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Abstract: 
Extended Kramers Model based on Fokker-Plank Stochastic Differential Equation for velocity of 
Chemical reactions and can be applied to noise models, such as Brownian noise caused by the thermal 
agitation of the molecules of the fluid along with different single molecule experiments, such as optical 
tweezers, scanned tip microscopies, and single molecule fluorescence methods, as well as radio and sound 
noise that can be modeled by Dynamical Programming along with multi scale time analysis for 
Electromagnetic compatibility and electromagnetic interference. 
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The commcmorat1on of 100 years since introduction of  
Fokker-Planck Stochastic Differential Equation coincides with the commemoration of 250 years of 
history of Rutgers University, 
 
I. Introduction with statement of chemical equations, discussion of Boltzmann 
type kinetic equations, Kramers approach with remaining problems and 
modem approaches. 
 
The mathematical structure of the models of Boltzmann type kinetic equations for reacting gas mixtures 
for particles undergoing inelastic interactions with reactions of bimolecular and dissociation-
recombination type is very complicated, because of the collisional operators that usually in the full 
Boltzmann equations, are expressed by 5-fold integrals. 

Consequently direct numerical applications of these models present several computational difficulties. 

The search for the simpler solution had its long way till the introduction of the equation for the Brownian 
motion by Albert Einstein. 

With the application of  Transition State Theory to Arrhenius equation, 

R = C 𝒆𝒆−
𝑬𝑬𝒃𝒃
𝒌𝒌𝒌𝒌                                                 (1) 

where R is the rate of chemical reaction, Eb the activation energy barrier , k  is the Boltzmann constant,  T 
is the temperature, and C is  a constant transforms C to  

C = kT/h  ,                                                 (2) 

 where h is Plank’s constant, this however, does not consider the state of equilibrium of the reactants. 

 In the theory of the velocity of chemical reactions the problem of study by Kramers was based on 
empirical knowledge that the reactants are in the state of equilibrium. His introduction of  diffusion 
equation is given in the following form of Fokker-Plank equation, 
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m𝝏𝝏𝟐𝟐𝒙𝒙

𝝏𝝏𝒕𝒕𝟐𝟐
  =   -  (∂U(x))/∂x    - γm ∂x/∂t    +  F(t),                                  (3) 

where m is reduced mass in the potential of mean force U, and F is a noise of a random fluctuating force, 
originating from the thermal motion, γ is a viscosity or memory friction. 
It was based on the assumptions about a particle that moves in an external field of force and additionally 
is subject to the irregular forces of a surrounding medium in temperature equilibrium . which he called 
Brownian motion(or an integral over the Brownian noise. 
 
W(t) = ∫ (𝒅𝒅𝒅𝒅(𝒕𝒕)

𝒅𝒅𝒅𝒅
𝒕𝒕
𝟎𝟎 ) d𝒅𝒅, where W(t) is a Wiener process. (4) 

 
The conditions are such that the particle is thought of as caught in a 
potential hole but may escape in the course of time by passing over a 
potential barrier. The problem is to calculate the probability of escape in 
its dependency on temperature and viscosity of the medium. 

The study had the following problems, pointed out in his original paper: 
 

1. The study for the sake of simplicity was only a one-dimensional model.  
 

2. However, as long as no perfect temperature equilibrium is attained, the equation of M a x w ell 
velocity distribution holds only approximately. This is even the case when the external force is 
zero.  

According to his description, the B r o w n i a n forces of the medium illustrate the mechanism which 
strives to bring about temperature equilibrium. The value of the viscosity coefficient 𝛾𝛾 (which may 
depend on T even in the manner of an exponential function) is a measure for the intensity with which the 
molecules in the different states react with the surrounding medium. 
 

3. The model illustrates also the ambiguity involved in the conception ,,transition state”. 
 

4. Quantum mechanical ,,tunnel-effects” for which there is no room in our model, could also play 
a part. 
 

5. both Kramers and Grote-Hynes improvement give a well-defined rate constant, and therefore  
cannot account for dispersed kinetics or dynamic disorder. Such a clear separation of time scale is no 
longer true for proteins, which are sluggish systems as demonstrated by the fluctuation observed at the 
slow and broad range of time scales 
 
Further investigations in the subject led to the development of new 
theoretical approaches, such as State Transition Theory, which includes multidimensional approach. 
 
2. Dynamical programming was introduced by Richard Bellman in the 
mid 50-ties during the Proceedings of the National Academy of 
Sciences. It can be thought of as very natural in light of the existence of 
the dynamic time warping algorithm that is applied to computing the 
global distance between time series.{1.Bellman R. Equipment replacement policy J Soc Ind Appl 
Math,3(3),133-136, 2. Bellman R. Dynamic programming and Lagrange multipliers, PNAS 42, 767-769, 
3. Bellman R. Dynamic programming Princeton UP 4.Sanford M. Roberts Editor Dynamic Programming 
in Chemical Engineering and Process Control AP) 
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This method was of special interest for me as one of the problems that I solved working with the 
late Professor Lawrence Shepp was in the field of dynamic programming. He was a member of 
National Academy of Science, and worked on many applied problems in Bell Laboratories. 
 
The overview can be found in[l. R.W.H. Sargent Optimal control Journal of 
Computational and Applied Mathematics 124 (2000) 361-371 www.elsevier.nl/locate/cam2. Alsmeyer, 
F., Marquardt, W., Olf, G., 2002. A new method for phase equilibrium measurements in reacting 
mixtures. Fluid Phase Equilibria203, 31-51. 3. Jonathan How.16.323 Principles of 
Optimal Control. Spring 2008. Massachusetts Institute of Technology: MIT OpenCourseWare, 
https://ocw.mit.edu.License: Creative Commons BY-NC-SA.] 
 
 
Why this method was abandoned, and it is very difficult to find in the recent literature? Dynamic 
Programming is based on the Principle of Optimality: Suppose the optimal solution for a problem passes 
through some intermediate point (x1,t1) , then the optimal solution to the same problem 
starting at (x1,t1) must be the continuation of the same path. The explanation to the Principle is in that we 
are looking for solution in finding optimal decision procedure only through controlled dynamics, 
and we obtain the evolution of the system, when the system obeys controllability assumptions or 
conditions. Hence the conditions would require sets to be compact and bounded, and the solution would 
exist within the domain that we are working with. Usually we are looking for the solution that would 
satisfy “as a consequence of the requirement for the thermal equilibrium assumption that is dependent on 
how large is the viscosity or memory friction with the probability of equilibrium becoming larger.” 
(Reaction rate theory· fifty years after Kramers Peter Hanggi et al) that has a lot of difficulties of 
checking during the reaction. As some researchers could not rely on imaginary assumptions for 
iterations that was considered as kind of contradiction with the Principle of Optimality, the tendency of 
using dynamic programming left place for other methods. 
 
subject to x'= a(x,u,t), x(t0)= fixed, tf= fixed f The iteration algorithm would be for vector x 
 
X' (t) = f (x(t), a) (t >0); x(0)=x0, (5) 
 𝒙𝒙⏞k+1  = 𝒙𝒙⏞k + akpk               (6) 
for some scalar ak and direction pk. The direction canbe found from e.g. Taylor series expansion or other 
iterative methods. 
 
Other methods for unconstrained problems can include: 
1. Polynomial approximation 
2. Golden section ("Optimal Control of Hydrosystems" Larry Mays) 
involves deleting variables range or elimination of intervals in 
one-dimensional case and is related to Fibonacci numbers 
3. Bisection(S Giove"A bisection algorithm for fuzzy quadratic optimal 
control""www.unive.it/media/allegato/DIP/Economia/mmef-ex .. ./Giove_2_1_2007.pdf) 
 
Dynamic programming considers the problems of minimizing Shortest Paths, e.g. classic navigation 
problems, Routing through a street maze, and road maps as time/state, discrete/continuousproblems. 
 
min J = h(x(tf )) + ∫ 𝐠𝐠(𝐱𝐱(𝐭𝐭),𝐮𝐮(𝐭𝐭), 𝐭𝐭)) 𝐝𝐝𝐭𝐭              𝒕𝒕𝒇𝒇

𝒕𝒕𝟎𝟎
               (7) 

 
that allows other constrains also. 
 

3774

http://www.elsevier.nl/locate/cam2


The solution starts from  
1)mapping spatial/temporal grid over 
space/time and  
2) Evaluation of final costs of possible final states xi(tf),then  
3) Going back up 1 step in time and consider all possible ways of completing the problem and so on. 
4) Approximate integral cost at state xj at time tk, and apply control uij

k to move to state x at time tk+1 = tk 
+ ∆𝒕𝒕. 

∫ 𝐠𝐠(𝐱𝐱(𝐭𝐭),𝐮𝐮(𝐭𝐭), 𝐭𝐭)) 𝐝𝐝𝐭𝐭    ≈      𝐠𝐠( 𝐱𝐱𝐤𝐤𝐢𝐢  ,𝐮𝐮𝐤𝐤
𝐢𝐢𝐢𝐢 , 𝐭𝐭𝐤𝐤  )𝒕𝒕𝒌𝒌+𝟏𝟏

𝒕𝒕𝒌𝒌
∆𝒕𝒕      (8) 

Solution for control inputs directly from system model 

𝐱𝐱𝐤𝐤+𝟏𝟏
𝐢𝐢  ≈ 𝐱𝐱𝐤𝐤𝐢𝐢  + a( 𝐱𝐱𝐤𝐤𝐢𝐢  , uk

ij , tk  ) ∆𝒕𝒕 ⟹ a( 𝐱𝐱𝐤𝐤𝐢𝐢  , uk
ij , tk  ) = (𝐱𝐱𝐤𝐤+𝟏𝟏

𝐢𝐢  - 𝐱𝐱𝐤𝐤𝐢𝐢  )/ ∆𝒕𝒕     (9) 

That can be solved to find 𝐮𝐮𝐤𝐤
𝐢𝐢𝐢𝐢. 

In case of linear system model and a quadratic cost function 
 
x'(t)= A(t)x(t)+ B(t)u(t)                          (10) 
J = 𝟏𝟏

𝟐𝟐
 𝒙𝒙(𝒕𝒕𝒇𝒇 )𝒌𝒌 H 𝒙𝒙(𝒕𝒕𝒇𝒇) +  𝟏𝟏

𝟐𝟐
 ∫ (𝒙𝒙(𝒕𝒕 )𝒌𝒌𝑹𝑹𝒙𝒙𝒙𝒙(𝒕𝒕)𝒕𝒕𝒇𝒇
𝒕𝒕𝟎𝟎

𝒙𝒙(𝒕𝒕 )+(𝒖𝒖(𝒕𝒕 )𝒌𝒌𝑹𝑹𝒖𝒖𝒖𝒖(𝒕𝒕)𝒖𝒖(𝒕𝒕 )𝒅𝒅𝒕𝒕           (11) 
 
For initiaI conditions H, Rxx(t) ≥ 𝟎𝟎 and R uu(t) >O, then 
 
 H(x,u,𝑱𝑱�x, t) =2 [x(t)T Rxx(t)x(t)+ u(t)T Ruu(t)u(t)]+𝑱𝑱�x(x(t),t)[A(t)x(t)+ B(t)u(t)] ( 12) 
And the problem is to minimize H subject 
 
𝝏𝝏𝝏𝝏
𝝏𝝏𝒖𝒖

= u(t)TRuu(t)+ 𝑱𝑱�x (x(t),t)B(t)=O, where 𝝏𝝏
𝟐𝟐𝝏𝝏
𝝏𝝏𝒖𝒖𝟐𝟐

= Ruu(t) >o             (13) 
Which gives the optimal control law 𝒖𝒖�(t) = -𝑹𝑹𝒖𝒖𝒖𝒖−𝟏𝟏(t)B(t)T 𝑱𝑱�x (x(t),t)T                  (14) 
 
3.The method of time scale 
 
The first to use time scale for particles was Smoluchowski Smuluchovski devised that after a time span 
 𝜏𝜏 = 1/𝜉𝜉 
 the particle loses the memory of the initial velocity. It is called the Smuluchovski time scale and the 
average velocity is zero or constant. From Langevin equation   
 
〈𝒗𝒗(𝒕𝒕)��������⃗ ∗  𝒗𝒗(𝒕𝒕)��������⃗ 〉𝒗𝒗��⃗ 𝟎𝟎 = vo

2 exp (-2𝝃𝝃𝒕𝒕) + 
𝑪𝑪𝒗𝒗��⃗ 𝟎𝟎
𝟐𝟐𝝃𝝃

 (1 - exp (-2𝝃𝝃𝒕𝒕)) ,                              (15) , where 

𝒅𝒅𝒗𝒗��⃗
𝒅𝒅𝒕𝒕

 = - 𝝃𝝃 𝒗𝒗  + 𝑭𝑭��⃗                                     (16) 

And the friction constant  𝜉𝜉 = 6𝜋𝜋𝜋𝜋a/m, where 𝜋𝜋 is the viscosity of the solvent and a is the radius of the 
particle 

𝟎𝟎��⃗  = -𝝃𝝃𝒗𝒗��⃗  - 𝟏𝟏
𝒎𝒎

 𝛁𝛁��⃗  Ф + 𝑭𝑭��⃗ , where Ф(𝒓𝒓�⃗ ) is the external potential.         (17) 

For derivation of Smuluchovski time scale the initial velocity may be taken equal to �3𝑘𝑘𝑘𝑘/𝑚𝑚 .  

The distance the particle travel divided by its diameter then would be equal to  
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�𝟑𝟑𝒌𝒌𝒌𝒌/𝒎𝒎 
𝒂𝒂𝝃𝝃

 = �𝟑𝟑𝒌𝒌𝒌𝒌/𝒎𝒎 
𝟔𝟔𝝅𝝅𝝅𝝅𝐚𝐚𝟐𝟐

 = 10-5  for normal colloidal particles. (Theory of Polymer Dynamics W.J. Briels 

http://cbp.tnw.utwente.nl/PolymeerDictaat/index.html) 

The student of Kramers Van Kampen exploited Fokker-Planck equation for approximation of solutions of 
master equation. 
 
At the end to the discussion of the second approach of time scale or master equation, it Is worth to list 
additional encountered problems as an introduction to the newly developed methods such as 
 l)optical tweezers, 
 2)scanned tip 
microscopes, and  
3)single molecule fluorescence, as well as  
4)radio and sound noise and new challenges facing them. 
Dispersed kinetics and dynamic disorder has been the subject of intensive theoretical investigations. The 
first approach assumes the fluctuating rate constant is phenomenologically dependent on a time-varying 
control parameter, such as the activation barrier height, or the area of the bottleneck. Although this 
approach is conceptually straight forward, the control parameters are usually not experimentally 
accessible. As a result, their dynamics is often assumed empirically on ad hoc basis.  
 
One of examples is Brownian motion governed by Langevin dynamics. 
 
The second one assumes a kinetic scheme involving multiple discrete conformational states with different 
rate constants. However, there is often no sufficient information about the kinetic parameters or the 
connection topology among the multiple states  

The possible approaches to the solution of the above problems 

The quantum state tomography QST could be considered as an attempt to solve most of the above 
problems. Its aim  is to statistically reconstruct an unknown state from the outcomes of repeated 
measurements performed on identical copies of the state. Among the proposed estimation methods we 
mention,  
 

1.  variations of maximum likelihood and least squares estimator, 
2.  linear inversion ,  
3. Bayesian inference,  
4. estimation with incomplete measurements, 
5.  continuous variables tomography.  

However, composite systems such as trapped ions, due to the  

exponential increase in dimension in order to identify and estimate the state with a reduced number of 
measurements demand special approaches.  

All of the above discussion apply to different single molecule experiments, such as optical tweezers, 
scanned tip microscopes, and single molecule fluorescence methods, as well as radio and sound noise in 
as much as all these seemingly exact methods have effects of l) dispersion, 2)some kind of memory 
friction that in its turn affects possible state of equilibrium 
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4. Resolution. 
 
In the late 50-es, Richard Feynman predicted with his famous expression that "there' s plenty of room at 
the bottom" that in the future people would be able "arrange the atoms one by one the way they want 
them" and he implied "that high resolution microscopes would allow a direct look at single molecules in 
biological samples". The topic of resolution is very important in view of the recent Article by Xiao-Li 
Meng A trio of inference problems that could win you a Nobel Prize in statistics (if you help fund it), 
which focuses on Multi-resolution inference, Resolution via filtration and decomposition, and other topics 
of resolution. 
 
After 50 years in light of the above discussion about memory friction, the Smoluchowski time scale, 
velocity memory loss, and the iterative methods for equilibrium, the new research is at the bottom of the 
challenging problems that present "the fields of nanotechnology and single molecule (SM) microscopy 
developed after the Feynman's prediction. In the 80's so called scanning probe and near-field microscopes 
were developed that use sharp, nanoscale tips to image, probe and manipulate individual atoms or 
molecules .... An SM microscope needs to efficiently reject background, such as autofluorescence as well 
as elastic Rayleigh and inelastic Raman scattering of the medium surrounding the target molecule, by 
optically isolating the desired Stokes-(red-)shifted fluorescence signal. A common way to decrease 
background. 
 
Excitation volume usually is combined with conventional optics. "In epifluo-rescence microscopy the 
illumination and detection volumes are constrained by focusing light to illuminate an area several μ m in 
diameter and using the same optics to detect fluorescence with an area detector." The use of fluorescence 
resonance energy transfer (FRET) that is energy transfer between two light-sensitive molecules for 
measurement of distances between molecules in structural biology to the development of concepts of 
multidimensional conformational landscape and dynamics of biopolymers "SM version of FRET is able 
to quantitatively dissect the temporal sequence of events in folding transitions, including the adoption of 
rare and transient intermediates that may exist under either equilibrium or non-equilibrium 
conditions." (Walter et al. Page 9) 
"Local heating can influence enzymatic activity and change the local viscosity of the medium, whereas 
steep thermal gradients may produce convention currents that can adversely affect the measurements. 
Local heating in the vicinity of the optical trap can be calculated and several techniques have been 
developed to measure the temperature directly." (Keir C. Neuman and Attila Nagy Single-molecule force 
spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy Nat Methods.  June/08 
5(6): 491-505. doi :10.1038/nmeth. 1218.) 
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