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Abstract

Experiments exploring directions of steepest ascent (DSAs) are isomorphic to one-factor-at-
a-time (1AAT) experiments — they try runs along the DSA at varying distances, typically with
intermediate factor levels (IFLs). A natural extension of the 1AAT DSA approach likewise
encourages IFLs, incorporates the DSA, and includes also the factor × DSA interactions.
When combined with locally weighted scatterplot smoothing (“lowess”), this defines a class of
varying-coefficient models called gamut models. Our main optimal design criterion is average
(“integrated”) mean square prediction error (I-optimality), which is relatively friendly to IFLs.
We adapt this criterion to the lowess-based varying-coefficient gamut models and assess the
resulting designs.
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1 Approaches to Experimental Design
At least since Fisher (1935), factorial designs have formed a cornerstone of experimental design
theory. The key properties of factorial designs are (1) their high efficiency in terms of sample size,
(2) their enhanced sensitivity to detecting interactions, and (3) their capacity to enclose rather
high-dimensional factor spaces.

Box and Hunter (1961a, 1961b) brought two-level experimental designs to substantial maturity,
culminating in the classic texts Box, Hunter, and Hunter (2005) and Montgomery (2013). This
line of practice favors symmetry properties and highlights orthogonal arrays. This paradigm is
also tolerant of model ambiguity, e.g. resolution IV designs, which confound multiple second-order
interactions with one another.

A complementary approach formulates experimental designs as solutions to optimization prob-
lems. This algorithmic paradigm poses an objective function, scores tentative solutions, and
makes iterative refinements. Unlike the symmetry approaches just noted, this so-called optimal
design paradigm presumes a uniquely specified model, and some of the tension between these two
paradigms revolves around the relevance of resolution IV designs.

For a linear model y = Xβ + ε, the least squares estimate of β is b = (X>X)−1X>y and
the variance-covariance matrix of b is proportional to (X>X)−1. Wald (1943) introduced D-
optimality, which minimizes the volume of the least squares coefficients ellipsoid, proportional
to a determinant : det((X>X)−1) = 1/det(X>X). An alternative criterion, G-optimality, mini-
mizes the largest (greatest) prediction error in the design space: max(x>(X>X)−1x). Kiefer and
Wolfowitz (1960) demonstrate the asymptotic equivalence of D- and G-optimality.

Like G-optimality, Studden (1977) focused on prediction error. However, rather than mini-
mizing its worst or largest value, Studden proposes averaging it — integrating it — over the fac-
tor space:

∫
x>(X>X)−1x dx = trace((X>X)−1

∫
xx>dx); this criterion he terms I-optimality.

Note how the I-optimal criterion consists of two factors, the design, represented by the term
(X>X)−1 and the underlying factor space, represented by the covariance-like second moment ma-
trix

∫
xx>dx.

From examples Hardin and Sloane (1993) conclude that I-optimal designs are distinct from
D- and G-optimal designs: The I-optimal criterion distinguishes between designs with the same
D-optimal score; further, the I-optimal criterion gives rather more preference to points near the
center of the design region.

Didactically, the teaching of experimental design usually requires both displacing a practice
and replacing it with a new concept. The practice to be displaced consists of an approach often
assimilated in middle and high school science classes: (a) run a control group first, (b) hold
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everything constant but one variable, which is systematically varied, then (c) repeat (b) with a
different variable.

Such a process consists of several distinct ideas: (0) the role of control runs, (1) varying only one
variable at a time (“1AAT”), and (2) setting that selected variable to multiple different values —
intermediate factor levels or “IFLs.” In contrast, the experimental design theory that replaces this
high-school style assesses designs numerically, and then demonstrates the statistical inefficiency
and insensitivity to factor interactions of 1AAT and IFLs. (We put aside the issue of control
runs, which is rather more nuanced.) These results are then used to build out a statistically based
experimental design paradigm.

2 Steepest Ascent
The didactically standard template for statistical experimental design proposes this series of steps:
(0) a first phase of establishing stability, often by repeated control runs, (1) screening designs,
typically two-level and low-resolution, sufficient for a linear model, (2) follow-up designs that assess
and perhaps resolve two-factor interactions, and (3) supplemental runs that estimate quadratic
effects.

In the context of optimization, Box, Hunter, and Hunter (2005, chapter 12) and Montgomery
(2013, chapter 11) suggest gradient ascent. The prescription essentially explores along a single
direction: x0 + λig, for 0 < λ1 < λ2 < · · · , where x0 denotes the current design center, g
the estimated gradient at x0, and {λ1, λ2, ...} denote various scalars guiding the magnitude of g.
The statistical literature calls g the direction of steepest ascent (DSA). In the standard template
described above, the DSA can be computed from data arising in either step (1) or step (2) and
consists of the derivative of the response surface.

In the numerical analysis literature, gradient ascent (or descent) is central. Levenberg (1944)
and Marquardt (1963) are jointly credited for the algorithm defining a damped hessian-based
update. Press et al (1989) names the hessian-free quasi-Newton version BFGS, for the near-
concurrent contributions of Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970).
Dekker (1969) and Brent (1973) are known for the iterative exploring for and bounding of a solution
along a defined direction.

For optimizing response surfaces, Box, Hunter, and Hunter (2005, chapter 12) and Montgomery
(2013, chapter 11) present the gradient ascent methods from the deterministic numerical analysis
literature without modification. However, in the context of experimental design, both the DSA is
estimated with uncertainty and any attempted new setting is measured with experimental error.
At any rate, their proposal for a Brent-method style of one-dimensional exploration resembles
strongly a 1AAT experiment, somewhat inconsistent with the standard statistical pedagogy that
favors factorial experiments.

3 Interactions and Steepest Ascent
A natural expansion of the 1AAT form of DSA would incorporate interactions; this corresponds
to the response surface’s gradient or DSA g(x) changing as a function of the coordinates x.

Consider the n-vector g and the n× J matrix X. Define the direct product g⊗X as giving an
n × J matrix whose i-th row is (giXi1, giXi2, giXi3, . . . , giXiJ). A DSA model with interactions
has this expectation:

E{y|g,X} = β0 + gβ1 + g ⊗Xβ. (1)

β = 0 corresponds to no interactions, and in this case the DSA direction g is sufficient.
Given a DSA estimate g, model (1) enables an optimal design approach for choosing additional

coordinates. In form, (1) resembles one of the models associated with resolution IV designs, that
which estimates all interactions with one particular factor. In this case, (1) poses all interactions
with the feature (and gamut) g.
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4 Gamut Models
Writing of deterministic models, Constantine et al. (2016) assert that many physical systems have
a ridge function structure like (1). In the context of large scale data analysis, Heavlin (2016)
postulates something similar, “gamut models,” about which we now elaborate.

A gamut model is a form of varying-coefficient model, in the sense of Hastie and Tibshirani
(1993), where the coefficients vary as a function of a particular variable, the gamut. Thus, its
expectation is

E{yi|gi,xi} = β0 + x>i β(gi),where gi = g(xi) (2)

The gradient at coordinate x is β(g(x)), varying as a function of the scalar-valued gamut function
g(·). Model (2) is not identifiable, but Heavlin (2016) overcomes this with three ideas: (a) Find a
gamut of convenience that can be computed on all n observations. (b) Define a vector of n weights
w(g) that give more weight to observations with gamut values near g and less on those farther
away. (c) Estimate the coefficients β(g) by weighted least squares with weights w(g).

The simpler implementations of gamut models make pragmatic choices: Gamut (a) can be
taken to be the predicted values of an unweighted least squares model. Weights (b) are derived
from the tricubic lowess (locally weighted scatterplot smoother) weights, as originally proposed
by Cleveland (1979). To be invariant to monotone transformations, gamut values are sometimes
replaced by their ranks.

Recall the key relations for weighted least squares: Near a particular scalar gamut value g,
define n weights w(g) and their corresponding diagonal matrix Dg = diag(w(g)). Then, the
coefficients b(g) can be calculated as

b(g) = (X>DgX)−1X>Dgy (3)

with this associated variance-covariance matrix:

Vg ≡ COV{b(g)} = σ2(X>DgX)−1X>D2
gX(X>DgX)−1, (4)

where σ2 is the usual variance of the underlying experimental error, and typically estimated by
the residual mean square error. Note that (4) is scale-invariant: Vg remains unchanged if Dg is
replaced by aDg for any positive scalar a.

5 Gamuts and Optimal Design
We emphasize that the coefficients estimated by (3) need only be useful in a certain part of the
factor space, in the neighborhood where in some sense the gamut function g(x) ≈ g0, for some scalar
g0. One can reasonably represent this neighborhood, which we have not been defined precisely, by
postulating a probability density function (pdf) pg(x) on the x-domain and factor space.

Let us define Ω(g) ≡
∫

xx> pg(x)dx. For a series of scalar gamut values g1, g2, . . . we likewise
have a series of x-domain second-moment matrices Ω(g1), Ω(g2), . . ..

A natural extension of I-optimality in the case of gamut models is this lower-is-better criterion:∑
k

trace(VgkΩ(gk)) (5)

(5) seeks to minimize the sum of weighted average prediction error over regions, mediated by
pdfs pg(x), where their predictions are likely to be relevant. Note that corresponding extensions
to D- or G-optimality are less straightforward: D-optimality focuses on how well the coefficients
are estimated, but without the context of the factor space. G-optimality, in contrast, focuses on
the largest prediction error over the factor space; it is not obvious how to restrict G’s worst-case
construct to a subspace of interest. In this sense, I-optimality adapts well to gamut models while
D- and G-optimality would seem to adapt awkwardly at best.

As presented, criterion (5) minimizes prediction error, so promotes exploration. Note that the
original motivation for calculating DSAs is to identify better operating points, exploitation — in
other words, a DSA points toward higher utility, and gamut functions measure this utility. A
natural modification therefore would
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minimize
∑
k

trace(VgkΩ(gk))− α
∑
i

g(xi) (6)

for some scalar α ≥ 0. When α is zero, (5) is equivalent to (6); when α > 0, some consideration is
given to higher utility gamut values.

6 An Example
We illustrate these ideas by a toy example. Suppose we have four factors and our gamut consists
of their sum: g(x) = x>1. We seek a 5-run design sensitive to the interactions with this direction.
If we put no utility on the gamut itself, we can use criterion (5) or equivalently criterion (6) with
α = 0.

The resulting design is presented in Table 2. This design has two low-gamut design points and
three high-gamut points. Observe how the three high-gamut points represent 1AAT variation from
the x = (1, 1, 1, 1) maximum gamut point — which, we emphasize, is not run. In this regard, it
is reminiscent of the resolution III design 23−1III — sometimes called L4 or OA(4) — presented in
Table 1. In the case of Table 2, of course, the 1AAT portion moves to middling values like −0.15.

Consider now the solution when we use criterion (6) with α = 0.5. Because of the extra utility
associated with the gamut values, the resulting design, presented in Table 3, now has one low-gamut
and four high-gamut values, the low-gamut point is no longer so low, and the remaining four runs
all represent 1AAT trials from the maximum gamut point (1, 1, 1, 1) — which we emphasize again
is not run. If anything, the resemblance to the resolution III in Table 1 has grown stronger. Now,
the 1AAT portion has slightly more de-tuned values like −0.23. The average gamut value has
increased, while the four high-gamut values recoup some of the information needed to estimate
interactions with the gamut.

X01 X02 X03
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

Table 1: The design variously called 23−1III , L4, and OA(4)

X01 X02 X03 X04 gamut
-1.00 -1.00 -0.92 -1.00 -3.92
0.87 -1.00 -1.00 -1.00 -2.13
1.00 1.00 1.00 -0.15 2.85
1.00 -0.15 1.00 1.00 2.85
1.00 1.00 -0.04 1.00 2.96

Table 2: 5-run explore design in four factors, α = 0

X01 X02 X03 X04 gamut
-0.54 -0.81 -0.76 -0.66 -2.77
1.00 1.00 -0.26 1.00 2.74
-0.23 1.00 1.00 1.00 2.77
1.00 1.00 1.00 -0.23 2.77
1.00 -0.21 1.00 1.00 2.79

Table 3: 5-run explore/exploit design in four factors, α = 0.5

7 Conclusion
The I-optimal criterion consists of two factors, one holding the information of the experimental
design and another describing the second moments of the factor space. The partitioning of these
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two factors facilitates building designs for the class of varying-coefficient models we call here gamut
models.

The resulting designs have a coarse structure and a fine-grained structure. The coarse structure
shows some intermediate factor levels (IFLs), and both low-gamut and high-gamut values. The
latter point helps estimate the coefficient associated with the gamut direction itself, β1 in (1).

As to the fine-grained structure, one end of the gamut range are nearly equal gamut values
achieved by distinct factor settings. These same-gamut, different-settings runs share a common
pattern: Relative to an (absent) highest-gamut run, each factor is de-tuned one at a time from its
optimum. The average of these help estimate β1 in (1); the variation among them helps estimate
the interactions of each factor with the gamut direction, β in (1).
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