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Abstract

In a high-dimension feature space, Xn×p, we focus on clustering n items on the basis of p features when p � n.

In traditional model based C-component clustering problem, with k parameters per distribution for each cluster, the

number of parameters is O(pCk) (p ≫ C). Hence, in genomics or other high-dimensional data applications, the

problem is extremely challenging and often computationally infeasible. Instead of clustering on the original feature

matrix X , our clustering approach is based on a transformed space that can allow us to find the potential clusters in

a much lower dimension, reducing the number of parameters to O(C2k). A practical framework for Gaussian-based

clustering approach is outlined based on the stochastic search algorithm proposed by [Booth et al., 2008]. To enforce

and to ensure separation of the clusters, we use a non-local prior on the mean structure of the transformed cluster

configuration. The performance of the proposed methods is studied by simulation, with encouraging results.
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1. Introduction

The goal of clustering is to organize data into a small number of homogeneous groups, thus aiding inter-

pretation. Clustering techniques have been employed in a wide range of scientific fileds, including biology,

physics, chemistry and psychology. these techniques can be broadly be classified into two categories: hier-

archical methods and partition methods [Kaufman and Rousseeuw, 1990]. The former typically start from

a dissimilarity matrixthat captures differences between the objects to be clustered and produce a family of

cluster solutions, whose main propoerty is that any two clusters in the family are either disjoint or one is a

superset of the other. various popular agglomerative algorithms, such as sibgle, complete and average link-

age belong to this class. partition algorithms produce nonoverlapping clusters, whose defining characteristic

is that distances between objects belonging to the same cluster are in some sense smaller than distances

between the objects in different clusters. The popular K-means algorithm [MacQueen et al., 1967] and

its variants are member of this class. A statistically motivated partition method is model-based clustering,

which models the data as a sample from a Gaussian mixture distribution, with each component correspond-

ing to a cluster [McLachlan and Basford, 1988]. A number of extensions addressing various aspects of

this approach have recently appeared in the literature. For example, [Banfield and Raftery, 1993] gener-

alized model-based clustering to the non-Gaussian case, where [Fraley and Raftery, 2002] extended it to

incorporate hierarchical clustering techniques. The issue of variable selection in clustering has started re-

ceiving increased attention in the literature recently , [Parsons et al., 2004], [Friedman and Meulman, 2004],

[Tadesse et al., 2005], [Hoff et al., 2006], [Guo et al., 2010] and many more.

In traditional model based C-component clustering problem, with k parameters per distribution for each

cluster, the number of parameters is O(pCk) (p ≫ C). Hence, in genomics or other high-dimensional

data applications, the problem is extremely challenging and often computationally infeasible. To address

this problem, this article proposes instead of clustering on the original feature matrix X , our clustering

approach is based on a transformed space that can allow us to find the potential clusters in a much lower

dimension, reducing the number of parameters to O(C2k). To address this problem, this article proposes

a practical framework for Gaussian-based clustering approach is outlined based on the stochastic search

algorithm proposed by [Booth et al., 2008]. To enforce and to ensure separation of the clusters, we use a

non-local prior on the mean structure of the transformed cluster configuration.

The remainder of the article is organized as follows: Section 2 introduces the model based clustering
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based on Gaussian mixture model. In Section 3, we propose the transformation on the feature matrix and

discusses the new parameters of the transformed matrix. Section 4, we discuss about the priors taken on the

Bayesian paradigm. The performance of the proposed method is discussed in Section 5 and 6.

2. Mixture Model Formulation

Suppose n samples have been collected on p variables and organized in a feature matrix X = ((xi,j))n×p.

We focus on the problem of clustering the n rows into C non-overlapping homogeneous clusters. In a

model-based clustering, a C-mean cluster problem can be described by a C-component Gaussian mixture.

Specifically, the observations xi = (xi,1, · · · , xi,p) are assumed to be independent and generated from the

density

f(xi) =

C∑
k=1

wkφ(xi;ηk, ζk) (1)

where φ(xi;ηk, ζk) denotes the Gaussian density function with mean vector ηk = (ηk,1, · · · , ηC,p) and

covariance matrix ζk,

φ(xi;ηk, ζk) =
1

(2π)p/2det(ζk)1/2
× exp

{
− 1

2
(xi − ηk)ζk

−1(xi − ηk)T
}

(2)

We additionally assume that ζk is a diagonal matrix. The “weights” wk’s (wk ≥ 0 for all 1 ≤ k ≤ C and∑C
k=1wk = 1) are the mixing coefficients, capturing the contribution of the kth cluster. However, for our

problem, it is convenient to write the likelihood in terms of the missing cluster identifier, γi ∈ {1, · · · , C}

for each samples, i = 1, · · · , n. We also introduce the following notation: the mean parameters ηk can be

collected into a C × p matrix, with rows corresponding to clusters and columns to variables as,

η =



η1,1 η1,2 · · · η1,j · · · η1,p

η2,1 η2,2 · · · η2,j · · · η2,p

· · · · · · · · · · · · · · · · · ·

ηk,1 ηk,2 · · · ηk,j · · · ηk,p

· · · · · · · · · · · · · · · · · ·

ηC,1 ηC,2 · · · ηC,j · · · ηC,p


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and

ζ =



ζ21,1 ζ21,2 · · · ζ21,j · · · ζ21,p

ζ22,1 ζ22,2 · · · ζ22,j · · · ζ22,p

· · · · · · · · · · · · · · · · · ·

ζ2k,1 ζ2k,2 · · · ζ2k,j · · · ζ2k,p

· · · · · · · · · · · · · · · · · ·

ζ2C,1 ζ2C,2 · · · ζ2C,j · · · ζ2C,p


We had earlier assumed that for each kth cluster, ζk = Diag(ζ2k,1, ζ

2
k,2, · · · , ζ2k,p). Hence, for i = 1, · · · , n,

and for j = 1, · · · , p, xi,j ∼ Normal(ηγi,j , ζ
2
γi,j

) independently.

3. G-Transformation and the Reparametrization

To reduce the dimension of the problem, we will base the clustering on the following n× n matrix,

G = XXT/p (3)

We define the elements ofGmatrix as ((gij))n×n. And we will formulate our clustering algorithm based on

((gij))n×n. Based on the original C-component clusters on the feature matrix X,Gmatrix shows C-clusters

in its diagonal and off-diagonals. Figure 1 depicts the true cluster configuration in G matrix when the true

number of clusters equals to 3. The explicit expression for the mean and the variance of ((gij))n×n is as

follows.

I . On diagonals ofG, for i = j (same subject and same cluster),

E(gii) =
1

p

p∑
k=1

(η2γi,k + ζ2γi,k) = µγiγi

V (gii) =
2

p2

p∑
k=1

ζ4γi,k
(
1 + 2

µ2γi,k
ζ2γi,k

)
= σ2γiγi

2 . On homogeneous offdiagonals ofG, for i 6= j (different subjects) and γi = γj (same cluster)

E(gij) =
1

p

p∑
k=1

η2γi,k = µ•γi

V (gij) =
1

p2

p∑
k=1

ζ4γi,k
(
1 + 2

µ2γi,k
ζ2γi,k

)
= σ2γi/2 = σ2•γi
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Figure 1: The mean parameters for G matrix when the number of true cluster is 3. It shows µ1,µ2 and

µ3 representing the mean parameter for the diagonals, µ01,µ02 and µ03 representing the mean param-

eters in the homogeneous off diagonals and µ12,µ13 and µ23 representing the mean parameters in the

heterogeneous off diagonals.

3 On heterogeneous offdiagonal ofG, for i 6= j (different subjects) and γi 6= γj (different cluster)

E(gij) =
1

p

p∑
k=1

ηγi,kηγj ,k = µγiγj

V (gij) =
1

p2

p∑
k=1

ζ2γi,kζ
2
γj ,k

(
1 +

µ2γi,k
ζ2γi,k

+
µ2γj ,k

ζ2γj ,k

)
= σ2γiγj .

We organize the mean parameters ofG matrix in the following matrix,

µ =



µ11 µ•1 µ12 µ13 · · · µ1C

µ22 µ•2 µ23 · · · µ2C

µ33 µ•3 · · · µ3C

· · · · · · · · ·

µCC µ•C


(4)

Hence, the number of mean parameters that are need to be evaluated for a cluster configuration with C-

components is C(C + 3)/2. This is a drastic reduction of the number of mean parameters in the original
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matrix was C × p. Similarly, we organize the variance parameters ofG matrix in the following matrix,

Σ =



σ211 σ212 σ213 · · · σ21C

σ222 σ223 · · · σ22C

σ233 · · · σ23C

· · · · · ·

σ2CC


(5)

Note that the number of variance parameter forG matrix is C(C + 1)/2 because for each k ∈ {1, 2, .., C},

σ2•k = σ2kk/2.

3.1 Distributional Assumption onG

We assumed in the previous section that for i = 1, · · · , n, and for j = 1, · · · , p, xi,j ∼ Normal(ηγi,j , ζ
2
γi,j

)

independently. Since, gij =
∑p

k=1 xikxjk/p, for p≫ 1, we can assert the CLT on each gij and assume the

following Gaussian distribution for (i, j) ∈ {1, 2, · · · , n} × {1, 2, · · · , n},

I. For i = j, gii ∼ Normal(µγiγi , σ
2
γiγi).

II. For i 6= j and γi = γj , gij ∼ Normal(µ•γi , σ
2
γiγi/2).

III. For i 6= j and γi 6= γj , gij ∼ Normal(µγiγj , σ
2
γiγj ).

4. Prior formulation onG parameters

4.1 Prior on the Cluster Configuration: Stochastic Search Algorithm

The goal of this article is to find the posterior distribution of the cluster id’s, γ = {γi}, i = 1, ...., n. Let c

denotes the number of clusters in a partition, n1, n2, · · · , nc number of items in each cluster. The estimation

of the cluster ids are elaborated in two steps.

[A ] Prior formulation:

Then given, m = 1/n, the prior on the cluster configuration is [Crowley, 1997] and [Booth et al.,

2008]:

Γ(m)mc

Γ(n+m)

c∏
k=1

Γ(nk) (6)

Clearly, this prior puts more weight on the set of cluster configurations having lower numbers of

clusters. It heavily penalizes those configuration having clusters with fewer numbers of elements.
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[B ] Stochastic Search: Biased Random walk and Split-Merge Algorithm

We use the stochastic search algorithm driven by the mixture of two Metropolis-hastings algorithms

proposed by [Booth et al., 2008]. This algorithm will allow us to make either local Biased Random

walk or large scale Split-Merge Algorithm transition at each iteration with probabilities pb and 1− pb

respectively.

In biased random walk MH Algorithm, the are two cases: c = 1 and c ≥ 2. If c = 1, choose one of

the n objects uniformly at random and move the chosen object to its own cluster. If c ≥ 2, choose

one of the n objects uniformly at random. If the chosen object is a singleton, then move it to one of

the other c− 1 clusters, each with probability 1/(c− 1). If the chosen object is not a singleton, then

move it to one of the other c−1 clusters, each with probability 1/c, or make the chosen object its own

cluster with probability 1/c.

In split and merge algorithm we randomly decide between a merge move with probability pm ∈ (0, 1)

and a split move with probability 1− pm. A merge proposal is constructed by merging two randomly

chosen clusters in the current configuration. A split proposal is created by randomly choosing a cluster

and then randomly splitting it into two clusters conditionally on neither being empty. A split move is

automatically proposed whenever the current state consists of a single cluster, and likewise a merge

move is automatically proposed when the current state consists of n clusters.

4.2 Prior on Mean Structure µ

The likelihood of the g-matrix is essentially a mixture of several Gaussian distribution with mean µ and

variance Σ. In general, mixtures suffers from a lack of identifiability that plays a fundamental role both in

estimation and model selection. This issue can be caused by over-fitting models that could be equivalently

defined by less component mixture models. So our aim is to penalize the models or those cluster configu-

rations which are over fitting the underlying true model. That motivates us to use the non-local prior on the

mean structure µ which is defined as follows:

π(µ|δ) =

0 maxk{|µik − µjk|, |µii − µjj |, |µij − µii|, |µij − µjj |, |µii − µjj |} < δ for any i 6= j

1
4C C = maxij |gij |

(7)
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Table 1: Design for Simulation 1

Feature 1-10 11-20 21-220

Cluster 1 (20 items) N(2.5, σ2) N(1.5, σ2) N(0, 1)

Cluster 2 (20 items) N(0, σ2) N(1.5, σ2) N(0, 1)

Cluster 3 (20 items) N(0, σ2) N(−1.5, σ2) N(0, 1)

Cluster 4 (20 items) N(−2.5, σ2) N(−1.5, σ2) N(0, 1)

4.3 Prior on Variance Structure Σ

We put an inverse-gamma prior on Σ = (σ)ij as follows:

For (i, j) = {1, ...., n} × {1, ..., n},

π(σ2γiγi) ∼ IG(α1, β1)

and

π(σ2γiγj ) ∼ IG(α2, β2)

We recommend the values of hyper-parameters as α1 = α2 = 6 and β1 = 5/2p and β2 = 5/4p for our

simulation study.

5. Simulation Results

In this section, we illustrate the performance of our proposed algorithm based on two synthetic examples

with 4 clusters for simulation 1 and 2 used by [Guo et al., 2010]. In simulation 1, whereas in simulation

2, we generate different numbers of observation for different clusters. There are 4 clusters and p = 220,

with the first 20 being informative and the remaining ones non-informative. The variables were generated

according to the following mechanism: the first 20 are independently distributed Normal(ηk, ζk) for cluster

k, whereas the remaining 200 were generated from Normal(0, 1) for all 4 clusters. Table 1 gives the means

for the first 20 variables.

For example, in cluster 1, variables 1 − 10 all have the same mean value 2.5, and variables 11 − 20 all

have the same mean value 1.5. Notice that variables 1 − 10 are non-informative for separating clusters 2

and 3, whereas variables 11 − 20 are non-informative for separating clusters 1 and 2 (as well as clusters 3

and 4). We consider two values of the common variance, σ2 = 1 and σ2 = 4. The former creates a high
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”signal-to-noise ratio (SNR)” scenario, whereas the latter simulates a situation where the ”SNR ratio” is

low. We repeat the analysis 50 times for each simulation and record the average clustering success rates.

In simulation 1, 20 observations are generated from each clusters and p = 220. Here the total number of

observation is 80. In simulation 2, the clusters have different sample size. The sample size for cluster 3 and

4 has been increased to 200. Therefore, there are two small clusters (1 and 2) with 20 observations each and

two large clusters (3 and 4) with 200 observations each.

Table 2: Design for Simulation 2

Feature 1-10 11-20 21-220

Cluster 1(20 items) N(2.5, σ2) N(1.5, σ2) N(0, 1)

Cluster 2 (20 items) N(0, σ2) N(1.5, σ2) N(0, 1)

Cluster 3 (200 items) N(0, σ2) N(−1.5, σ2) N(0, 1)

Cluster 4 (200 items) N(−2.5, σ2) N(−1.5, σ2) N(0, 1)

5.1 Results

Based on 50 simulated datasets, each dataset burned in with 50,000 updates (with annealing), then 100,000

updates. In high SNR, 100% of configurations correctly contained 4 clusters. The accuracy of individual

classification was 98%. In low SNR, 78% of configurations contained 4 clusters, 22% 3 clusters classifica-

tion accuracy was 87%. Performance was comparable to algorithms discussed in Guo et al. (2010).

MCMC algorithm started from random start typically gets stuck in mode with 5 or 6 clusters, with

one or two of the large, “true” clusters split approximately evenly into 2 clusters. Small clusters estimated

accurately. Post-processing probably useful to investigate number of clusters as δ is changed. 78% of

configurations contained 4 clusters, 22% 5 clusters. Classification accuracy was 0.99%.

6. Discussion

Proposed algorithm provides promising results in simple examples. Posterior sampling and/or optimization

remains problematic. Hyperparameter selection implicitly ”defines” clusters. Computational algorithm is

invariant to p, the number of features. Prescreening of features via entropy or variance measures might

improve performance in low SNR settings.
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