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Abstract

Time-to-event outcomes are common in agricultural sciences. For example, how
long it takes until flowering is one of the critical research questions for plant scien-
tists. Despite the popularity of survival analysis in medical studies for past decades,
application in agricultural sciences has been less discussed. The main strength of this
method is their ability to handle missing data over time, namely, right-censored data.
Even well-designed experimental data may encounter drop-out, which can be ignored
in methods such as analysis of variance (t-test). Survival models also tend to have
greater statistical power to detect a significant treatment effect than methods for bi-
nary response such as logistic regression. The goal of this study is to review basic
concepts of survival analysis, importantly to discuss the benefit of this method when it
comes to agricultural research applications. Cox regression and alternative regression
models are compared to demonstrate the advantage (or disadvantage) of each method
through both simulation study and real data examples.
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1 Introduction

The survival analyses, such as Kaplan-Meier estimation, Cox regression, and Accelerated
failure time model, have achieved great popularity in epidemiological and medical studies
for past decades. However, agricultural applications are rarely found in literature (e.g., plant
or animal studies) simply because the nature of experimental data fits other method such
as analysis of variance (t-test). Agricultural sciences are evolving and diverse experimental
designs bring the need of diverse statistical analysis as appropriate. In particular, when “re-
peated measures” over time is involved in an experimental setting, the choice of statistical
methods is neither trivial nor unique. This study explores survival analysis to investigate
time-to-event response where regular long-term follow-up is allowed. Examples are vari-
ous such as time till damage of seed in storage and time till clean of water. This paper is
organized as follows: Section 2 illustrates two examples of agricultural studies that survival
analysis can be useful, Section 3 reviews the survival analysis, Section 4 compares the cox
and the logistic regressions, and in Section 5, we discuss the practical reasons for cox or
logistic regression models, respectively.
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2 Illustrative Examples

2.1 Soybean storage

Soybean farmers are interested in knowing, how long the stored seed can maintain fine
condition for planting, whether some treatment group perseveres longer than others, and
what environment, such as temperature, is needed to preserve the quality of the seeds. To
analyze this, define a critical event, damage if accelerated aging is less than 60 out of 100,
due to any cause or a specific cause. If necessary, other seed vigor measure(s) can be used,
e.g., damage = 1 if germination is under 70, otherwise 0. Therefore,

The survival time of soybean seed is the time in storage until seed vigor falls below a
“damage” threshold or censoring,

which is depicted in Figure 1. A bag (1kg) is the experimental unit, and total 116 bags are
investigated under different year, cultivar, and warehouse as a factorial design. Researchers
regularly checked up on seed condition of each bag during 18 weeks, and a binary response
of damage=1 or 0, can be recorded accordingly. Therefore, 116 bag’s survival time can be
expressed as two weeks interval up to 18 weeks (or 126 d). In Figure 1 (a), a bag’s survival
time is 28 days, whereas, in (b), some other bag’s survival time is 84 days, showing better
maintenance. Would this gap come from different cultivar, environment, or simply initial
quality?

(a) (b)
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Figure 1: Illustration of survival time of two different seed bags

2.2 Microbe survival in mesocosm

Water quality has been gaining attention recently in Arkansa area in the United States con-
cerning food safety and public health. Researchers in the Department of Food Science at
the University of Arkansas conducted a mesocosm experiment where the concentration of
18 kinds of microbes are measured in different conditions. Presence (or amount) of microbe
such as E.coli can be an indication of whether (or how much) water is contaminated.

Survival analysis can be applied to answer the following questions: how long it takes till
die off microbes, whether seasonal or environmental factors affect the survival (or death) of
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microbes, and whether there are specific microbes that are predictive of each other in their
presence. Let us define a critical event as follows: death = 1 if microbes are not detected,
zero LOG10 CFU or PFU remaining in a sample, otherwise 0. Accordingly,

The survival time of microbes is the time in mesocosm until the first detection of zero
LOG10 CFU or PFU or censoring,

A mesocosm sample is an observation unit. Total 464 samples are collected from 18 differ-
ent microbes, two mesocosm types (river and lake), two sample types (water and sediment),
and four seasons. Our inspection occurred daily for seven days, then in seven days interval
up to 28 days. In some cases, we stopped the inspection at 14 or 21 days because it was
“dead” or close to be dead. Thus, the survival time points that we observe are:

1, 2, 3, 4, 5, 6, 7, 14, 14+, 21, 21+, 28, 28+

Here 14+ indicates censoring, that is, the inspection stopped at 14 days while microbes are
still alive (we don’t know the future but what we can say is that it survived more than 14
days).

3 Why Survival Analysis?

3.1 Types of response

Survival analysis is used for time-to-event outcomes. In addition to previous examples, the
examples vary, for instance how long it takes until flowering among different genotypes of
plants, time-to-disease of calves after exposure to certain viruses. Experimental data tend
to be collected by regular follow-up, rather than just record the end point, survival time.
Therefore, the repeated measures of binary response and possibly explanatory variable are
available as well. In such situation, both logistic regression and cox regression are appro-
priate. These two methods are compared in this work.

3.2 Censoring

One of the difficulties in longitudinal study is the drop-outs, only some individuals have ex-
perienced the event (death) and, subsequently, survival times will be unknown for a subset
of the study group. This phenomenon is called right-censoring. Censoring can also occur if
we observe the presence of a subject but do not know where it began, namely, left-censoring.
Interval censoring means that individual data only appear during partial follow-ups without
knowing where it began and how it ended. The main strength of survival model is their
ability to handle such missing values in a study design with long-term follow-up. Even
well-designed experimental data may encounter drop-out, which can be handled by unbal-
anced design or simply be ignored in other methods. In general, however, censoring is less
problematic in experimental data due to the fact that the experimental subject is a plant or
an animal that has no intentional drop-out.

3.3 Kaplan-Meier (KM) curve and Log-rank test

The basic idea of Kaplan-Meier (KM) curve is that we count the number of terminations at
some point of interest and divide by the number still unterminated. The graph looks like

 
1632



stairs in Figure 2. The KM curve is most useful when comparing two groups. i.e., treatment
vs. control.

In Figure 2(a), the proportion of survival significantly drops for the water compared to
the sediment as time goes. We separate the short term (daily up to 7 days) vs. the long term
(weekly up to 28 days) analysis due to the way that our experiment has been conducted,
and the fact that equally-spaced time interval is appropriate for Cox model that assumes a
constant proportional hazard over time. Like the short term, the long term survival curve
in (b) shows the difference between two sample types at weekly time points. The logrank
test is a formal comparison of two KM curves, with a null hypothesis of no difference
between two or more groups. All logrank tests in (a) and (b) reveal that there is a significant
difference between the sediment and the water in the proportion of survival.

An important quantity in survival analysis is the survival function, denoted by S(t),
which provides the probability of survival at a given time S(t) := P(T ≥ t) = 1− F(t)
where T is a random variable of survival time. The estimate of this quantity is obtained by
calculating cumulative proportion of survival as in Table 1, and the estimates by two groups
form the KM survival curves in Figure 2. Note that there is no special parametric form in
calculating the estimate of S(t) and the subsequent hazard function, h(t) =−d log(S(t))/dt.
This simplicity with nonparametric test is one of the reasons for the popularity of KM
estimation.
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Figure 2: Kaplan-Meier curve by sample type

Table 1: Probability of survival at weekly time points

time N
no.

censor
no.

death
proportion of survival

at this interval
cumulative

prop. survival

7 464 0 191 1 - (191/464) =0.59 0.59
14 273 12 151 1 - (151/273) =0.45 0.26
21 110 44 52 1 - (52/110) =0.53 0.14
28 14 10 4 1 - (4/14) =0.71 0.10
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3.4 Cox models

Let S(t) be the probability of being event-free up to time t and let h(t) denote the instan-
taneous hazard rate at time t by the definition, h(t) = −d logS(t)/dt. Cox regression [1]
expresses the h(t) with a function of covariate X,

h(t|X) = h0(t)exp(Xβ ), (1)

where h0(t) is the baseline hazard function, and β = (β1, . . . ,βp)
T is the regression coef-

ficient corresponding to the predictors of X = (X1, . . . ,Xp). The covariates in (1) do not
change over time while the baseline hazard function h0(t) holds the effect of time. For
example, two sample types (sediment vs water), microbes types (E.coli vs Enterococcus),
or cultivars (Osage vs Delta in soybean) are the time-invariant covariates. If researchers
are interested in time-variant factors, which is not uncommon in many experiment such as
temperature, humidity, or UV intensity, then time-dependent cox model is appropriate as
given by:

h(t|X(t)) = h0(t)exp(X(t)β ). (2)

Inclusion of the time-variant covariate X(t) in (2) can prevent the violation of proportional
hazard assumption in some situations. If departures from proportional hazards are substan-
tial, one may consider the cox model that allows the time-variant coefficients as follows:

h(t|X(t)) = h0(t)exp(X(t)β (t)). (3)

The model (3) contains interactions with parametric functions of time, and the time block
provides interpretation, for instance, the effect of temperature on microbe survival may
differ before or after 7 days. There are many discussion on how to estimate those inter-
action term for the time blocks, such as fractional polynomials and penalized likelihood
approaches [3]. Alternatively, we may consider partition the time axis and do piecewise es-
timation of parameter, such as cross-sectional logistic regression at different time interval.
Natural question arises if cox models are superior to logistic regression, or vice versa in
certain situation.

4 Cox vs Logistic regression

Cox model and its variations differ from the linear logistic regression both in terms of the
distributional assumptions and also in terms of the functional relationship with the predic-
tors. Importantly, a cox model analyzes the time to an event outcomes, whereas a logistic
regression is a direct method for binary outcome at a fixed time point. However, these two
methods are asymptotically equivalent in the sense that the time-to-event response and as-
sociated predictors can be easily transformed to repeated measures of both binary responses
and the predictors during the follow-up period.

4.1 Relative risk, odds ratio, and hazard ratio

The relative risk rate is an important estimate as it provides clinical interpretation between
two treatment groups. Let P0 and P1 denote the probability of the event occurring under the
control and the treatment group, respectively. The relative risk (RR), the odds ratio (OR)
and the hazard ratio (HR) are given by:

RR =
P1

P0
, OR =

P1/(1−P1)

P0/(1−P0)
, HR = eβ .
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In our soybean storage example, we compare these relative risks and Wald statistics
using a binary predictor of relative humidity (≤ 61,> 61). The estimates of RR and OR are
obtained by the logistic regression and HR is estimated by cox model. The result is shown
in Table 2, and clinical conclusion for humidity effect based on Wald statistics is similar
in each follow-up. HR is always in the middle of RR and OR and in theory these become
close each other under rare event and short term follow-up.

Table 2: Comparison of three relative risk measures and the Wald test

Follow-up 70 d 98 d
Risk Wald Risk Wald

Relative Risk (RR) 1.49 - 1.47 -
Hazard Ratio (HR) 2.05 1.48 2.69 3.41*
Odds Ratio (OR) 2.75 1.77 9.39 3.72*

*statistical significance at 0.05 level

The asymptotic relationship has been shown in Symons and Moore [4]. Briefly, let
H(T ) =

∫ T
0 h(t)dt, and let the probability of event during the follow-up period [0,T] denote

P0 = 1−exp{−H(T )} and P1 = 1−exp{−H(T )eβ}. Then, the inequality holds to be 1 <
RR ≤ HR ≤ OR for β > 0, which is explained by the asymptotic relations as follows:

RR +
1− [1−H(T )eβ ]

1− [1−H(T )]
= eβ = HR ,

OR +
[1+H(T )eβ ]−1
[1+H(T )]−1

= eβ = HR .

4.2 Pooled logistic regression

When repeated measurements on predictors are obtained and one measurement of response
is recorded in time, time-dependent covariate cox model (TDCX) in (2) is appropriate.
Equivalently, logistic regression can be analyzed by combining the repeatedly measured
dichotomous outcomes at each interval instead of one end point, survival time. This pooled
logistic regression (PLR) is extensively discussed in D’Agostino et al. [2], in which bi-
nary outcomes are obtained in sequential time blocks after dropping both terminated and
censored subjects. Mathematically, TDCX and PLR is equivalent in terms of regression
coefficient, score test statistics for the coefficient, and likelihood function. To see this re-
lation, let pi(X(ti−1)) denote the conditional probability of observing an event by time ti,
given that the individual is event free at time ti−1 at any interval Ii. Then, an equivalent form
of the logistic regression model at Ii is given by:

pi(X(ti−1)) =
1

1+ exp[αi +X(ti−1)β ]

≈ 1−Gi(X(ti−1)). (4)

The approximation (4) is valid for small values of Gi(X(ti−1)) = exp[αi +X(ti−1)β ] by the
Taylor expansion. A similar approach applies to TDCX model. Let us denote Hi(X(ti−1)) =

 
1635



∫ ti−1
ti−1

h0(u)exp[X(ti−1)β ]du for any interval Ii. For the small value of Hi(X(ti−1)), the con-
ditional probability pi(X(ti−1)) can be approximated by its Taylor expansion,

pi(X(ti−1)) = exp(−Hi(X(ti−1)))

≈ 1−Hi(X(ti−1)). (5)

Therefore, the equation (4) and (5) will hold for small values of both Gi(X(ti−1)) and
Hi(X(ti−1)). The requirement of small values of both quantities can be justified by as-
suming rare event and short term follow-up.

4.3 Simulation Study

A simulation study is performed to see the empirical difference between cox and logistic
regression. First we generate two Weibull random samples (ni = 200, i = 1,2) representing
survival time. The shape parameter is one and the scale parameters are set to 5 and 3,
respectively. The simulation repeats 1000 times. Three different follow-up time points
(short, medium, long) and two censoring rates (0, 0.5) are investigated. The results are
summarized in Table 3.

Table 3: Comparison of statistical power and risk ratios

Power Risk ratio
Setting Follow-up cox logit RR HR OR

censoring short 0.88 0.88 1.49 1.68 1.96
rate 0.0 middle 0.96 0.95 1.40 1.67 2.14

long 1.00 0.98 1.20 1.67 3.17
censoring short 0.67 0.77 1.56 1.63 1.98
rate 0.5 middle 0.83 0.94 1.41 1.62 2.76

long 0.88 0.54 1.10 1.62 > 20×106

In cox regression, the statistical power increases for later follow-up, and this pattern is
the same under 0% and 50% censoring rate. At higher censoring rate, the statistical power
is low in general. In logistic regression, however, long-term follow-up is not necessarily
beneficial especially when censoring rate is high. This is because under many drop-out
situation, longer follow up also implies more drop-outs, and there is a trade-off in statistical
power between censoring and follow-up. On the other hand, three risk ratios are compared,
HR is always in the middle of RR and OR, but this divergence becomes substantial as
follow-up period increases and censoring rate increases. Note that the values of HR are
consistent regardless, providing reliable clinical interpretation.

5 Conclusion

Despite the similarity between cox and regression in theory, there are reasons in practice to
prefer cox model to logistic regression, or vice versa. In general, time to an event response
contains more useful clinical information than whether or not the event occurred. The
hazard ratio is a reliable measure of risk ratio regardless of follow-up time and censoring.
Meanwhile, the estimation of odds ratio is inconsistent under different settings and is hard
to defend for different clinical meaning. Survival analysis tends to have more statistical
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power than a logistic regression, especially with a long-term follow up. In the presence
of drop-outs, which is almost always true in longitudinal studies, the cox regression that
handles censoring well is advantageous for reliable estimation.

However, when a high rate of drop-out is problematic, a longer follow-up is rather
disadvantageous because of the reduced sample size at the end. There exist a trade-off be-
tween censoring rate and follow-up period, and therefore a logistic regression within short
follow-up period may be better in statistical power. When some covariate, like age or cur-
rent temperature, can be confounded with follow-up time, the logistic regression at a fixed
time can effectively detect the covariate effect than the cox regression. In addition, data for
logistic regression are easier to achieve for some experiment, for example, to investigate
mortality of bees, counting the number of death is much more convenient than collecting
individual records of bees at all time points.
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