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Abstract
Surveys often provide numerous estimates of population parameters. Some of the population values
may be known to lie within a small range of values with a high level of certainty. Calibration is used
to adjust survey weights associated with the observations within a data set. This process ensures
that the “sample” estimates for the target population totals (benchmarks) lie within the anticipated
ranges of those population values. The additional uncertainty due to the calibration process needs
to be captured. In this paper, some methods for estimating the variance of the population totals are
proposed for an algorithmic calibration process based on minimizing the L1-norm relative error.
The estimated covariance matrices for the calibration totals are produced either by linear approxi-
mations or bootstrap techniques. Specific data structures are required to allow for the computation
of massively large covariance matrices. In particular, the implementation of the proposed algorithms
exploits sparse matrices to reduce the computational burden and memory usage. The computational
efficiency is shown by a simulation study.
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1. Introduction

The idea of calibration was initially introduced by Lemel (1976) and further developed by
Deville and Särndal (1992) to improve the representativeness of a surveyed sample. This
improvement is attained by providing an optimal weight for each sample unit. Calibration
weighting techniques adjust probability-sampling weights in order to improve the precision
of the population estimate by taking into account sampling frame errors and nonresponse.
The optimal weights are computed to be as close as possible to the original sampling design
weights by forcing the final estimate to be consistent with auxiliary measurements. This is
accomplished by solving a system of linear equations, which is formulated as follow:

y = Aw, (1)

where y denotes the vector of n point targets (or benchmarks), A represents the matrix n×p
of collected data, and w is the vector of p unknown calibration weights to compute. Tra-
ditional calibration algorithms produce non-integer weights. At the National Agricultural
Statistics Service, we do calibration with integer weights, which are estimated by solving
an integer programming problem (Sartore and Toppin, 2016) such that

w ∈ N ⊂ Np, (2)

where the subset N denotes the set of integer weights which satisfy given constraints.
The solution of the linear system in (1) is based on the optimization of a penalized

arbitrary differentiable loss function L(·) such that the constraints in (2) are satisfied, i.e.

ŵ = arg min
w∈N⊂Np

L(y −Aw) + λP (w), (3)
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where λ is a positive factor, and P (·) is a penalty that forces the optimal solution to be
closed to the initial weights, which are provided by a dual-system estimation methodology.
The optimal weights are then obtained through a stepwise procedure, which exploits the
gradient of the loss function L(·).

In order to achieve robust results, the loss function L(·) can be formulated by con-
sidering variations of the L1-norm, such as the summations of absolute errors or relative
errors. These objective functions lead to non-smooth calibration estimators, and therefore,
the jackknife variance estimators discussed by Wolter (1985) and some other re-sampling
techniques are inconsistent (Furno, 1998). Several methods were proposed in the liter-
ature when the loss function is formulated as a summation of square residuals: e.g. the
linearized variance estimation was initially introduced by Fuller (1975) for a simple regres-
sion estimator. Särndal et al. (1989) developed a technique for the variance estimation of a
general regression estimator. Kott (1999) discussed a delete-a-group jackknife approach for
providing unbiased estimates within a stratified survey sample. Singh and Folsom (2000)
proposed a bias correction of the variance based on post-stratification adjustments. Valliant
(2007) compared linearization and replication methods, and mentioned the effect of item
imputation on the estimated variance. A comprehensive review about variance estimators
for calibration and their computational complexities are described in Kott (2016).

In this article, classical estimation approaches are adjusted to estimate high-dimensional
covariance matrices associated with calibration weights and totals. In section 2, a linear ap-
proximation technique is described in order to allow for the inversion of a high-dimensional
sparse covariance matrix. Two resampling methods are then considered in section 3. In par-
ticular, the parametric bootstrap is presented in section 3.1 to provide consistent estimates
with the properties of a covariance matrix. The non-parametric bootstrap is explained in
section 3.2 by allowing for a more efficient computational strategy. A simulation study
and its results are discussed in section 4, where the proposed methods are compared. The
achievements, technical issues, assumptions and future research will be addressed in sec-
tion 5. Finally, the conclusions are presented in section 6.

2. Linear approximation

Under the assumption of a meaningful correspondence between the loss function and a
probabilistic model for the errors y − Aw, one can justify an interpretation of L(·) as a
negative log-likelihood. Thus the covariance matrix can be calculated through the inversion
of the information matrix. Such a matrix corresponds to the Hessian H of the objective
function used in (3), and it is expected to be positive definite when the optimal weights
are a local minimum. The variance of the calibration weights is given by VAR(ŵ) = H−1,
where H−1 denotes the inverse matrix of H . This approach suffers from two computational
problems: the first is related to the rank of the Hessian matrix, while the second is due
to computational capabilities of storing the results of a very high-dimensional matrix (in
particular when p � n).

The first problem arises when the Hessian is not a full-rank matrix. To address this
problem, the following approximation of the Hessian is proposed:

H ≈ −A>J(w) + λIp,

where Ip is the identity matrix of size p × p. This term is used to allow for the inversion
of the Hessian. Furthermore, J(w) denotes an n× p sparse matrix-valued function, whose
resulting rows are calculated by the first partial derivatives of the gradient ∇y−AwL(·) with
respect to the calibration weights. Moreover, another approximation is required when L(·)
is not twice differentiable, and when this is the case, a generic entry of the matrix-valued
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function J(w) can be computed by the use of numerical derivatives, or by providing a
smooth approximation of the gradient ∇y−AwL(·).

Once all the terms to compute the Hessian are available, a large matrix must be inverted.
Although the Hessian is not dense, the usual algorithms for inverting sparse matrices re-
quire extraordinary computational capabilities. However, the following approximation is
based on the Woodbury’s matrix equality (1950) investigated successively by Henderson
and Searle (1980), and it can be exploited to obtain H−1 in a reasonable time with efficient
use of memory:(

λIp −A>J(w)
)−1

=
1

λ
Ip +

1

λ
A>
(
λIn − J(w)A>

)−1
J(w);

≈ 1

λ
Ip +

1

2λ
A>
(
λIn − J(w)A>

)−1
J(w) +

+
1

2λ
J(w)>

((
λIn − J(w)A>

)−1
)>

A.

This method only requires the inversion of the n×n sparse matrix λIn−J(w)A>. Due to
the sparsity of J(w), the resulting matrix H−1 might be sparse too. If this is the case, the
inverse of the Hessian matrix can be easily stored in memory.

A similar method can be used when the inverse of the Hessian matrix is part of an
intermediate step for calculating the variance of the calibrated totals. Thus, the variance of
the totals ŷ = Aŵ can be approximated as

VAR(ŷ) ≈ P1 +
1

2λ
(P2P

−1
3 P4 + (P−1

3 P4)
>P2),

where the Pi are n× n matrices for any i = 1, . . . , 4, and they are defined as

P1 =
1

λ
AD2A>, P2 = ADA>,

P3 = λIn − J(w)A>, and P4 = J(w)DA>,

where the diagonal matrix D is formulated to take into account possible adjustments due to
any theoretical maximum variance allowed by the constraints in (2). In fact, when the i-th
weight wi is restricted to be within the interval [`w, uw], the following inequality holds:

VAR(ŵi) ≤
(
uw − `w

2

)2

,

and hence the i-th diagonal entry of D is computed as

Dii =


uw − `w

2 (H−1)0.5ii

, if
(
H−1

)
ii
>

(
uw − `w

2

)2

,

1, otherwise.

However, this requires the knowledge of the i-th diagonal entries of the matrix H−1.

3. Bootstrap methods

Bootstrap methods are applied to make inference by simulating the distribution of a statistic
of interest. Here they are used when the covariance matrices of the totals or weights are
not positive-definite due to the approximations involved in the method presented in the
previous section. If this is the case, the re-sampling techniques described below can be
considered instead.
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3.1 Parametric bootstrap

In this context, the idea behind the parametric bootstrap is mainly justified if the esti-
mates are assumed to be normally distributed. Indeed, if w ∼ Np(ŵ, Σ̂ŵ), then y ∼
Nn(ŷ, Σ̂ŷ), where the matrix Σ̂ŵ ≈

(
λIp −A>J(ŵ)

)−1, and Σ̂ŷ ≈ P1 +
1
2λ(P2P

−1
3 P4 +

(P−1
3 P4)

>P2). This means that B random vectors must be generated from a multivariate
normal distribution, and only after, the variance for each weight can be calculated as

VAR(ŵi) =
1

B − 1

B∑
b=1

(
ŵ

(b)
i − ŵi

)2
,

where w
(b)
i is the i-th component of the b-th simulated vector of weights, and similarly,

VAR(ŷi) =
1

B − 1

B∑
b=1

(
ŷ
(b)
i − ŷi

)2
for the totals. The covariance between two weights can be computed as

COV(ŵi, ŵj) =
1

B − 1

B∑
b=1

(
ŵ

(b)
i − ŵi

)(
ŵ

(b)
j − ŵj

)
,

and the covariance between two totals are obtained analogously.
The main issue of this technique is related to the simulation of a multivariate normal

distributed vector whose covariance matrix Σ might be non-positive definite. This simula-
tion requires the computation of Σ1/2, which can be performed through the singular value
decomposition (SVD) so that Σ = U∆V >, where U and V are two orthogonal matrices,
and ∆ is a diagonal one. In so doing, Σ1/2 = U∆1/2V >, and therefore the vector of
simulated weights can be computed as

w(b) = ŵ + U∆1/2V >x,

where x is a vector of independent random numbers drawn from a standard normal dis-
tribution. Similarly, the same computations are used for estimating the variances of the
totals.

3.2 Nonparametric bootstrap

The nonparametric bootstrap approach is an appealing solution for the estimation of the
variance of the estimated totals. In fact, without assuming the normality of the weights, it
is still possible to perform a re-sampling scheme from the data collected. In this context,
the standard ad hoc techniques (Beaumont and Patak, 2012) face conceptual contradictions
with the calibration setup. However, these problems do not arise when the plug-in approach
is adopted instead.

The rationale of the plug-in approach is based on the mimicking principle, where the
bootstrap samples are selected from the estimated population (Ranalli and Mecatti, 2012).
Therefore, the probability that the observation si from a finite population U belongs to the
sample Sb is given by

Pr(si ∈ Sb) =
1

ŵi
, (4)

for any b = 1, . . . , B. This means that the observation si in the sample Sb can be replaced
by other ŵi equivalent units in the population (Antal and Tillé, 2011). According to this
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principle, the algorithm estimates the variance of the totals by performing a randomized
sampling with replacement form the entire population U .

In order to avoid the construction of the entire estimated population, the units are sam-
pled directly from those processed by the calibration algorithm. Each observation can be
selected multiple times due to the chosen re-sampling scheme, so that the observation si
will be randomly replicated M

(b)
i times, where M

(b)
i ∼ Bin

(
ŵi, ŵ

−1
i

)
. The bootstrapped

totals are computed afterward as

ŷ
(b)
j =

p∑
i=1

ajiŵiM
(b)
i ,

so that the expectation of ŷ(b)j is

E
[
ŷ
(b)
j

]
=

p∑
i=1

ajiŵi = ŷj ,

for any j = 1, . . . , n, since E
[
M

(b)
i

]
= 1 for any i = 1, . . . , p. The variance is then

estimated as

VAR(ŷj) =
1

B − 1

B∑
b=1

(
ŷ
(b)
j − ȳj

)2
, (5)

and the coefficients of variation are calculated as

CV(ŷj) =

√√√√ 1

B − 1

B∑
b=1

(
ŷ
(b)
j

ȳj
− 1

)2

,

for any j = 1, . . . , n, where ȳj denotes the arithmetic average over the bootstrapped totals
ŷ
(b)
j , i.e.

ȳj =
1

B

B∑
b=1

ŷ
(b)
j .

The estimator in (5) provides the exact Horvitz-Thompson estimator (Horvitz and Thomp-
son, 1952) for the variance of the estimated totals (Antal and Tillé, 2011). This means that,
under proper conditions, it is an unbiased estimator.

4. Simulation study

The variance estimation techniques presented above were compared on a framework where
the data are collected from a simulated population. The data of 10000 units of the popu-
lation were artificially generated for n = 150 point targets. Thus, a generic component of
the sparse data-matrix A was obtained by the product of two random variables, i.e.

aij = GijDij ,

where Dij ∼ Ber(0.03), and Gij ∼ Poi(|κi|), for any i = 1, . . . , n, and any j = 1, . . . , p,
where κi ∼ N(µi, σi), with µi ∼ Gam(20, 0.5) and σi ∼ InvGam(0.5, 1). A design weight
w∗
j was then assigned to each of the artificial units for j = 1, . . . , 10000, so that the entire

reference population for the study could be formed by considering w∗
j equivalent units in

the population. These weights were simulated from the distribution exposed in Table 1,
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Table 1: Distribution used to simulate the design weights.
N. of eq. units 1 2 3 4 5 6 7 8
Probability 0.64 0.34 0.015 0.003 0.001 0.0005 0.00035 0.00015

and used to compute the total units in the population as N =
∑10000

j=1 w∗
j = 13848, and the

point targets as y = Aw∗.
In order to compare the proposed methodologies for the variance estimation, 1000 ran-

dom sampling replications were performed by selecting p = 10000 units from the reference
population previously generated. The design weights were then used as the initial values for
the integer programming calibration algorithm (Sartore and Toppin, 2016). However, if the
weight w∗

j > 6, then the initial value of ŵj was forced to be 6. Once the calibration weights
ŵ were obtained, the variance for the calibrated totals were computed via linear approxima-
tion, parametric and non-parametric bootstrap. The standard deviations were successively
calculated. The distributions obtained from these quantities were represented in Figure 1.
From these graphics, it is evident how the linear approximation method provides precise
estimates, while the non-parametric bootstrap is the most variable. The three distributions
also appear to be centered on the same value. In order to assess the bias of these estimates,
Figure 2 was produced by drawing the expected standard deviation computed with the three
different approaches. Since all the points are lying along the 45◦ lines, one can conclude
that the three proposed estimators are essentially unbiased, since the non-parametric esti-
mator is unbiased. From a computational perspective, the parametric bootstrap is the most
intensive algorithm, while the non-parametric bootstrap is the most efficient (see Figure 3).
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Figure 1: Distribution of Standard Deviations.
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Figure 2: The average of the standard deviation for each total computed through each
proposed algorithm.
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Figure 3: Computational efficiency.

5. Discussion

The three variance-estimation methods capture the uncertainty of the calibration process,
and produce essentially unbiased estimates of the standard deviations while reducing the
computational burden and memory usage. In particular, these methodologies allow for the
estimation of the covariance matrix of totals without having the knowledge of the estimated
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covariance matrix of weights.
The estimation of the covariance matrix of the weights can be computationally demand-

ing when performing the parametric bootstrap. In fact, this technique needs to perform an
SVD algorithm to compute the matrix Σ1/2, and this can be intensive when p is large.
This has two main computational issues. First of all, additional operations are required to
simulate from the distribution of the weights, and second, it is not a guarantee that there
is enough memory to store all the significant values of each matrix provided by the SVD
algorithm. However, Baglama (2016) presented algorithms to obtain the SVD with sparse
matrices such that the computational burden is less intensive than the standard algorithms.

Massively large covariance matrices are usually represented in sparse data structures,
but these are not suitable when the matrices are dense. To obviate this problem a specific
data structure can be designed to store both the standard deviations and the lower triangu-
lar matrix of the correlations in order to compute the covariances. In addition, a digital
representation in 16-bit floating points allows for the whole structure to be stored into the
computer’s memory at a cost of losing some accuracy and efficiency of the estimates.

Such structures are not needed by the non-parametric bootstrap, because the covari-
ance matrix of the weights is assumed to be diagonal with variances given by the selection
probabilities in (4), i.e. VAR [wiMi|wi] = wi(wi − 1). This assumption is equivalent to
the pairwise-independence when the weights are assumed to be normally distributed. Un-
fortunately, biased estimates of the covariances can be produced by the non-parametric
bootstrap. In addition, the independence of the weights is inconsistent when the totals are
assumed to be independent during the calibration, even if calibration is performed simulta-
neously for all the targets. In fact, the relationship Σy = AΣwA

> is almost always false,
when A is an n× p matrix and Σy and Σw are both diagonal matrices.

Further research is required to address the methodological consistency due to the in-
dependence assumptions. However, the methodologies presented in this article allow for
the production of approximately unbiased variances for the totals. The outputs from these
three methods can be used as solid guidelines in the calculation of a benchmark diagonal
matrix Σy, which is used in the calibration of the covariance matrix of the weights. The
diagonal entries of the matrix Σy are the unbiased variances of the totals. Therefore, a
consistent optimization method needs to be developed to deal with such high-dimensional
matrices, which demand extraordinary capabilities and new sophisticated techniques, while
maintaining both the standard levels of accuracy and computational efficiency.

6. Conclusion

In this paper, we presented three different methods to estimate high-dimensional variance-
covariance matrices associated with the calibration weights. These methods are based on
classical approaches, where the linear approximation and the bootstrap are especially con-
sidered. In most cases, the estimation of a huge covariance matrix can be bypassed by
computing directly the covariance matrix of the calibrated totals. The proposed estima-
tors are shown by simulation to be unbiased, and each of them has its own strengths and
weaknesses in terms of precision and computational efforts.
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