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Abstract
To collect the information about the lifetime distribution of a product, a standard life testing method
at normal operating conditions is not practical when the product has a substantially long lifespan.
Accelerated life tests solve this problem by subjecting the test items at higher stress levels for
quicker and more failure data. This paper investigates the optimal stress durations for a simple step-
stress accelerated life test under Type-I censoring. The determination of the optimal step durations
is discussed under several well-known optimality criteria, including C-optimality, D-optimality,
and A-optimality. For an exponential population with a single stress variable, the efficiencies of
the optimal designs with flexible step durations and uniform step durations are compared through a
numerical study and a real case study.

Key Words: accelerated life test, cumulative exposure model, flexible stress duration, optimal
regression design, order statistics, step-stress loading, Type-I censoring

1. Introduction

With increasing reliability and substantially long life-spans of products, it is often diffi-
cult for standard life testing methods under normal operating conditions to obtain sufficient
information about the failure time distribution of the products. This difficulty is overcome
by Accelerated Life Test (ALT) where the test units are subjected to higher stress levels
than normal for rapid failures. By applying more severe stresses, ALT collects information
on the parameters of lifetime distributions more quickly. The lifetime at the design stress
is then estimated through extrapolation using a suitable regression model.

Over the decades, a variety of inferential procedures has been developed for ALT. Zhao
and Elsayed (2005) proposed a general accelerated life model for step-stress ALT using
both Weibull and lognormal distributions in which the stress level only affects the scale
parameter. Meeter and Meeker (1994) developed the statistical models and ALT plans
with a non-constant shape parameter, and later, Seo et al. (2009) investigated the optimal
ALT sampling plans for deciding the lot acceptability under Weibull distribution with a
non-constant shape parameter and Type-I/II censorings. Exact conditional inference for a
step-stress model with exponential competing risks was studied by Balakrishnan and Han
(2008), Han and Balakrishnan (2010). Lee and Pan (2010) discussed the parameter esti-
mation for multiple step-stress ALT by employing the generalized linear model based on
Poisson distribution while Hu et al. (2012) proposed a proportional hazards-based non-
parametric model for a simple step-stress ALT to obtain upper confidence bounds for the
cumulative failure probability. A Bayesian inferential method for ALT was also developed
by Van Dorp and Mazzuchi (2005) under Weibull lifetimes where a multivariate prior dis-
tribution was indirectly defined for scale parameters at various stress levels. Khamis (1997)
compared constant-stress ALT and step-stress ALT under Weibull lifetime distribution for
units subjected to stress. Under complete sampling, Hu et al. (2013) studied the statisti-
cal equivalency of a simple step-stress ALT to other stress loading designs while Han and
Ng (2013) compared the efficiencies of general k-level constant-stress and step-stress ALT
under complete sampling and Type-I censoring.
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In order to conduct ALT efficiently, the decision variables such as stress durations
should be chosen carefully since they affect not only the experimental cost but also the
estimate precision of the lifetime parameters of interest. For this reason, the optimal ALT
design has attracted great attention in the reliability literature. Nelson and Kielpinski (1976)
initiated research in this area by considering the optimally censored ALT for normal and
lognormal distributions. By minimizing the asymptotic variance of the Maximum Likeli-
hood Estimator (MLE) of the acceleration factor, Bai et al. (1993) determined the opti-
mal stress change time point of partially ALT under lognormal lifetime distribution. By
minimizing the asymptotic variance of a lot acceptability statistic, Bai et al. (1995) also
designed the sampling plans for failure-censored ALT under Weibull distribution subject to
the expected test time constraint. For a general step-stress ALT, Gouno et al. (2004), Bal-
akrishnan and Han (2009) discussed the problem of determining the optimal stress duration
under progressive Type-I censoring; see also Han et al. (2006) for related comments. Ma
and Meeker (2008) developed the optimal step-stress ALT plans for general log-location-
scale distributions. The optimum combinations of multiple stresses for ALT were inves-
tigated by Elsayed and Zhang (2007) based on the proportional hazards model. Zhu and
Elsayed (2013) also investigated the optimal ALT plans under progressive censoring when
test units experience competing failure modes and are subjected to either single or multiple
stress types. To improve the statistical efficiency and reduce the total energy consumption
of ALT experiments, Zhang and Liao (2013) developed a design methodology, which de-
pends on the product reliability and the physical characteristics of the testing equipment
along with its controller.

The current works on the optimal ALT designs have mainly focused on the variance
minimization of a certain estimator (i.e., C-optimality). In addition, for a multiple stress
ALT, only a uniform stress duration has been considered although the operation cost could
substantially increase with the physical constraints and limitations of the testing instru-
ments when the stress level increases. In this work, we investigate the optimal simple
step-stress ALT plans under Type-I censoring with varying stress durations. Assuming a
log-linear relationship between the lifetime parameter and stress level, along with the cu-
mulative exposure model for the effect of changing stress in a step-stress ALT, the optimal
step durations are determined under several well-known optimality criteria, including C-
optimality, D-optimality, and A-optimality. For an exponential population with a single
stress variable, the efficiencies of the optimal designs with flexible step durations and uni-
form step durations are compared through a numerical study and a real case study. The
rest of the paper is organized as follows. Section 2 presents the model description and for-
mulation, derives the MLEs of the model parameters and the associated Fisher information
for the step-stress ALT. In Section 3, the optimality criteria are defined based on the Fisher
information (viz., variance, determinant, and trace) and the existence of optimal design
points is discussed in each case under time censoring. Section 4 presents the results of
the numerical study and Section 5 illustrates the proposed methods using a case study and
compares the efficiencies of the optimal designs with flexible step durations and uniform
step durations.

2. Model Description and MLEs

Let us define x1 < x2 < · · · < xk to be the ordered stress levels to be used in the test.
Then, for the stress level xi, i = 1, 2, · · · , k, let ni denote the number of units failed in the
time interval (τi−1, τi] with the usual convention of τ0 = 0 and yi,l denote the l-th ordered
failure time of ni units at stress level xi, l = 1, 2, · · · , ni. Also, let ∆i = τi − τi−1 denote
the step duration at stress level xi. Furthermore, letNi denote the number of units operating
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Figure 1: A schematic illustration of the step-stress ALT under Type-I censoring

and remaining on test at the start of stress level xi. Then, a step-stress ALT under Type-I
censoring proceeds as follows. A total number of N1 = n test units are simultaneously
placed at the stress level x1 and run until τ2 when the stress level is changed to x2. The
remaining N2 = N1 − n1 units are continued to be run until τ3 at which point the stress
level is changed to x3, and so on. Finally, at the termination time point τk, all the surviving
units ck = n −

∑k
i=1 ni are withdrawn. Note that when there is no right censoring (viz.,

τk = ∞ or ck = 0), this situation corresponds to the k-level step-stress under complete
sampling as a special case. The procedure is depicted pictorially in Figure 1. Now, the
following assumptions are the basis of construction subsequent step-stress models.

Assumptions:

• A cumulative exposure model holds;

• For any stress level xi, i = 1, 2, · · · , k, the lifetime of a test unit follows an exponen-
tial distribution. That is, the probability density function (PDF) and the correspond-
ing cumulative distribution function (CDF) of a test unit at stress level xi are

fi(t) =
1

θi
exp

(
− t

θi

)
, 0 < t <∞, (1)

and

Fi(t) = 1− exp

(
− t

θi

)
, 0 < t <∞,

respectively. The survival function of a test unit at stress level xi is readily given by

Si(t) = 1− Fi(t), 0 < t <∞. (2)

• A log-linear relationship between the stress level xi and the mean time to failure
(MTTF) θi holds, That is,

log θi = α+ βxi, i = 1, 2, · · · , k.

Then, under the assumptions, the PDF and CDF of a test unit are obtained as

f(t) =

i−1∏
j=1

Sj(∆j)

 fi(t− τi−1) if

{
t ∈ (τi−1, τi], for i = 1, 2, · · · , k − 1,

t ∈ (τk−1,∞), for i = k
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F (t) = 1−

i−1∏
j=1

Sj(∆j)

Si(t− τi−1) if

{
t ∈ (τi−1, τi], for i = 1, 2, · · · , k − 1,

t ∈ (τk−1,∞), for i = k

where fj(t) and Sj(t) are as defined in (1) and (2), respectively. Therefore, the likelihood
function of θ = (θ1, θ2, · · · , θk) based onn = (n1, n2, · · · , nk) and y = (y1,y2, · · · ,yk)
with yi = (yi,1, yi,2, · · · , yi,ni) is obtained as

L(θ | y,n) =

[
k∏
i=1

Ni!

(Ni − ni)!

][
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (3)

where the Total Time on Test statistic Ui in (3) is defined as

Ui =

ni∑
l=1

(yi,l − τi−1) + (Ni − ni)∆i, i = 1, 2, · · · , k.

The log-likelihood function is given by

l(θ | y,n) = −
k∑
i=1

ni log θi −
k∑
i=1

Ui
θi
. (4)

With the log-linear link, the log-likelihood function in (4) can be written for α and β as

l(α, β | y,n) = −α
k∑
i=1

ni − β
k∑
i=1

nixi −
k∑
i=1

Uie
−α−βxi . (5)

Upon differentiating (5) with respect to α and β, the likelihood equations are obtained as

∂

∂α
l(α, β | y,n) = −

k∑
i=1

ni +

k∑
i=1

Uie
−α−βxi = 0, (6)

∂

∂β
l(α, β | y,n) = −

k∑
i=1

nixi +
k∑
i=1

Uixie
−α−βxi = 0. (7)

Based on (6) and (7), the MLEs of α and β are obtained by solving the following two
equations simultaneously.

α̂ = log

(∑k
i=1 Ui exp(−β̂xi)∑k

i=1 ni

)
, (8)∑k

i=1 nixi∑k
i=1 ni

=

∑k
i=1 Uixi exp(−β̂xi)∑k
i=1 Ui exp(−β̂xi)

. (9)

Theorem 1. In the case of the step-stress ALT under Type-I censoring with the log-linear
assumption, there exist the unique MLEs of α and β.

Since α̂ and β̂ are nonlinear functions of random variables, statistical inference for
(α, β) using the MLEs is based on the asymptotic property that the vector (α̂, β̂) is approx-
imately distributed as a bivariate normal with mean vector (α, β) and variance-covariance
matrix I−1

n (α, β), the inverse of Fisher information matrix.
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Theorem 2. In the case of the step-stress ALT under Type-I censoring with the log-linear
assumption, the Fisher information matrix is given by

In(α, β) = n

 ∑k
i=1Ai

∑k
i=1Aixi∑k

i=1Aixi
∑k

i=1Aix
2
i


with

Ai =

i−1∏
j=1

Sj(∆j)

Fi(∆i), i = 1, 2, · · · , k.

Proof of Theorem 1 and 2 is provided in the appendix.

3. Optimality Criteria

In this section, three optimality criteria are considered for designing the optimal step-
stress ALT with flexible step durations ∆∗ = (∆∗1,∆

∗
2, · · · ,∆∗k). Later, we will compare

the resulting optimal designs with those with uniform step durations ∆∗ = ∆∗1 = ∆∗2 =
· · · = ∆∗k. Note that unlike the optimal designs with uniform durations, the optimal step-
stress ALT under Type-I censoring with flexible step durations requires a pre-fixed termi-
nation time of the test τk such that

∑k
i=1 ∆∗i = τk.

3.1 C-optimality

Researchers often wish to maximize the precision and to minimize the variability of
the estimate of the parameter of interest. In the step-stress ALT, the MTTF of a test unit
at use-condition θ0 is such a parameter of interest. Motivated by this, our first optimality
criterion is the C-optimality, which minimizes the asymptotic variance of the estimator of
log θ0, defined by

φ(∆) = nAVar(log θ̂0) = n[1, x0]I−1
n (α, β)[1, x0]′

=
2
∑k

i=1Ai(xi − x0)2∑k
i=1

∑k
j=1AiAj(xi − xj)2

,
(10)

where Avar denotes the asymptotic variance and x0 is the normal use-stress level. The C-
optimal ∆∗ is obtained by minimizing (10). For the case of simple step-stress ALT (viz.,
k = 2), the objective function φ(∆) in (10) can be reduced to

φ(∆1,∆2) =
(1 + ξ)2

A1
+
ξ2

A2
, (11)

where ξ = (x1 − x0)/(x2 − x1).

Theorem 3. In the case of a simple step-stress test under Type-I censoring (viz., k = 2),
there exists a unique optimal step duration (∆∗1,∆

∗
2) which minimizes the objective function

φ(∆1,∆2) in (11).

In the special case of complete sampling as τk →∞, the k-level step-stress ALT under
C-optimality reduces to a simple step-stress ALT with stress levels x1 and xk. In this
situation, the optimal step duration of the first stage ∆∗1 and the corresponding optimum
φ(∆∗1) are

∆∗1 = −θ1 log

(
ξ

1 + 2ξ

)
and φ(∆∗1) = (1 + 2ξ)2,

respectively, where ξ = (x1 − x0)/(xk − x1).
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3.2 D-optimality

Another optimality criterion is concerned with the joint precision of (α̂, β̂). Note that
the determinant of the Fisher information matrix |In(α, β)| is proportional to the reciprocal
of the volume of the asymptotic joint confidence region of (α, β) at a fixed level of confi-
dence. Hence, the smallest asymptotic joint confidence ellipsoid of (α, β) is obtained by
maximizing |In(α, β)| through selecting the appropriate step durations ∆. Motivated by
this, the D-optimal objective function is defined as

δ(∆) = n−2|In(α, β)| = 1

2

k∑
i=1

k∑
j=1

AiAj(xi − xj)2. (12)

The D-optimal step duration ∆∗ is obtained by maximizing δ(∆) in (12) for the maximal
joint precision of (α̂, β̂). In the case of simple step-stress ALT (viz., k = 2), the objective
function δ(∆) in (12) reduces to

δ(∆1,∆2) = A1A2(x2 − x1)2. (13)

Theorem 4. In the case of a simple step-stress test under Type-I censoring (viz., k =
2), there exists a unique optimal step duration (∆∗1,∆

∗
2) which maximizes the objective

function δ(∆1,∆2) in (13).

In the special case of complete sampling as τk →∞, the k-level step-stress ALT under
D-optimality reduces to a simple step-stress ALT with stress levels x1 and xk. In this
situation, the optimal step duration of the first stage ∆∗1 and the corresponding optimum
δ(∆∗1) are

∆∗1 = θ1 log 2 and δ(∆∗1) =
1

4
(xk − x1)2 ,

respectively.

3.3 A-optimality

The third optimality criterion considered in this study is based on the first-order ap-
proximation of the variance-covariance matrix of the MLEs. It is identical to the sum of
the diagonal elements of the inverse of the Fisher information matrix. This criterion pro-
vides an overall measure of the average variance of the parameter estimates and gives the
sum of the eigenvalues of the inverse of the Fisher information matrix. The A-optimal
objective function is defined by

a(∆) = ntr
(
I−1
n (α, β)

)
=

2
∑k

i=1Ai(1 + x2
i )∑k

i=1

∑k
j=1AiAj(x1 − xj)2

. (14)

The A-optimal step-duration ∆∗ is obtained by minimizing a(∆) in (14) for the minimal
average variance of (α̂, β̂). In the case of simple step-stress ALT (viz., k = 2), the objective
function a(∆) in (14) reduces to

a(∆1,∆2) =
A1(1 + x2

1) +A2(1 + x2
2)

A1A2(x2 − x1)2

=
ξ2

2

A1
+
ξ2

1

A2
, (15)

where ξi =
√

1 + x2
i /(x2 − x1) for i = 1, 2.
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Theorem 5. In the case of a simple step-stress test under Type-I censoring (viz., k = 2),
there exists a unique optimal step duration (∆∗1,∆

∗
2) which minimizes the objective function

a(∆1,∆2) in (15).

In the special case of complete sampling as τk →∞, the k-level step-stress ALT under
A-optimality reduces to a simple step-stress ALT with stress levels x1 and xk. In this
situation, the optimal step duration of the first stage ∆∗1 and the corresponding optimum
a(∆∗1) are

∆∗1 = −θ1 log

(
ξ1

ξ1 + ξk

)
and a(∆∗1) = (ξ1 + ξk)

2,

respectively, where ξi =
√

1 + x2
i /(xk − x1) for i = 1, k.

4. Illustrative Example

Greven et al. (2004) provided the step-stress ALT data of 14 fish in their control group.
The fish were swum at 15 cm/sec for 90 minutes and then, the flow rate was increased
every 20 minutes by 5 cm/sec until fatigue. Table 1 reproduces the experimental data with
2 observations right censored at 150 minutes. Here, the water velocities are the stress
levels and the fatigue time of fish is regarded as the unit failure time. It is desired to find
the optimal step-stress ALT designs under the C-, D-, and A-optimality criteria discussed
in the previous section.

Table 1: The fatigue times of the control group fish (n = 14) from the four-level step-stress
ALT censored at 150 minutes

Time Interval Flow Rate Fatigue Times
(minutes) (cm/sec) (minutes)
[ 0, 90) 15 83.50

[ 90,110) 20 91.00, 91.00, 97.00, 107.00, 109.50
[110,130) 25 114.00, 115.41, 128.61
[130,150) 30 133.53, 138.58, 140.00, 150+, 150+

First, using (8) and (9), the MLE of (α, β) was computed as α̂ = 9.18 and β̂ = −0.22.
Then, the estimates of MTTF at each stress level were obtained as θ̂1 = 380.29 min,
θ̂2 = 128.99 min, θ̂3 = 43.75 min, and θ̂4 = 14.84 min. With the parameter of interest
being the MTTF at the flow rate of 0 cm/sec for the C-optimality, the optimal stress change
time points of this step-stress ALT under each optimality criterion are shown in Table 2,
Table 3, and Table 4 along with the corresponding values of the objective functions. In
comparison to the original step-stress ALT (design A) specified in Table 1, 4 different
optimal ALT designs were considered. They are

design B: the step-stress ALT with flexible stress durations under Type-I censoring at the
same termination time (150.00 min) of the original ALT (design A);

design C: the step-stress ALT with flexible stress durations under Type-I censoring with
the value of the objective function equal to that of the original ALT (design A);

design D: the step-stress ALT with uniform stress durations under Type-I censoring;

design E: the step-stress ALT with flexible stress durations under Type-I censoring at the
same termination time of the step-stress ALT under the design D
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Table 2: The optimal stress change time points of the step-stress ALT and the correspond-
ing value of φ(·) under the C-optimality

Design Type τ∗1 τ∗2 τ∗3 τ∗4 φ(·)
A. Original Design 90.00 110.00 130.00 150.00 19.66
B. Flexible Duration with τ4 = 150.00 134.27 – – 150.00 15.62
C. Flexible Duration with φ = 19.66 100.55 – – 111.90 19.66
D. Uniform Duration 68.17 136.34 204.51 272.68 26.22
E. Flexible Duration with τ4 = 272.68 241.20 – – 272.68 10.66

Table 3: The optimal stress change time points of the step-stress ALT and the correspond-
ing value of δ(·) under the D-optimality

Design Type τ∗1 τ∗2 τ∗3 τ∗4 δ(·)
A. Original Design 90.00 110.00 130.00 150.00 27.10
B. Flexible Duration with τ4 = 150.00 110.74 – – 150.00 39.47
C. Flexible Duration with δ = 27.10 69.53 – – 99.30 27.10
D. Uniform Duration 44.54 89.08 133.62 178.16 20.94
E. Flexible Duration with τ4 = 178.16 133.91 – – 178.16 44.58

Table 4: The optimal stress change time points of the step-stress ALT and the correspond-
ing value of a(·) under the A-optimality

Design Type τ∗1 τ∗2 τ∗3 τ∗4 a(·)
A. Original Design 90.00 110.00 130.00 150.00 19.69
B. Flexible Duration with τ4 = 150.00 134.24 – – 150.00 15.65
C. Flexible Duration with a = 19.69 100.50 – – 111.85 19.69
D. Uniform Duration 68.07 136.14 204.21 272.28 26.27
E. Flexible Duration with τ4 = 272.28 240.81 – – 272.28 10.69

Figure 2 below visualizes the relationships among these 5 step-stress ALT designs in
terms of their termination/censoring times and the corresponding values of the objective
functions under each optimality criterion. In each plot, the solid line represents the ob-
jective function for the optimal step-stress ALT with flexible stress durations under Type-I
censoring while the dashed line represents the objective function for the optimal step-stress
ALT with uniform stress durations under Type-I censoring. Regardless of the optimality
criteria, it is observed that longer the test duration is, more efficient the optimal step-stress
ALT with flexible stress durations is even though the gain in efficiency seems to diminish.
It is not so for the optimal step-stress ALT with uniform stress durations, and there exists a
unique optimal censoring time point. For this particular study, the optimal objective func-
tions under the C- and A-optimalities are behaving in the same way, producing the almost
identical results in Table 2, Table 3, and Table 4.

From the tables, we see that although the original study design (design A) is not an
optimal one, it is more efficient and takes shorter to complete compared to the optimal
step-stress ALT with uniform stress durations (design D). When the censoring time is fixed
to be that of the original ALT (design A), the optimal step-stress ALT with flexible stress
durations produces a more efficient test design (design B) as expected. On the other hand,
when the value of the objective function is kept equal to that of the original ALT (design
A), the optimal step-stress ALT with flexible stress durations produces a test design which
takes shorter to complete (design C). The optimal step-stress ALT with uniform stress du-
rations (design D) takes longer but is less efficient despite the fact that it is an optimal one.
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Figure 2: The objective functions under each optimality criterion with respect to the ter-
mination time of the step-stress ALT

Hence, under the same censoring time, it is better to implement the optimal step-stress ALT
with flexible stress durations (design E). Figure 2 confirms that at the identical censoring
time, the optimal step-stress ALT with flexible stress durations is more efficient than the
ALT with uniform stress durations in general. Also, regardless of the optimality criteria,
at the identical value of the objective function, the optimal step-stress ALT with flexible
stress durations takes a shorter time to complete compared to the ALT with uniform stress
durations.

Furthermore, the tables exhibit that regardless of the optimality criteria, the optimal
step-stress ALT with flexible stress durations (designs B,C,E) requires only two stress lev-
els, which are the lowest and highest stress levels used in the study. This implies that no
matter how many stress levels are to be implemented in a study, the optimal test design
is a simple step-stress ALT when the log-linear assumption holds between the stress level
and the corresponding MTTF. The resulting simple step-stress ALT also assigns a shorter
duration to the higher stress level compared to the lower stress level.

Appendix

Proof of Theorem 1: Let us denote the RHS of (9) byH(β;x,n,U) =
∑k

i=1 Uixi exp(−βxi)∑k
i=1 Ui exp(−βxi)

with x = (x1, x2, · · · , xk) and U = (U1, U2, · · · , Uk). Then, for given x, n, and U , we
need to show that H(β;x,n,U) is a monotone decreasing function of β, and

lim
β→−∞

H(β;x,n,U) >

∑k
i=1 nixi∑k
i=1 ni

> lim
β→∞

H(β;x,n,U).

Since the LHS of (9) is a constant, it then follows that
∑k

i=1 nixi∑k
i=1 ni

and H(β;x,n,U) would

intersect exactly once at the MLE of β. To verify that H(β;x,n,U) is a monotone de-
creasing function of β, it is sufficient to show that

∂

∂β
H(β;x,n,U) =

h(β;x,n,U)[∑k
i=1 Ui exp(−βxi)

]2 ≤ 0, (16)
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where the numerator in (16) is written as

h(β;x,n,U) = −
( k∑
i=1

Uix
2
i exp(−βxi)

)( k∑
i=1

Ui exp(−βxi)
)

+

( k∑
i=1

Uixi exp(−βxi)
)2

.

(17)
Setting ai = xi

√
Ui exp(−βxi) and bi =

√
Ui exp(−βxi), h(β;x,n,U) in (17) becomes

h(β;x,n,U) = −
( k∑
i=1

a2
i

)( k∑
i=1

b2i

)
+

( k∑
i=1

aibi

)2

≤ 0

by the Cauchy-Schwarz inequality, which establishes the required property thatH(β;x,n,U)
is indeed a monotone decreasing function of β. Let us now inspect the limit ofH(β;x,n,U).
Note that under the condition x1 < x2 < · · · < xk, we have

lim
β→−∞

H(β;x,n,U) = lim
β→−∞

∑k
i=1 Uixi exp(−βxi)∑k
i=1 Ui exp(−βxi)

= xk ≥
∑k

i=1 nixi∑k
i=1 ni

and

lim
β→∞

H(β;x,n,U) = lim
β→∞

∑k
i=1 Uixi exp(−βxi)∑k
i=1 Ui exp(−βxi)

= x1 ≤
∑k

i=1 nixi∑k
i=1 ni

.

Therefore, (9) has a unique solution β̂, and by using β̂, the unique value of α̂ can be com-
puted from (8). Hence, there exist the unique MLEs of α and β.

Proof of Theorem 3: Since ∆1+∆2 = τ2 with pre-fixed τ2 > 0, the objective function
φ(∆1,∆2) in (11) can be written as

φ(∆1, τ2 −∆1) = φ(∆1) =
(1 + ξ)2

A1
+
ξ2

A2
,

where A1 = 1 − exp(−∆1/θ1) and A2 = [1− exp (−(τ2 −∆1)/θ2)] exp(−∆1/θ1).
Taking the derivative of φ(∆1) with respect to ∆1, and setting it to zero, we obtain(

θ1
θ2
− 1
)

exp
(
− τ2−∆1

θ2

)
+ 1[

1− exp
(
− τ2−∆1

θ2

)]2 =
c[

exp
(

∆1
θ1

)
− 1
]2 , (18)

where c = (1 + ξ)2/ξ2 is a positive constant. Now, let uL(∆1) and uR(∆1) represent
the LHS and RHS of (18). It is easy to check that uL(∆1) is an increasing function and
uR(∆1) is a decreasing function in ∆1 ∈ (0, τ2) upon θ1 > θ2. Also, since

lim
∆1→0

uL(∆1) =

(
θ1
θ2
− 1
)

exp
(
− τ2
θ2

)
+ 1[

1− exp
(
− τ2
θ2

)]2 < lim
∆1→0

uR(∆1) =∞

and
lim

∆1→τ2
uL(∆1) =∞ > lim

∆1→τ2
uR(∆1) =

c[
exp

(
τ2
θ1

)
− 1
]2 ,

uL(∆1) and uR(∆1) intersect in the range of (0, τ2). Therefore, there exists the unique
value ∆∗1 ∈ (0, τ2) that satisfies φ′(∆∗1) = 0.
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Moreover, the second derivative of φ(∆1) is obtained as

∂2φ(∆1)

∂∆2
1

=

(
1
θ1

+ 1
θ2

)
ξ2 exp

(
∆1
θ1
− τ2−∆1

θ2

)
θ2

[
1− exp

(
− τ2−∆1

θ2

)]2 +
ξ2 exp

(
∆1
θ1
− τ2−∆1

θ2

)
θ1θ2

[
1− exp

(
− τ2−∆1

θ2

)]2

+
2ξ2 exp

(
∆1
θ1
− 2(τ2−∆1)

θ2

)
θ2

2

[
1− exp

(
− τ2−∆1

θ2

)]3 +
ξ2 exp

(
∆1
θ1

)
θ2

1

[
1− exp

(
− τ2−∆1

θ2

)]
+

(1 + ξ)2 exp
(
−∆1

θ1

)
θ2

1

[
1− exp

(
−∆1

θ1

)] +
2(1 + ξ)2 exp

(
−2∆1

θ1

)
θ2

1

[
1− exp

(
−∆1

θ1

)]3 ,

where each term is positive when ∆1 ∈ (0, τ2). This indicates that φ(∆1) forms a convex
function of ∆1, and it is minimized by ∆∗1 that satisfies φ′(∆∗1) = 0.

Proof of Theorem 4: Since ∆1+∆2 = τ2 with pre-fixed τ2 > 0, the objective function
δ(∆1,∆2) in (13) can be written as

δ(∆1, τ2 −∆1) = δ(∆1) = A1A2(x2 − x1)2,

where A1 = 1 − exp(−∆1/θ1) and A2 = [1− exp (−(τ2 −∆1)/θ2)] exp(−∆1/θ1).
Taking the derivative of log δ(∆1) with respect to ∆1, and setting it to zero, we obtain

∂ log δ(∆1)

∂∆1
=

1/θ1

exp
(

∆1
θ1

)
− 1
− 1

θ1
− 1/θ2

exp
(
τ2−∆1
θ2

)
− 1

= 0,

from which we can drive

2 exp

(
τ2 −∆1

θ2

)
+

(
1− θ1

θ2

)
exp

(
∆1

θ1

)
+

(
θ1

θ2
− 2

)
= exp

(
τ2

θ2
−
(

1

θ2
− 1

θ1

)
∆1

)
.

(19)
Let uL(∆1) and uR(∆1) represent the LHS and RHS of (19), respectively. With θ1 ≥ θ2, it
is easy to show that both uL(∆1) and uR(∆1) are decreasing in ∆1 ∈ (0, τ2). Also, since

uL(0) = 2 exp

(
τ2

θ2

)
− 1 > uR(0) = exp

(
τ2

θ2

)
and

uL(τ2) =

(
1− θ1

θ2

)
exp

(
τ2

θ1

)
+
θ1

θ2
< uR(τ2) = exp

(
τ2

θ1

)
,

uL(∆1) and uR(∆1) intersect in the range of (0, τ2). Therefore, there exists the unique
value ∆∗1 ∈ (0, τ2) that satisfies δ′(∆∗1) = 0.

Moreover, the second derivative of log δ(∆1) is obtained as

∂2 log δ(∆1)

∂∆2
1

= − Q

θ2
1θ

2
2

[
exp

(
τ2−∆1
θ2

)
− 1
]2 [

exp
(

∆1
θ1

)
− 1
]2 ,
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where

Q = θ2
1 exp

(
2∆1

θ1
+
τ2 −∆1

θ2

)
+ θ2

1 exp

(
τ2 −∆1

θ2

)
+

[
θ2

2 exp

(
2(τ2 −∆1)

θ2

)
− 2(θ2

1 + θ2
2) exp

(
τ2 −∆1

θ2

)
+ θ2

2

]
exp

(
∆1

θ1

)
= θ2

1 exp

(
τ2 −∆1

θ2

)[
exp

(
∆1

θ1

)
− 1

]2

+θ2
2 exp

(
∆1

θ1

)[
exp

(
τ2 −∆1

θ2

)
− 1

]2

> 0.

Since ∂2 log δ(∆1)
∂∆2

1
< 0, δ(∆1) forms a concave function of ∆1, and it is maximized by ∆∗1

that satisfies δ′(∆∗1) = 0.

Proof of Theorem 5: Since ∆1+∆2 = τ2 with pre-fixed τ2 > 0, the objective function
a(∆1,∆2) in (15) can be written as

a(∆1, τ2 −∆1) = a(∆1) =
ξ2

2

A1
+
ξ2

1

A2
,

where A1 = 1 − exp(−∆1/θ1) and A2 = [1− exp (−(τ2 −∆1)/θ2)] exp(−∆1/θ1).
Since a(∆1) is similar to φ(∆1) = φ(∆1,∆2) in (11), a similar argument can be used to
prove the unique existence of ∆∗1 that minimizes a(∆1).
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