JSM 2018 - Section on Physical and Engineering Sciences

The Identification and Quantification of Pits, Cracks, and Corrosion from
Container Material Image Surface Depth Measurements with Subsequent
Container Classification
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Abstract

Hazardous materials or conditions may affect the integrity of their container. A sample is taken
destructively from the interior surface of a container. Depth measurements on the sample are made
using a Laser Conformal Microscope, LCM, to create an image of the surface height or depth over
the sample area. The depth information is used to define void features of interest. The features of
interest consist of pixels of the image that form contiguous areas with similar depths. A feature
is characterized by various statistics. For each feature, the statistics include: number of pixels
and the corresponding aggregate pixel area, maximum depth, average depth, volume below the
surface, bounding box, major, minor axis and related eccentricity, the orientation of the major axis,
the topological “holes” and other specific shape information, such as, exact absolute or relative
locations of the forming pixels. The feature statistics may be summarized for all features in the
image. The summary statistics of the image may be used to classify the image as interesting, in the
sense of requiring further inspection, or uninteresting, in the sense that there are no unacceptable
features present.

The container is then classified as acceptable or unacceptable.

Key Words: laser confocal microscope, pits, cracks, stress corrosion cracking (SCC), surface
corrosion, container integrity, characterization

1. Introduction and Background

Containers have been used for various hazardous materials containing Plutonium (Pu) or
Uranium (U) elements or compounds for many years, Figure 1a, thru today, Figure 1b, and
will be used for the foreseeable future. For safety reasons containers must satisfy govern-
ment requirements, [3]. For example, one of the current requirements is the container must
hold its integrity for 50 years. One of the sources of container failure is container corrosion.
Figure 2a shows Plutonium Oxide in a container. Such hazardous materials, if not stored
properly, may cause container failure, see Figure 2b.
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Figure 1: Historical and Modern Day Pictures of Los Alamos National Laboratory from
LANL achives.

(a) Plutonium Oxide in a Container. (b) Hazardous materials may be corrosive.

Figure 2: Containers Holding Hazardous Materials. Images from Los Alamos National
Laboratory Actinide Research Quarterly, 3rd Quarter, 2004.

The study described here is to help determine if possible corrosion events exist in cur-
rently used in 3013 containers. 3013 is a specific type of container or container system.
The system consists of nested containers, Figure 3a and Figure 3013 cutaway, [3]. The
container are named, from innermost to outermost, the convenience container, the inner
container and the outer container.

The main possible corrosion events are: pitting, cracking and general surface corrosion.
These categories may not be mutually exclusive. Pitting tends to be a single contiguous
circular area on the surface and the main concern is the pit depth. There are pit growth
models that depend upon the deepest depth of the pit, see [8]. Cracking is a very complex
3-dimensional feature in the material that may exhibit itself as linear like feature(s) on the
surface, see [2], [18], [1], [10], [12], [17], [9], and [11]. General corrosion is a larger area
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(a_) DOE 3013 .System of Three Con- (1) Cutaway of a 3013 Nested Container
tainers for Nesting. System.

Figure 3: 3013 Container System. From innermost to outermost, the convenience con-
tainer, the inner container and the outer container. Images from Los Alamos National
Laboratory Actinide Research Quarterly, 3rd Quarter, 2004.

phenomenon that may deteriorate, at a relatively constant amount, a much larger area than
a typical pit or typical crack. All of these types corrosion events are important and must be
examined on the container(s) under investigation.

Initially this study focussed on possible corrosion pitting. After the pitting was satis-
factorily quantified then the study focus changed to potential cracks. Eventually, further
study will include estimating the general corrosion.

The inner surface of the inner container is the area of study. There is a weld around
the circumference of the entire inner container to secure the “lid” according to the require-
ments, Figure 4a. The area near the weld is of primary concern as it has been subject to
the affects of the welding process that may have introduced stresses and strains within the
container wall. The container is destructively examined by cutting out container wall sam-
ples from this area. Figure 4b is an image showing how the wall surface changes from the
weld on the top down to the original pre-weld container surface on the bottom. There are
three zones labeled, 1 2, and 3, according to their proximity to the weld region. Various
experiments have been run using a “teardrop” to simulate the stresses and strains near the

weld region, 4c.

ety
-
-

Figure 2-1. Representative optical images of the
Inner Container Closure Weld Region with
Zones 1-3 delineated.

(a) 3013 Container Sectioned (b) Container Zones With (c) Experimental “Teardrop”
for Sample Preparation With  Weld on Top. From Top to  Used to Simulate the Stresses
Weld on Bottom Where Bottom: Weld, Zone 1, Zone In the Container.

the Flat Surface Meets the 2, and Zone 3.

Curved Wall Surface.

Figure 4: Container Weld Region (Images from Juan Duque) and Teardrop Sample Creat-
ing Stress (image Daniel Rios).
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Only the surface of the inner wall region is studied here. The surface is interrogated
with a Keyence, [7], laser confocal microscope (LCM). The microscope provides data of
four types: height (or depth), intensity, optical, and laser optical. The optical and laser
optical data are each comprised of three channels: red, green, and blue. There are a total of
eight different data channels, one for height, one for intensity, three for optical, and three
for laser optical. The eight data channels are plotted in Figure 5. The eight channels of
data are provided in one LCM output file with Keyence, [7], extension “.vk4”. The “.vk4”
file is a binary file and the specific format is discussed in [13] and [14]. The image used
for Figure 5 is from a typical .vk4 file, HC'L_Pol_no_O2_Secl_All_Y2_X8.vk4. This is
from a teardrop experiment using HCI acid with no polishing of the surface and under the
condition of having oxygen present.
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Figure 5: The Images Display the Types of Data In One Typical “.vk4” File,
HCL_Pol no_.O2_Secl_All Y2 _X8.vk4. Upper Left is the Intensity Data, Upper Right is
the Height Data, Middle Left is the Blue Optical Data, Middle Middle is the Green Optical
Data, Middle Right is the Red Optical Data, Lower Left is the Blue Laser Optical Data, ...
Lower Middle is the Green Laser Optical Data, and Lower Right is the Red Laser Optical
Data.
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To properly handle the data channels requires some processing of the raw LCM data
values. The main processing is to that of the height or depth measurement. The raw data
has curvature that may affect the analysis. This curvature is estimated and removed from
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further analysis.

The eight channels may be analyzed independently of one another or in synchrony with
one another. The main synchronous use will be to determine the height/depth of feature
created from the other channels.

We discuss within and between image classification. Some features, such as, general
corrosion or long cracks, may span several contiguous images of a sample and hence may
be best analyzed with knowledge of adjacent image(s). The main concern here will be the
within image classification. The image analysis or within image classification consists of
first determining features of interest in the area of the image. Then classification of the
features as of concern or not of concern.

Once the features have been classified the images containing features may be classified.
In one container there will be approximately 6,000 images available for analysis. The
images will be ranked in order from those most likely requiring human follow up scrutiny
to those least likely to require human follow scrutiny of the image.

Avenues for future, analysis and research paths are discussed. The conclusion of this
study is the LCM data may be used to rank the images for further human scrutiny.

2. Handling Microscope Curvature.

The height/depth data may have curvature introduced by the sample removal process, the
release of stress and strain after cutting, or the microscope stage horizontal alignment. This
curvature is removed to allow for the feature depths to be more accurately obtained. The
image on the left in Figure 6 is the height/depth data from a typical image treated with HCI.
Y7 and X4 in the LCM file name indicate the position in a mosaic of 165 features, not fur-
ther discussed here. The “raw” depth image on the left is normalized only by dividing my
the maximum pixel value in the file. The curvature may be seen as the image tends to be
“high” on the left and ‘low” on the right. The curvature is removed by fitting a very smooth
non-parametric function to the unnormalized “raw” data and subtracting this smooth sur-
face from the “raw” data. The resulting un-normalized height depth data is shown on the
right of Figure 6. The very smooth non-parametric function has been implemented as a
MATLAB subroutine called SMOOTHN, see [4], [5], and [6]. The subroutine has been
modified to allow the user to supply a custom value of the smoothing parameter, see [15]
and [16].

3013_HCl 20x Reference Y7 _Xd.vk4
3013 _HCI_20x Reference Y7 _X4.vk4 8 hN Curvature R d Height Data
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1 1
a9
100
] 0o
1
F 300 N
» ]
5 400
¥ 00 " .2
0.3 3
600 ¥
2 4
700
200 400 800 800 1000 200 400 800 800 1000 19

Figure 6: Raw Depth Data for Image Y7 X4 on the left (Normalized to Maximum Value
of One). Curvature Removed From the Raw Data (Unnormalized in Microscope Output
Values) on the Right. Each Axis Represents the Number of the Pixel in the Image(s).
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3. Feature Creation

Features are determined for each of the data types: curvature removed height/depth, inten-
sity, optical, and laser optical by thresholding the data and looking for contiguous patches
in the image. Once these contiguous patches are found they are screened to verify that they
have at least a minimum number of pixels and not more than a maximum number of pixels.
Often in the analysis done here the minimum number is five pixels and the maximum num-
ber is some large number, such as 100,000 meant to exclude extraneous features such as
edge of sample area or the weld area. In Figure 7 the top left image shows features, in yel-
low, created by height above a critical value and below another critical value. The critical
values are user supplied to allow for pixels of interest to be included in features of interest
and excluded from features of interest. That is setting them to zero would possibly include
all pixels in one giant feature. Whereas setting them too large in magnitude would provide
no features. An interim value that provides for features of interest is what is desired. In
this analysis features less than 10 microns are often not interesting whereas those larger
than 10 microns may be interesting. In Figure 7 the lower left image show features, in
yellow, of the intensity value. A cutoff is supplied for thresholding intensity by providing a
lower percentile for the threshold. Intensity pixels that have low intensity values make for
features of concern that is, potential pis or potential cracks. The percentile is user supplied
and a value of 1% may be a good starting value.

The optical image features, in yellow, are in the upper right of Figure 7. The threshold-
ing is more complex as we have three values or channels for the optical data, red green, and
blue. or the purposes here we have found that dark values are those of interest to comprise
the features. To decide which pixels to use or exclude in the feature formation step the user
supplies first a percentile for the optical data, as in the intensity data, and then the vertices
of a polytope in the RGB space to determine “dark’ or pixels of interest to form the fea-
tures. The user may also supply a “buffer” to include pixels that are close to the supplied
polytope. The percentiles are first used for each channel to determine the channel cutoff
value. Next the polytope is scaled according to these cutoff values. And final for each pixel
in the image it is determined whether or not the RGB values for the pixel lie either within
or within the buffer distance to the polytope. The selected pixels are then used to form the
features. The laser optical data features, in yellow, are in the lower right side of Figure 7.
The creation of these features is handled in a similar way as is the optical data. Similar to
the height/depth data and the intensity data, the features are required to have a minimum
number of pixels and to not exceed a maximum number of pixels.

Potential general corrosion is evident in Figure 7. Notice the change in density of the
smaller features, especially in the two lower figures. Three of the images have identified
two very large pit-like features. These features may be interrogated for further information,
such as, maximum depth.
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Figure 7: All Features Created from the Four Types of Data. Height in upper left, Intensity
in lower left, Optical in upper right, and Laser Optical in lower right.

To visualize the polytopes and how they are used with the RGB channels see Figure
8. On the left is the polytope used for the laser optical feature formation and on the right
is the polytope used for the optical feature formation. Each of these use four vertices for
the polytope as listed above the figures. Each vertex consists of three values of RGB. The
values are: [0,0,0], [75,0,0,], [0,75,0], and [0,0,75]. The polytope formed in 3-dimensions
is the same as a cube sliced in half at four of its vertices forming a right angled tetrahedron
in 3-dimensions. The points in the scatterplot each represent the RGB values for one pixel
in the image. If the pixel falls within the buffer units of the wedge polytope or within
the polytope then the pixel is colored red. If the pixel RGM values are at least the buffer
number of units from the polytope then the pixel is colored black. The red pixels are used
to define the features by contiguity.
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Figure 8: Scatter Plot of all Pixel Values in an Example Image. Red Indicates the Point
Falls within the Polytope Defined by Vertices [0,0,0], [75,0,0,], [0,75,0], and [0,0,75] and
Black Otherwise. Left Image is For Laser Optical Data and Right Image is for Optical

Data.

4. Feature Analysis

A group of neighboring pixels determines a possible feature, [16]. Statistics are computed
for each of the possible surface features from each of the data types. The possible features
are uniquely labeled and related statistics include:

1.
2.

10.
11.
12.
13.
14.
15.
16.
17.

Data type origin (type of data used to define feature, ie. height)

Pixel locations (row and column locations of the pixels in the image)

. Number of pixels or area in square microns (area of the feature, number or square

microns)

Orientation (angle of the major axis of the feature, defined in MATLAB)

. Eccentricity (defined in MATLAB)

Centroid (defined in MATLAB)

. Bounding box (defined in MATLAB)
. Euler number (defined in MATLAB)

. Convex Area (defined in MATLAB)

Equivalent Diameter (defined in MATLAB)

Solidity (defined in MATLAB)

Extent (defined in MATLAB)

Perimeter (defined in MATLAB)

Number of pixels (defined in MATLAB)

Pixel length in nano-meters (length of square side of a pixel)

Below and above surface areas (area above the smooth level of the height surface)

Maximum depth or height (the deepest or highest pixel in a height feature)
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18. Below and above surface variability - roughness (the standard deviation of the height
of the pixels in a feature)

19. Below and above surface volume (sum of depth & height times pixel area)

20. Below and above surface average depth or height (the average of the below or above
height of the pixels in a feature)

The feature statistics are next used to determine features of interest for further investi-
gation. A set of criteria are created to classify the features. In this study we created five
different sets of criteria. For pit-like criteria we used maximum pit depth. For crack-like
criteria we used eccentricity values near one. The three additional criteria are basically
used to find features in the non-depth/height data that may be indicators of potential cracks.
These rely on eccentricity, extent, and solidity. The various statistics use cutoff values and
categorize the features as “red” if they are of great concern, “yellow” if they may be of
concern, and as “green” if there is no concern about the feature being corrosion that may
eventually cause container wall compromise.

4.1 Example Image 1

A summary image showing the results of this analysis in an image chosen for illustrative
purposes is provided in Figure 9a. In this image the blue features are features above the
surface and the red features are those below the surface. Typically, we ignore the features
above the surface as they represent noise, debris, or other uninteresting features. The fea-
tures below the surface are those of most interest. In this image three of the features cause
particular attention. Two are pit-like and one is crack-like. In this case we are most inter-
ested in the maximum depth of the pit-like features. and we would be interested to find if
the crack-like feature is part of a crack network or just some surface type blemish. Blem-
ishes may be machining marks, scratches, polishing marks, or debris. The lower center type
feature has been enlarged and is provided in Figure 9b. The enlargement shows the feature
has “holes” and is generally circular. The feature Euler number is related to the number
of holes and the feature roughness reflects the non-constant behavior of the feature values.
Although not further used here, these statistics may become useful for eventual feature and
image ranking.

(a) Example Image With Pit-Like (at locations [330,390] (b) Zoom of Pit-Like Feature
and [450,1010]) and Crack-Like (from [0,380] to [280,370])  at location [330,390] in Fig-
Features Below the Surface (red) and Small Noisy Features  ure 9a.

Above the Surface (Blue) and Below the Surface (Red).

Figure 9: Example Image With Potential Pit and Potential Crack Type Features and Zoom.
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4.2 Example Image 2: “Crack1_20X.vk4”

The example image “C'rackl1_20X.vk4” is from an experiment intentionally designed to
create cracks. This example contains “obvious” crack features. Various graphics have been
created to “see” the features in an image. These graphics are detailed below.

The height data may have features both above and below the surface of the sample.
These features are displayed in Figure 10. The features above the surface are in blue and
those below the surface are in orange. It is clear from inspecting this image that the crack
features occur mostly above the surface. This may be due to debris forming around the tope
edge of a crack.
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Figure 10: All (Green, Yellow, or Red) Features for Height Data. Features Above the
Surface in Blue and Features Below the Surface In Orange.

The features created from the intensity data are portrayed in Figure 11. There are only a
few very small green features in the image and a small yellow feature. Most of the features
are flagged as red and visually form a weblike crack network. The parameters listed on
the bottom of the image list the values used to determine green, yellow and red features.
To be labeled as a red feature the feature must have eccentricity greater than 0.95, solidity
less than 0.1, or extent less than 0.05 and the feature must contain at least 5 pixels. To
be labeled as a yellow feature the feature must not be labeled red, must have eccentricity
greater than 0.9, solidity less than 0.2, or extent less than 0., and the feature must contain
at least 5 pixels. To be labeled as a green feature the feature must not be classified as either
red or yellow.

The features created from the optical data are portrayed in Figure 12. There are a few
small green and yellow features in the image. Most of the features are flagged as red and
visually form a weblike crack network. The parameters listed on the bottom of the image
list the values used to determine green, yellow and red features. These parameters are the
same as those used in the intensity feature classification listed above for 11.
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Green and Flagged Intensity Features
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intensityeccentricityred=0.95, intensityeccentricityyellow=0.9,
intensitysolidityred=0.1, intensitysolidityyellow=0.2,
intensityextentred=0.05 intensityextentyellow=0.1,
intensitynumpixelsred=5, intensitynumpixelsyellow=5,
smoothpaameter=1000000.

Figure 11: Green, Yellow, or Red Features for Intensity Data.

The features created from the laser optical data are portrayed in Figure 13. There are
very few small green and yellow features in the image. Most of the features are flagged as
red and visually form a weblike crack network. The parameters listed on the bottom of the
image list the values used to determine green, yellow and red features. These parameters
are the same as those used in the intensity and optical feature classification listed above for
11.

In the images in Figures 10, 11, 12, and 13 it is seen that the crack network features
are different for the different types of data used to create the features. The intensity data
seems to pick out most of the web network. However, the intensity data seems to miss
the small crack connecting the two pit-like features in Figure 11 that is more visible in the
optical data features of Figure 12. This small connecting crack is centered near the point
[450,500]. In this example, the parameters set to determine green, yellow, and red features
are are the same for the intensity, optical and laser optical data. For other examples these
parameters may be different for the different types of data.

Figure 14 displays a set of 9 arbitrary feature classifications for the data of Example 2.
Each row has a classification for the image in column 1 and for the five different feature
classification methods in columns 2 thru 6. The image is classified as ”"Red” because there
is at least one red feature in the entire image (including features not displayed in Figure
14). For the 9 arbiltrarily chosen features none of them are pit-like so they are all listed
as ”Green” in column 2. In column 3, for the crack-like classification method there is one
”Yellow” and one "Red” classified feature. Columns 4 thru 5 are identical to one another
because in this Example 2 the same criteria were applied for each classification method.
Two are classified as ”Yellow” features and seven are classified as ”"Red” features. As
mentioned earlier, the user may specify different parameters for the last 3 classification
methods and this may result in a different classification colosr for any one feature.
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Green and Flagged Optical Features
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Figure 12: Green, Yellow, or Red Features for Optical Data.

Green and Flagged Laser Optical Features
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laseropticaleccentricityred=0.95, laseropticaleccentricityyellow=0.9,
laseropticalsolidityred=0.1, laseropticalsolidityyellow=0.2,
laseropticalextentred=0.05 laseropticalextentyellow=0.1,
laseropticainumpixelsred=5, laseropticalnumpixelsyellow=5,
smoothparameter=1000000.

Figure 13: Green, Yellow, or Red Features for Laser Optical Data.
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Intensityindicator
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Figure 14: Feature Classification for Image “Crack1_20X.vk4”. Columns are for Image
Overall Color, Pit Indicator Color, Crack Indicator Color, Intensity Indicator Color and Op-
tical Indicator Color, and Laser Optical Indicator Color. Rows are for Individual (unlabeled

here) images.

Figure 15 is a montage of the images in Figures 10, 11, 12, and 13. This figure makes
it easier for a visual comparison of the features determined by the different types of data:
heigh/depth, intensity, optical, and laser optical.

All Height Only Features Above (Blue) Below (Orange) Surface

Crack1 20X
OutCutOffe 1Abovel
b A 3
1l \ /
" "
200 bt - ’},w-,_ - .
b o .
a8 s ~
[ .
400 ) - 2
. ‘
500 " M
[y v .
00 i !
| o . 4
700 /a o
’
200 400 800 800 000

smoothparamater=1000000.

200

300

500

Too

Green and Flagged Optical Features

Crackl 20X
e oo e
-~ | |
\ r.
.\. - -
a ~4 ¥l
r “
-
’w .'
-~ ]
{ {
/ \
- [}
Y |
200 400 800 800 1000

opticalsccentricityred=0.85, opticaleccentricityyeliow=0.9,
opticalsalidityred=0.1, opticalsolidityyellow =0.2,
=0.05,0ptc 01,
P =5, opticainumpielsyeflow =5,
smoothpammeaters 1000000,

Figure 7005

le Edit View Insert Tools Desktop Window Help_r. File Edit View Insert Tools Desktop Window Help

Sde h NLOPWL-2 0%

Green and Flagged Intensity Features

Crack1 20X
OutCi 1 CutOff:
\ f
100 B /
\ F
2m A |
] 3 e
: ¥ ™ o
300 s
'
400
g f
500 5 t
600 7 z !
1‘ ‘\
T b } |
4 Id 1
200 00 800 200 1000
ntensity red=0.95, yeccentricityyellow=0.9,
intensitysoldityred=0.1, intensity yyeliow=0.2,
tensity =0.05, yelow=0.1,
ty Isred=5, intensitynumpelsyelow =5,

smocthparameter=1000000.

oa

200

300

500

700

3
-

ds h L 9 RA£-2 08

Green and Flagged Laser Optical Features
Crackl 20X
QutCutOftsBelow-1Above! QutCutOfisBelow-3Aboved
” * |

|-

\

|

200 400 600 B00 1000

Iasaropticalecceniricityred =0.95, Bsempticaleccentricityyellow=0.9.

asempti 0.1, laser w=032,
asar d=0.05, jcalextent yellow=0.1
laseropticanump 5, laseropticaln ellow=5,

smoothpammeter= 1000000,

Figure 15: Feature Comparison Image “Crack1_20X.vk4”. Height in upper left, Intensity
in lower left, Optical in upper right, and Laser Optical in lower right.

Figure 16 is a montage using height to portray a feature as being completely above the
surface (orange), completely below the surface (green), or sometimes above and sometimes
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below the surface (black). The height/depth data image in the upper left is the same as
that in figureheightall. The other three images have mostly black features indicating most
features from the intensity, optical, and laser optical data types yield features that are both
above and below the surface.
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Figure 16: Height Comparison Image “Crack1_20X.vk4”. Height in upper left, Intensity
in lower left, Optical in upper right, and Laser Optical in lower right.

Once all of the features in an image are classified, then it is possible to classify the
entire image as green, yellow, or red..

5. Image Analysis

Using the feature classifications derived as described above, images may be classified to
determine how images should be prioritized for further human investigation. As an example
of image classification, we use 252 images from the FY09 DEO2 container. Figure 17
displays the 252 images in one figure. The images are in 14 rows and 18 columns. In this
figure the surface is represented in black, the green features in green and the flagged features
(yellow and red features) in orange. The information in these 252 images is extremely
condensed and much lost in order to display them all in one montage. The montage reveals
a likely relatively corrosion free area in the upper middle that is mostly black and green.
There are also many areas that are simply green possibly indicating there may be general
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corrosion present but no pit-like or crack-like features. The areas with orange indicate
potential pit-like and crack-like features.

Figure 17: 252 Images (in White Bordered Rectangles) With Features of Interest in Or-
ange, 14 Rows and 18 Columns.

As an example of the information loss consider the image from row 6 from the bottom
and column 2 from the left. This image is flagged as red using the two feature classification
methods of pit-like and crack-like for the height/depth data. However, a zoom into this
individual image yields the following two features displayed in Figures 18a and 18b. One
is ared crack-like feature and one is a red pit-like feature. As a consequence of the existence
of either these two features in the image the entire image is classified as red and it is flagged
for further human investigation. This entire methodology has been automated in MATLAB.

(b) Feature 2, arbitrary scaling for display.
(a) Feature 1, arbitrary scaling for display.

Figure 18: Features Extracted from One Image (Column 2 from the Left and Row 9 from
the Top) of the Montage Figure 17 for Easier Viewing.

Using only these two classification measures, pit-like and crack-like, we see the feature
classification results in Figure 19. Column 1 has the overall image color for pit-like features
only (column heading is “’pitcolor”), column 2 has the overall image color for crack-like
features only (column heading is “eccentricitycolor”), and column 3 has the image name.
We see from this table that, for example, image Y 1X2 would be labeled red, Y1X3 would
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be labeled yellow, and Y1X6 would be labeled green. Y1X2 red because the “eccentricity-
color” or crack-like feature is red. Y1X3 yellow because the ”pitcolor” or pit-like feature is
yellow (and the crack-like feature green). Y1X6 is labeled green because both the pit-like
and crack-like features are each labeled green. This figure contains a summary of only a
selection (41 images) of the 252 images.

pitltl:olor ecsentricitycolor in:;gename \r(:‘ljlow ::::zx :i:ii;
yellow re

yellow green Y1X3 red red Y13X19
green  yellow YiX4 yellow yellow Y14%2
green vyellow Y1X5 red red Y14X3
green green Y1X6 yellow vyellow Y14X4
yellow vyellow Y1X7 ia red Y14X5
yellow green Y1X8 yellow |red Y14X6
yellow yellow Y1X9 yellow  red Y14x7
green green Y1X10 red i Y14x8
green green Y1X11 yellow red Y14X9
green  green Y1X12 red red Y14X10
yellow green Y1X13 red red Y14X11
green yellow Y1X14 red red Y14X12
green green Y1X15 red red Y14X13
yellow green Y1X16 yellow green Y14X14
vellow red Y1X17 red green Y14X15
yellow green Y1X18 yellow green Y14X16
yellow red Y1X19 red red Y14X17
yellow vyellow Y2X2 red yellow Y14X18
yellow green Y2X3 red yellow Y14X19

(a) Example Images Y1X2 thru Y2X3. $i4§?§mple Images Y13X17 thru

Figure 19: Classification of Images by Pit Color and Crack Color for Select Images. The
Column “pitcolor” Contains the Color of the Most Extreme Pit-Like Feature Found in the
Image. The Column “crackcolor” Contains the Color of the Most Extreme Crack-Like
Feature Found in the Image. The Column “imagename” Identifies the Analyzed Image
Unique Identifier. The Omitted Column Headings of Figure 19b are the same as the Column
Headings in Figure 19a.

Figure 20 contains histograms detailing the number of features that are pit-like and
crack-like in the 252 images. The histograms are on different scales in both the horizontal
and vertical axes. There are many green features, fewer yellow features, and still fewer red
features in the 252 images. Displaying them on different scales allows for better within
histogram information. The first row contains the histograms for pit-like features. The
horizontal axis represents the maximum depth of the pit-like features. This allows for an
easy way to see how many features of various maximum depths exist for each of the feature
classification types. The second row contains the histograms for crack-like features. The
horizontal axis represents the eccentricity of the crack-like features. This allows for an
easy way to see how many features of various eccentricities exist for each of the feature
classification types.
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Potential Pit and Potential Crack
Features by Classification Type
Green, Yellow or Red
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Figure 20: Potential Pit (Row 1) and Potential Crack (Row 2) Features by Classification
Type of Green, Yellow, or Red. Histograms are on Different Vertical Scales.

6. Analysis Examples

Using the analysis methodology above it is possible to analyze images. We are currently
working on selecting appropriate parameters to identify pit-like and crack-like features of
interest while excluding those that are not of interest. To this end we analyzed two images
that were identified by the subject matter expert to contain possible crack-like features of
interest.

6.1 RGB Features in Image “FY09 DE02 Y13 X12”

There is a potential suspect crack in the image “FY09 DEO2 Y13 X12” of Figure 21. The
potential suspect crack spans from approximately (795,620) to approximately (790,360). It
is hard to see and appears as a dark line in the optical image.

Using the analysis methodology detailed above we get the features displayed in Figure
22. Again we see that the different data types pick up different aspects of the surface as
portrayed by the different features created.

Using the analysis methodology detailed above we get the features displayed in Figure
22. Using these features we classify them, as described previously above, to yield the clas-
sified features in Figure 23. The height/depth data did not pick up the suspect crack in the
sense of finding linear features where the potential crack is located. The other three types
of data, intensity, optical, and laser optical all not only picked up the crack-like features
with high eccentricity but also classified them as red features.
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FY09 DEO2 270 SW (Stitch 6mm from Weld) After 2nd Cleaning Y13 X12vk4
Red Green Blue Laser Optical Data
o T ]

300

400
Figure 21: Optical image of “FY09 DEO2 Y13 X12”. Potential suspect crack approxi-
mately from the point (795,620) to (790,360).
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Figure 22: Possible Features Created in Image “FY09 DE02 Y13 X12”. Height in upper
left, Intensity in lower left, Optical in upper right, and Laser Optical in lower right.
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Figure 23: Classified Features Created in Image “FY09 DEO2 Y13 X12”. Height in upper
left, Intensity in lower left, Optical in upper right, and Laser Optical in lower right.

6.2 RGB Features in Image “FY09 DE02 Y13 X117

There is a potential suspect crack in the image “FY09 DEO2 Y13 X11” of Figure 24. The
potential suspect crack spans from approximately (350,530) to approximately (325,420). It
is hard to see and appears as a dark thin line in the optical image.

Using the analysis methodology detailed above we get the features displayed in Figure
25. Again we see that the different data types pick up different aspects of the surface as
portrayed by the different features created.

Using the analysis methodology detailed above we get the features displayed in Figure
25. Using these features we classify them, as described previously above, to yield the clas-
sified features in Figure 26. The height/depth data did not pick up the suspect crack in the
sense of finding linear features where the potential crack is located. The other three types
of data, intensity, optical, and laser optical all not only picked up the crack-like features
with high eccentricity but also classified them as red features. Intensity and laser optical
data were the best at finding red linear features near the subject matter expert identified
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crack.

FY09 DEO2 270 SW (Stitch 6mm from Weld) After 2nd Cleaning Y13 X11.vk4
Red Green Blue Laser Optical Data

Figure 24: Optical image of “FY09 DE02 Y13 X11”. Potential suspect crack approxi-
mately from the point (350,530) to (325,420).
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Figure 25: Possible Features Created in Image “FY09 DE02 Y13 X11”. Height in upper
left, Intensity in lower left, Optical in upper right, and Laser Optical in lower right.
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Figure 26: Classified Features Created in Image “FY09 DEO2 Y13 X11”. Height in upper
left, Intensity in lower left, Optical in upper right, and Laser Optical in lower right.

7. Ongoing and Future Work

7.1 Verification

The subject matter expert verified the maximum depths of identified features matched the
depths obtained by careful examination with the microscope. The further analysis requires
parameters so that potential or actual cracks are identified.

7.2 Cross Sections of the Sample

Another methodology we are investigating is use cross sections of the sample to verify the
existence of below surface cracks indicated by surface features.

7.3 Ongoing and Future Analysis

The following methodologies are to be used for future investigation.
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1. Classification of 6,000 images from one container
2. Multiple containers

3. Refinement of potential feature definitions

4. Refinement of image classifications

5. Incorporation of additional data (proximity, eccentricity and orientation) to form “su-
per” features

6. Feature type agglomeration

7.4 Other Possible Methodologies
1. Other Container Types — Hagan/SAVY 4000

2. Other inspection methodologies — acoustic

3. Other measurement types - photographs

It remains to be seen how much of this image analysis process may be accomplished
by the automated analysis as compared to the human analysis.

8. Conclusion

Automated image analysis may be used to categorize sample images as needing further
examination, possible further evaluation and no features of concern. Images with features
of concern also contain the location and feature shape as well as associated statistics about
the shape, area, volume, orientation, solidity, extent, and eccentricity of the feature. These
attributes may be used to characterize the features within an image. The attributes may
also serve as an aid to subsequent human analysis of important features in images needing
further examination or evaluation.
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