 
 9.7881 (6.921) 
 0.5708 (0.090)* 

LogL 
AIC 
BIC 
RPS 

-3905.91 
7865.8 
8042.8 
2.95E-5 

-3893.49 
7843.0 
8026.5 
1.17E-6 

 
 On fitting the ZIGPR to the data, we obtain the log-likelihood as -3904.55 and the RPS 
as 5.70E-6. The observed proportion of zeros in the data is 73.49%. After fitting the ZIGPR, 
ZIEEGR and ZIEWGR models, the predicted proportion of zeros are respectively given by 
73.83%, 73.56% and 73.48%. The ZIEWGR provided the best predicted probability of 
zero. We also calculated the chi-square values by combining the last three classes in the 
frequency table. The chi-square values for ZIGPR, ZIEEGR and ZIEWGR are respectively 
given by 16.41, 16.68 and 2.20. Note that we have a total of 7 classes after the last three 
classes were combined. The goal for computing the chi-square values is not to check if 
these values are significant, but to see which of these models provides the closest expected 
frequencies. In this analysis, the ZIEWGR model provided the best fit by using the 
goodness of fit statistics. 
 
5.2 Violence Data: 
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 The National Violence Against Women (NVAW) Survey of 1995-1996 was conducted 
to obtain a public-use data set. Interviews were completed from men and women, but the 
data used in this sub-section is a subset of the 8000 interviews completed by women who 
were at least 18 years old living in US households. Respondents were asked questions on 
various topics including physical assault they had experienced as adults by any type of 
perpetrator. The response variable used in the data analysis is physical assault or violence. 
This is the total number of twelve possible violent physical actions directed toward a 
woman by her current and/or past partners. A high score on this variable indicates a woman 
experienced severe violence. 
 In the analysis, seven predictor variables were used. The variables are age in years; 
level of education is one of the seven school levels (0 = no schooling to 6 = postgraduate); 
race (1 = white, 0 = others); number of children under 18 years of age (Nchid); respondent’s 
income level is one of 10 levels (1 = below $5,000 to 10 = over $1,000,000); health level 
is one of 5 levels (0 = poor to 4 = excellent); and drug is a binary variable that indicates 
illicit drug use with 1 = yes and 0 = no. The variable drug indicates if a woman has used 
marijuana, cocaine, heroin, angel dust, etc. in the past month. After excluding the cases 
having missing information on any of the predictor variables and the response variable, we 
have 6110 observations. 
 The descriptive statistics for the response and predictor variables are given in Table 3. 
The response variable, violence, is positively skewed (skewness = 2.24, kurtosis = 4.70). 
Tjaden and Thoennes (1999) provided detailed description of the variables and the most 
recent publications on the data. 
 

Table 3. Descriptive statistics for the response and predictor variables (n = 6110) 
Variable Description Mean ±  SD Proportion of 1’s 
Age Age in years 42.54 ±  15.37 
Educ Education level 3.79 ±  1.16 
Race Race  0.8146 
Nchild Number under 18 years 0.97 ±  1.21 
Income 1995 family income level 3.95 ±  2.44 
Health Health condition 2.74 ±  1.08 
Drug Illicit drug use  0.0172 
violence Response variable 1.23 ±  2.34 

SD = standard deviation 
 
 The results of fitting the ZIEEGR and ZIEWGR models are presented in Table 4. For 
the ZIGPR (not included in Table 4) and ZIEEGR models, the variables education and 
health are significantly associated with the response variable violence. The higher the level 
of education (or the better the health condition), the lower the number of violence a 
respondent experienced. The other five predictor variables are not significantly related to 
violence. In the ZIEWGR model, the predictor variables education and health are 
negatively associated with the number of violence. In addition to these two predictor 
variables, drug is positively related to the number of violence under the ZIEWGR model. 
The respondents who used illicit drug in the past month of the survey tend to have higher 
number of violence. 
 

Table 4. Parameter estimates (standard errors in parentheses) for violence data. 
Variable 
x/z 

ZIEEGR 
 β δ 

ZIEWGR 
 β δ 

Constant  1.4382 (0.147)* -0.8980 (0.191)*  8.3098 (0.985)* -8.6298 (1.294)* 
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Age 
Educ 
Race 
Nchild 
Income 
Health 
Drug 
â  
ĉ  

 -0.0029 (0.002) 0.0200 (0.002)* 
 -0.1050(0.023)* 0.0075 (0.031) 
 0.0566 (0.054) 0.1872 (0.081)* 
 0.0291 (0.020) -0.0467 (0.028) 
 -0.0050 (0.011) -0.0404 (0.014)* 
 -0.0753 (0.021)* 0.2123 (0.031)* 
 0.1609 (0.125) -1.0985 (0.268)* 
 1.6930 (0.135)* 
  

 0.0009 (0.006) 0.1027 (0.016)* 
 -0.1765 (0.054)* -0.0566 (0.108) 
 0.0614 (0.127) 1.1172 (0.416)* 
 0.0819 (0.048) 0.1955 (0.133) 
 0.0154 (0.025) 0.0217 (0.063) 
 -0.2277 (0.053)* 0.4199 (0.094)* 
 0.7492 (0.360)* -11.4066 (163.1) 
 0.0714 (0.009)* 
 3.3861 (0.338)* 

LogL 
AIC 
BIC 
RPS 

-8092.68 
16219.0 
16334.0 
5.446E-4 

-8054.58 
16145.0 
16266.0 
1.461E-4 

*Significant at 5% level. 
 
 The chi-square values from the ZIGPR, ZIEEGR and ZIEWGR models are 
respectively given by 58.73, 46.84 and 31.23. The ZIEWGR model provided the closest 
expected frequencies. The observed proportion of zero for the response variable violence 
is 67.05%. The predicted proportion of zero from ZIGPR, ZIEEGR and ZIEWGR models 
are respectively 67.07%, 67.08% and 66.93%. The ZIGPR provided the best expected zero 
frequency. 
 The log-likelihood statistic and the RPS for ZIGPR model are respectively -8094.93 
and 6.221E-4. In comparing these values with the corresponding values for ZIEEGR and 
ZIEWGR models in Table 4, we observe that the ZIEWGR model provided the best fit 
followed by the ZIEEGR model. The log-likelihood statistics for the GPR, EEGR and 
EWGR models are respectively -8416.13, -8224.73 and -8151.13. In comparing the 
ordinary regression models with their corresponding zero-inflated regression models, we 
observe that the zero-inflated models performed better. The results from the data analysis 
show that the ZIEWGR provided the best fit by using the goodness of fit statistics. 
 
6. Summary and conclusions 
 The exponentiated Weibull-geometric distribution can be applied to fit count data with 
over-dispersion, equi-dispersion or under-dispersion. The distribution has closed form 
probability mass function and a cumulative distribution function. One limitation of the 
distribution is that its moments cannot be expressed in closed forms. However, the 
moments can easily be computed numerically. 
 A count data regression, the exponentiated Weibull-geometric regression model, is 
defined. A modified version, the ZIEWGR model is defined and illustrated with two 
numerical data sets. The goodness-of-fit of ZIEWGR model is compared with ZIEEGR 
and ZIGPR by using the AIC and the ranked probability scores among other statistics. In 
the two numerical examples, the ZIEWGR performed better than the other two count data 
regression models. 
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