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Abstract 
To assist new scientists in the transition to independent research careers, the National Institutes of 
Health (NIH) implemented an Early Stage Investigator (ESI) policy beginning with applications 
submitted in 2009. During the review process, the ESI designation segregates applications 
submitted by investigators within 10 years of completing their terminal degree or medical residency 
from applications submitted by more experienced investigators. Institutes/Centers can then give 
special consideration to ESI applications when making funding decisions. One goal of this policy 
is to increase the probability of newly emergent investigators receiving research support. Using 
direct matching algorithms to generate comparable groups pre- and post-policy implementation, 
generalized linear models were used to evaluate the ESI policy, comparing the probability of 
funding for ESI flagged applications from 2011 to 2015 to applications from 2004 to 2008 with 
similar characteristics. This paper addresses the statistical necessities of public policy evaluation, 
finding that the ESI policy stabilized the proportion of NIH funded newly emergent investigators. 
In the absence of the ESI policy, 54 percent of newly emergent investigators would not have 
received funding. 
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1. Introduction 
Receiving independent research support continues to be an important milestone marking the 
transition from a newly emergent investigator to an established investigator at many biomedical 
research institutions in the United States (National Research Council, 2005). However, current 
trends in biomedical research funding have created a hypercompetitive environment (Cook, Grang, 
and Eyre-Walker, 2015) and young investigators are attaining research independence later in their 
careers (Basken and Voosen, 2014; Rockey, 2012). For instance, studies have shown that the 
average age to first major research grant from the National Institutes of Health (NIH) has been 
increasing from 36 in 1980 to 42 in 2008 (Matthews, Calhoun, Lo, and Ho, 2011) and reached 45 
in 2016 (NIH, 2017). Youth and diversity in the biomedical workforce are linked to major scientific 
breakthroughs, revolutionizing medicine and the healthcare of the populace (Jones, Reedy, and 
Weinberg, 2014), with Nobel Laureates in medicine conducting prize-winning work by age 45 
(Redelmeier and Naylor, 2016). Reasons for the trend of an aging biomedical research workforce 
include an oversupply of young scientists relative to the number of open faculty positions (Alberts, 
Kirschner, Tilghman, and Varmus, 2014; Clauset, Larremore, and Sinatra, 2017), and the presence 
of more experienced, prolific cohorts of established investigators who disproportionately receive 
NIH research awards (Levitt and Levitt, 2017). Taken together, these two factors can create serious, 
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long term consequences to the biomedical research workforce by forcing young scientists to seek 
out career opportunities outside of academic research (Daniels, 2017) and limiting support available 
to scientists at the most creative stage of their careers (Jones, Reedy, and Weinberg, 2014).  
 
As one of the largest sources of financial support for biomedical research in the world (Viergever 
and Hendriks, 2015), the NIH implemented policies aimed at sustaining a more balanced 
biomedical research workforce and to lower the increasing age to first major research grant 
(Heggeness, Carter-Johnson, Schaffer, and Rockey, 2016; Levitt and Levitt, 2017). In 2009, the 
NIH implemented the Early Stage Investigator (ESI) policy. The purpose of the policy was to, 
“counter advantages enjoyed by well-established investigators and to encourage early transition to 
independence.” (https://grants.nih.gov/policy/new_investigators/index.htm). To accomplish this, 
the NIH ESI policy requires ESI-eligible applications to be segregated during review and reviewers 
are instructed to score the application based on the merits and ideas within the application, and not 
necessarily focus on the writing, preliminary data, and career stage of the investigator. To qualify 
for ESI status, all program directors/principal investigators on an application must not have prior 
substantial NIH independent research awards and be within 10 years of his/her terminal degree or 
end of medical residency.  
 
Despite the implementation of the ESI policy, recent research found older, more experienced NIH 
awardees are still more likely to have more than one award resulting in enhanced survival benefits 
within the research project grant (RPG) funding system (Charette et al, 2016). Funding disparities 
are two-fold – experienced investigators are more likely to have applications funded than ESIs and 
the direct award dollar amount per investigator disproportionately favors experienced investigators 
(Charette et al, 2016). Additionally, the aging baby boom cohort of scientists in conjunction with 
the decline in the retirement rate and elimination of mandatory retirement in universities have 
resulted in a rapidly aging scientific workforce (Blau and Weinberg, 2017). The ESI policy was 
intended to diminish the advantage of experience and make it easier for newly emergent 
investigators to transition to independence. 
 
While existing research and published data have suggested that the ESI policy has not reversed 
trends in obtaining NIH research funding, studies to date have not formally examined the 
effectiveness of the policy. For instance, the existing body of literature rely on either descriptive 
statistics (Dorsey and Wallen, 2016; Moore, 2017) or were limited to data from one IC (Berg, 2010; 
Boyington, Antman, Patel, and Lauer, 2016; NIDDK, 2017). Descriptive statistics are necessary 
for exploratory data analysis and the first step in any formal analysis; however, descriptive statistics 
cannot infer causality or evaluate policy. In addition, restricting data to just one IC limits the 
generalizability of findings. That is, the policy’s overall effectiveness cannot be ascertained.  
 
The purpose of this research was to use a quasi-experimental design to infer causality with respect 
to the ESI policy. More specifically, this research asked the following: 

• Can a quasi-experimental design be applied to existing data to infer ESI policy 
effectiveness? 

• If so, are newly emergent investigators more likely to receive funding for applications 
submitted post-policy implementation when compared to similar applications submitted 
pre-policy implementation? 

The first stage of this research focused on matching post-policy applications to pre-policy 
applications then evaluated the quality of the matches. If the matches were sufficient for analysis, 
then a generalized linear model estimated the differences in the probability of funding between the 
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matched pairs. Using direct matching algorithms, this research examined the statistical necessities 
to evaluate the ESI policy, finding that sample restriction was necessary to generate a matched 
sample. 
 

2. Data 
 
The Information for Management, Planning, Analysis and Coordination database (IMPAC II) for 
NIH applications contains information about funded and unfunded applications that are maintained 
across time, providing a rich source of longitudinal data about investigators and projects. Because 
the definition of an ESI is specific to both career stage and prior funding status, applications 
submitted by ESIs are not directly comparable to applications submitted by experienced 
investigators (https://grants.nih.gov/policy/new_investigators/index.htm). To address this issue, 
creating a control group from a cohort of investigators who meet the specifications to qualify for 
ESI status prior to the implementation of the policy was required. To ensure a robust comparison, 
both demographic and application characteristics were considered to produce comparable 
propensity for an application to receive funding. Once statistically validated, a comparison between 
treatment and control groups could evaluate the effectiveness of the policy, providing inferential 
statistics. 
 
The ESI program specifically targets Research Project Grants (R01) and R01-equivalent 
applications (refer to https://grants.nih.gov/policy/new_investigators/index.htm#cnaesip). We 
restricted the pool of applications to new, competing R01 applications that received an impact score 
during the review process which was used to percentile the application (refer to 
https://grants.nih.gov/grants/peer-review.htm for information on the peer-review process). R01-
equivalent grants were excluded from this research because the specific awards classified as such 
changes over time and could therefore not be used for comparison purposes across the cohorts 
(https://grants.nih.gov/grants/glossary.htm#R). The impact score takes into account five review 
criteria: significance, investigator(s), innovation, approach, and environment. Each category 
receives a score ranging from 1 (exceptional) to 9 (poor). The mean overall score from each 
reviewer is then multiplied by 10 and summed as the overall impact score, ranging from 10 to 90. 
Impact scores are then used to percentile applications. Only a subset of all applications receive 
percentiles, and as the percentile score was integral to this research, only percentiled applications 
were included. 
 
The data were further restricted to ICs at NIH that publish both their paylines as well as the added 
benefit afforded to ESI applications. A payline is a conservative cutoff point where applications 
scoring below the cutoff point are funded and those scoring above the payline are not funded 
(Rockey, 2011; NIAID, 2017). One approach ICs used to implement the ESI policy was to create 
separate paylines for applications submitted by ESIs. For the purpose of this research, six ICs with 
published overall paylines and ESI-specific paylines for the period analyzed were selected– 
National Cancer Institute (NCI), National Heart, Lung, and Blood Institute (NHLBI), National 
Institute on Aging (NIA), National Institute of Allergy and Infectious Disease (NIAID), National 
Institute of Child Health and Human Development (NICHD), and National Institute of Diabetes 
and Digestive and Kidney Diseases (NIDDK).1 Looking at the overall funding at NIH, these six 
ICs constitute approximately 56 percent of the NIH budget allocated to ICs (HHS, 2016).  
                                                           
1 The extramural community has resources that identify these payline policies: 
https://www.einstein.yu.edu/administration/grant-support/nih-paylines.aspx ; and 
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The treatment group included all R01 applications flagged as ESI submitted between 2011 and 
2015. The policy was implemented in 2009; however, the American Recovery and Reinvestment 
Act of 2009 affected the funding of applications in fiscal years 2009 and 2010. To avoid 
confounding effects, these years were excluded from the analysis. A corresponding five-year cohort 
was drawn from ESI-equivalent applications submitted between 2004 and 2008 to form the control 
group. For the purposes of this research, ESI-equivalent was defined as an application submitted 
by an investigator aged 42 or under who had no prior substantial NIH independent research awards. 
In this case, age served as a proxy for career status (https://nexus.od.nih.gov/all/2014/04/29/a-look-
at-programs-targeting-new-scientists/). The treatment group was matched directly to the control 
group using demographic, application, and institutional characteristics.  
 
2.1 Demographic Matching Characteristics 
Demographic information is voluntarily entered by the investigator when applying for funding. 
These data are maintained in the IMPAC II system on the person’s profile record. Since this 
information is voluntary, not all profile records contain demographic information, and therefore 
cannot be included in the analysis (Ginther et al., 2011; Charette et al., 2016).  
 
Previous research has found that receiving early career stage awards such as training grants, 
fellowships, and mentored career development programs increases the probability of researchers to 
successfully transition to independent research careers though the awarding of R01 grants (King et 
al, 2013; Rangel and Moss, 2004; Wolf, 2002; Zemlo, Garrison, Partridge, and Ley, 2000). While 
women and other traditionally underrepresented race and ethnic groups have equal if not inflated 
representation in the pool of these early stage career awardees relative to their representation in the 
labor market, that is not the case for the group that successfully transitions to independence as 
measured through successful receipt of an R01 award (Heggeness, Evans, Pohlhaus, and Mills, 
2016; Lerchenmueller and Sorenson, 2017). It is possible that the ESI program can increase the 
representation of these underrepresented groups, thus prior early stage funding, race, ethnicity, and 
gender need to be included in the matching algorithm. 
 
One of the criterion scores used for determining funding is a score for the investigator(s) on the 
application. This score specifically looks at the education and training of newly emergent 
investigators, and as such, the highest degree held by the investigator was also used in the matching 
algorithm (https://grants.nih.gov/grants/peer/critiques/rpg_D.htm). Including the number of prior 
attempts captures the applicant’s persistence and serves as a control mechanism for career 
development resulting from feedback. Using the feedback provided by peer reviewers can improve 
the quality of the application and thus increase the probability of funding (Berger, 2004; Trimble, 
Bell, Wolf, and Alvarex, 2003). In 2006, NIH began accepting applications from multiple principal 
investigators (MPIs). In the case of MPI applications, the data are recoded to account for all 
reported races, ethnicities, the highest degree held, and the maximum number of application 
submissions. 
 
2.2 Application Matching Characteristics 
Several characteristics associated with the application are associated with the probability of 
receiving funding, such as resubmitting an unfunded application after the initial review, the 
                                                           
https://writedit.wordpress.com/about/nih-paylines-resources/, for example. Additionally, each of these 
ICs has this information on their public-facing websites. 
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percentile score of the application, involvement of human subjects, and the IC to which the 
application was submitted. In one study that specifically examined ESI applications, the National 
Heart, Lung, and Blood Institute (NHLBI) found that among resubmitted applications, over half of 
these applications benefitted from the special ESI status (Boyington, Antman, Patel, and Lauer, 
2016). Given the increased likelihood of funding for resubmitted applications, and the increased 
benefit seen by ESI status for resubmitted applications, the submission status was also included in 
the matching algorithm. The percentile score of the application was found to be the most significant 
predictor of resubmission (Boyington et al, 2016; Eblen et al., 2016). While the scoring scale has 
varied over time, the percentile score – the ranking of the application’s score within IC among all 
scored applications – has not, thus warranting inclusion in the algorithm as well.  
 
In addition to the criterion scores, applications including human subjects are subject to additional 
assessments in peer review associated with human subjects protection and the inclusion of women 
and racial/ethnic minorities (refer to https://grants.nih.gov/grants/peer/critiques/rpg_D.htm for 
additional information). Because these applications could differ from those without human 
subjects, this application characteristic was included in the matching algorithm as well. Another 
application characteristic included in the matching algorithm was the Institute/Center (IC) to which 
the application was submitted. Each IC has its own funding guidelines and considerations. 
Additionally, each IC receives applications specific to the mission of that particular IC, and funding 
decisions are driven, in part, by the ICs’ strategic plans (e.g. 
https://www.niams.nih.gov/funding/Policies_and_Guidelines/funding_ decisions.asp).  
 
2.3 Institution Characteristics 
At the institution level, the matching algorithm included the institution type and rank. We computed 
the institutional ranking as the five-year average rank of each institution based on total overall 
funding from NIH. The average rank was then recoded to a discrete indicator where a value of 1 
was assigned to institutions in the top 25; a value of 2 for those ranked 26 to 50; a value of 3 for 
those ranked 51 to 100; and a value of 4 for those ranked over 100. An additional indicator at the 
institution level included the type of institution – medical school, other higher education, or 
research institute. Institutional characteristics supporting this analysis are based on the IMPAC II 
institutional profile information collected and maintained with the system, and therefore could 
differ from the Department of Education’s Carnegie classifications.  
 
One of the five criterion scores contributing to the overall impact score of the application is the 
environment score (refer to https://grants.nih.gov/grants/peer/critiques/rpg_D.htm#rpg_01 for 
additional information). While this is not the most influential of the scoring criterion (Eblen et al, 
2016), it is none the less part of the score used to determine which applications are funded, asking 
reviewers to consider the institutional role in the probability of the proposed research being 
successful. The institutional rank, type of institution, and overall resources contribute to the quality 
of the staff at the institution (Jaffe, 2002; Stephan, 1996; Payne and Siow, 2003; Arora and 
Gambardella, 2005). Additionally, these same characteristics have a spillover effect on the quality 
of applications submitted by researchers at that institution (Jacob and Lefgren, 2011; Jaffe et al 
1993). 
 

3. Methods 
 

To answer the first research question – can a quasi-experimental design be applied to existing data 
to infer ESI policy effectiveness – significant exploratory data analysis was conducted prior to 
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application of modeling to determine the effectiveness of the policy. The initial exploratory data 
analysis included analyzing descriptive statistics addressing the following data quality arguments 
as theories that could potentially confound an analysis of the ESI policy: 

• ESIs are scored “harder” post-policy implementation than pre-policy implementation; 
• Applications submitted post-policy implementation would have been funded regardless of 

the ESI-specific policies; 
• ESIs are better prepared for writing R01 applications post-policy than pre-policy. 

While most of the exploratory data analysis relied on analyzing the descriptive statistics of the 
population, a propensity score model examined the goodness of fit for a matched pairs analysis. 
These data met the assumptions necessary to apply a propensity model – strongly ignorable 
treatment assignment and the stable unit treatment value assumption (SUTVA). The first implies 
that there are no unobservable pretreatment differences between the treatment and the control group 
(Joffe and Rosenbaum, 1999). We examine the balance between all measured covariates to satisfy 
this assumption. The latter, SUTVA, has its own assumptions. First, that there is not interference 
between the treatment and control group. This assumption was met by removing the 35 applications 
submitted by investigators in both the treatment and control groups. Second, there is only a single 
version of each treatment. This assumption is met given the guidelines of the policy.  
 
For the purposes of exploratory data analysis, the propensity for each application to be considered 
an ESI application was calculated. Propensity score models are the conditional probability of 
treatment (T), in this case being identified as an ESI, given the defined set of characteristics (X): 
 

𝑌𝑌(0),𝑌𝑌(1) ⊥ (𝑇𝑇|𝑝𝑝(𝑋𝑋))    (Eq. 1) 
 

where Y is the dichotomous indicator for ESI and X includes gender, race, ethnicity, degree, prior 
attempts to receive funding (number of applications submitted to NIH), first submission versus 
resubmissions, human subjects, IC, institutional ranking, and institutional type.  
 
The output from Equation 1 was used to evaluate the potential matching covariates. The region of 
common support is the range of the probability of applications being flagged as ESI (Becker and 
Ichnino, 1999). An ideal control group would have the same distribution of propensity scores as 
the treatment group. Restricting the data from both groups to the region of common support ensures 
that any combination of the characteristics used to match the treated case to the control case can 
occur in both the treatment group and the control group (Bryson, Dorsett, and Purdon, 2002). For 
the purposes of this research, the minima and maxima comparison technique was used, whereby 
the data were restricted to the overlapping region of the propensity scores by group.  
 
The propensity score was only used as a form of exploratory data analysis. Treatment cases were 
matched directly to cases from the control group. The dist macro and the vmatch macro available 
in SAS were used to form directly matched pairs.2 The dist macro calculates the weighted Euclidean 
distance matrix between the treatment case and every control case, based on the specified 
covariates, using the following equation: 
 

                                                           
2 Free SAS code available from Mayo Foundation for Medical Education and Research (MFMER) at 
http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-
biomedical-statistics-informatics/software/locally-written-sas-macros  
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𝐷𝐷𝑖𝑖𝑖𝑖 =  �∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑑𝑑
𝑖𝑖=1     (Eq. 2) 

 
where i is the treated case, j is the control case, and x is the list of specified matching covariates 
(Gentle, 2007; Larson and Falvo, 2009; Németh & Michaľčonok, 2017). The resulting matrix is an 
i x j matrix. The vmatch macro evaluates the matrix and selects the best match for each treatment 
case. In the case of ties, the vmatch macro selects all cases with the lowest value.  
 
To further evaluate the quality of the matches, the covariate balance and the model sensitivity were 
tested. Under ideal circumstances, there would not be a statistically significant difference between 
any of the covariates used to match the treated cases to the control cases. The following equation 
measured the standardized difference between the prevalence of dichotomous variables in the 
treatment and control groups: 
 

𝒅𝒅 =  (𝒑𝒑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 − 𝒑𝒑𝒄𝒄𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒄𝒄𝒄𝒄)

�𝒑𝒑𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ∗�𝟏𝟏 −𝒑𝒑𝒄𝒄𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒄𝒄𝒄𝒄� +𝒑𝒑𝒄𝒄𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒄𝒄𝒄𝒄∗(𝟏𝟏 −𝒑𝒑𝒄𝒄𝒄𝒄𝒕𝒕𝒕𝒕𝒕𝒕𝒄𝒄𝒄𝒄)
𝟐𝟐

   (Eq.3)  

 
where 𝒅𝒅 = difference, and 𝒑𝒑 = prevalence of the dichotomous variable (Austin 2011). Three 
indicators used in the model were not dichotomous indicators – the number of prior attempts 
(count), the scored percentile (continuous), and the grouped ranking of the institution (ordinal). The 
Wilcoxon signed-rank test is a nonparametric test for analyzing matched-pair data with non-normal 
distributions, which we used to determine the statistically significant difference between these 
indicators across the two groups (Woolson, 2008). 
 
The final test of the quality of the match was a test for sensitivity using Rosenbaum Bounds based 
on McNemar’s test because the outcome is binary. This test detects the amount of unmeasured bias 
necessary to change the outcome of the model, making the results no longer statistically valid 
(Rosenbaum, 2005; Faries et al, 2010). The upper bound calculation is the most salient since the 
lower bound is always lower than the observed p-value. The upper bound p-value was calculated 
as follows: 

∑ �𝑻𝑻𝒕𝒕� (𝒑𝒑+)𝒕𝒕(𝟏𝟏 −  𝒑𝒑+)𝑻𝑻−𝒕𝒕𝑻𝑻
𝒕𝒕    (Eq.4) 

 
where 𝑻𝑻 is the total number of discordant pairs, 𝒕𝒕 is the number of discordant pairs in which the 
control case was funded but the treated case was not, and 𝒑𝒑+ is the probability of being exposed 
accounting for the unobserved confounder (Liu, Kuramoto, and Stuart, 2013). 
 
If the match was deemed acceptable after verifying balanced covariates and the sensitivity of the 
model, then the difference between the matched pairs can be evaluated to address the second 
research question – are newly emergent investigators more likely to receive funding for applications 
submitted post-policy implementation when compared to similar applications submitted pre-policy 
implementation. To evaluate the difference between the two groups, a generalized linear model 
estimated the difference in the probability of funding. Generalized linear models include three 
components – a probability distribution, a linear predictor, and a link function (Dobson and Barnett, 
2008).  
 

𝑬𝑬(𝒀𝒀)=  𝝁𝝁 =  𝒈𝒈−𝟏𝟏(𝑿𝑿𝑿𝑿)   (Eq. 5) 
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Because the success rate of R01 applications does not exceed 30 percent in any IC, the probability 
of funding required the use of an overdispersed exponential probability distribution from the 
binomial family. The derivation and application of the exponential probability distributions, as well 
as dispersion parameter specifications are not discussed here (see Chapter 3 of Dobson and Barnett, 
2008). Instead, the following equation was simplified to show how the probability distribution 
relates to the other two components of a GLM: 
 

𝝁𝝁 =  𝟏𝟏
𝟏𝟏+𝒕𝒕𝒆𝒆𝒑𝒑(−𝑿𝑿𝑿𝑿)

     (Eq. 6) 
 

The linear predictor was tested using the propensity score model outlined in Equation 1, therefore 
Xβ includes the matching covariates mentioned previously. Because we modeled the means directly 
– in this case probability of being funded for each cohort – the identity link function was applied 
(Agresti and Finlay, 2009): 
 

𝑿𝑿𝑿𝑿 = 𝒄𝒄𝒕𝒕 � 𝝁𝝁
𝟏𝟏 −𝝁𝝁

�     (Eq. 7) 
 

The link function transformed the mean to the canonical link or the natural parameter. The model 
applied to the data was a linear model for a transformed mean of the response variable with a 
distribution in the binomial exponential family. To ensure the modeled outcome was not affected 
by the changing economic situation of NIH funding, the estimates were weighted by the annual 
success rate for unsolicited R01 applications.  
 
As an additional robustness check on the quality of the matches, we ran the models on the full 
sample, then on three subsamples based on the distribution of the distance indicator for each pair. 
After the distance (Dij) was calculated using the dist and vmatch macros, the three subsets included: 
removing the outliers, the mean and/or median value of Dij, with the final subsample including only 
those with a distance less than one. Since all other matching covariates are whole numbers, the final 
subsample consisted of only those pairs that differed by an application percentile score of less than 
one percent. 
 
Under the assumption that these ESI applications would not have been funded had the ESI-specific 
funding policy not been in place, the data were recoded such that applications were funded based 
solely on the published payline of each IC. This approach is crude given that published paylines 
are estimates produced prior to receiving applications. However, it can serve as a proxy for the 
benefits afforded to ESI applications under the policy, simulating current funding of ESIs in the 
absence of the policy. 
 

4. Results 
 

4.1 Descriptive Statistics Exploratory Results 
The first two data quality theories focused on the percentiled score of the application relative to the 
payline. The data used for this analysis does not support either position. Figure 1 shows the 
percentiled score by cohort, comparing the first year of cohort 1 (e.g. 2004) to the first year of 
cohort 2 (e.g. 2011). Relative to the control group (FY2004-2008), applications submitted by ESIs 
between 2013 and 2015 had higher percentile scores than those in the earlier cohort, though none 
of the differences were statistically significant. Note the range is bound by five percentage points.  
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Figure 1: Mean Percentile Score of Applications by Cohort, N=5,954 (2004-2008) and 5,822 
(2011-2015). 
 
Figure 2 shows the funded ESI applications relative to the IC-specific payline. Of the 1,569 ESI 
funded applications in sample, over half (50.2 percent to 57.4 percent) benefitted from the ESI-
specific funding policy in each fiscal year. 
 

 
Figure 2: ESI Awards Relative to the IC-Specific Payline, N=723 Below Payline and 846 Above 
Payline 
 
Figure 3 shows the percent of ESI and ESI-equivalent applicants who received a fellowship (F 
award), training grant (Trainees), or career development award (K award) prior to applying for the 
R01 used in this research. While fellowships and training grants have declined slightly over time, 
there was nearly a 20 percent increase in career development award receipt by ESI and ESI-
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equivalent applicants between 2004 and 2015. This trend was not modeled or tested for statistical 
significance, as it was beyond the scope of this research. Future research should investigate this 
finding using a time series approach. 

 
Figure 3: Percent of Applicants with at least One Prior Fellowships, Training Grants, and Career 
Development Awards, N=11,776. 
 
4.2 Propensity Score Exploratory Results 
When restricting to scored applications submitted to ICs with published ESI-specific payline 
policies, the goodness-of-fit had a p-value of 0.48, which indicates the difference between the two 
groups was not significantly different from zero. In the control group (FY2004 – 2008), 59 percent 
of the applications were percentiled, and in the treatment group (FY2011 – 2015) 60 percent of the 
applications were percentiled. Figure 4 shows the distribution of propensity scores by group.  

 
Figure 4: Distribution of Propensity Scores by Group, N=5,954 (2004-2008) and 5,822 (2011-
2015). 
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Figure 5 shows the region of common support for the propensity scores of the two groups. While 
the two distributions do not align exactly, they are comparable. The region of common support 
ranged from 0.07 to 0.80, which excluded seven investigators. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Region of Common Support, N=5,954 (2004-2008) and 5,822 (2011-2015) 
 
All 5,822 applications in the treatment group were successfully matched to at least one of the 8,027 
available applications in the control group through the application of the two macros. The macro 
retained 5,889 treated cases (67 of which had 2 matched control cases) and 5,954 control cases (1 
of which was matched to 2 treatment cases), for an overall sample of 11,776 unique applications 
and a combined 5,955 matched pairs.  
 
The overall distance between all indicators across the treatment and control cases ranged from 0 to 
14 for the 5,955 matched pairs (not shown here). Both the mean and median distance (Dij)was 3. 
Of the 20 covariates used to match the treated and control cases, three covariates were not 
dichotomous indicators – the institutional group ranking, the count for number of applications 
submitted to NIH, and the application percentile score. Institutions were quartiled, the maximum 
number of prior applications submitted was 16, and the highest percentiled score was 71. In 
conjunction with the dichotomous indicators, the potential maximum difference between a treated 
case and a control case was 107, thus the pair with the greatest distance differed by 13 percent of 
the relative distance.  
 
Table 1 contains the descriptive statistics by group for the full sample from which the matched 
cases were drawn. Testing the covariate balance and model sensitivity, we concluded the matched 
sample was sufficient for analysis, though the results should consider the limitations of the matches. 
Along with descriptive statistics, Table 1 shows the standardized between all indicators in the 
matched sample. When examining at the standardized differences, lower values are better and any 
standardized difference between the two groups that exceeds the 0.10 threshold is a statistically 
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significant difference. After matching, nine of the included indicators differed significantly 
between the groups, thus failing to achieve balance.  
 

Table 1: Descriptive Statistics of Matched Pairs 
    Control Treatment Std. Difference 
Person-Level 

  
 

 Female 0.31 0.39 0.17* 
 Race & Ethnicity (Ref=White)   
 Asian 0.25 0.31 0.15* 
 Other Race 0.02 0.04 0.11* 
 Hispanic 0.04 0.04 0.04 
 Degree (Ref=PhD Only)    
 MD 0.14 0.18 0.11* 
 MD-PhD 0.11 0.15 0.11* 
 Prior F or T 0.32 0.25 0.16* 
 Number of Prior Attempts 1.16 1.12 0.04 
Application-Level    
 Resubmission 0.43 0.37 0.12* 
 Human Subjects 0.42 0.49 0.14* 
 Institute/Center (Ref=NCI)    
 NIAID 0.19 0.15 0.08 
 NHLBI 0.21 0.24 0.09 
 NIDDK 0.13 0.16 0.11* 
 NICHD 0.10 0.10 0.01 
 NIA 0.07 0.08 0.04 
 Scored Percentile 29.96 30.02 0.06 
Institution-Level 

 
  

 Institution Type (Ref=Medical School)   

 Higher Education 0.24 0.25 0.01 
 Other Institution Type 0.20 0.20 0.00 
 Grouped Ranking 2.40 2.36 0.04 
N Unique Investigators 5,954 5,822 11,776 

* indicates statistically significant difference between the treatment and control group at the p≤ 0.1 
level. 
 
The results of the Rosenbaum Bounds sensitivity test are displayed in Table 2. Out of the 5,955 
matched pairs, there were 556 discordant pairs, where 342 of these pairs were applications 
submitted by ESI-equivalents that were funded while the ESI application was not. The McNemar 
test rejected the null hypothesis that the proportion of funded applications in the treatment group 
did not differ from the proportion of funded applications in the control group (p-value < 0.001). An 
unmeasured variable would have to increase the odds of funding by more than 40 percent to negate 
the treatment effect.  
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Table 2: Rosenbaum Bounds Sensitivity Test 
Gamma Lower Upper 
1 3.91E-08 0 
1.05 1.29E-09 0 
1.1 3.72E-11 0.00001 
1.15 9.50E-13 0.00011 
1.2 2.20E-14 0.00078 
1.25 4.44E-16 0.00393 
1.3 0 0.01523 
1.35 0 0.04678 
1.4 0 0.11721* 
1.45 0 0.24581 
1.5 0 0.44175 
1.55 0 0.69535 
1.6 0 0.97861 

* indicates point where the model is no longer statistically significant 
 

In summary, the descriptive statistics did not show any data quality issues. The propensity modeling 
suggested matching cohorts across time was possible, and though balance was not achieved, the 
other propensity modeling assumptions were met. The sensitivity analysis showed strong support 
for the application of a model to the matched data. Overall, the exploratory data analysis provided 
support to continue with the policy evaluation. 
 
4.3 Generalized Linear Model Results 
Table 3 displays the results of the generalized linear model. The model estimated the control group 
to be 2.4 percent (p-vale <0.0001) more likely than the treatment group to have an application 
funded. In other words, all things being equal, the policy has not significantly increased the 
likelihood of newly emergent investigator applications to be funded.  
 

Table 3: Generalized Linear Model Regressing Probability of Funding on Cohort  
All Dij ≤ 6 Dij ≤ 3 Dij < 1 

Control 0.299 0.303 0.321 0.286 
Treatment 0.275 0.278 0.294 0.260 
Difference 0.024*** 0.025*** 0.027* 0.026 
N 11,648 11,397 6,084 522 

***p-value ≤ 0.001; ** p-value ≤ 0.01; *p-value ≤ 0.05 
 
Table 4 displays the results of recoding the ESI applications above the IC-specific payline as 
unfunded and rerunning the generalized linear model. Without the benefit of the ESI-specific 
payline policy, applications submitted by ESIs were 15.1 percent (p-vale <0.0001) less likely to be 
funded than applications submitted by ESI-equivalent applicants, controlling for the annual success 
rates. 
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Table 4. Generalized Linear Model Regressing Probability of Funding on Cohort1  
All Dij ≤ 6 Dij ≤ 3 Dij < 1 

Control 0.299 0.303 0.321 0.286 
Treatment 0.148 0.150 0.160 0.160 
Difference 0.151*** 0.153*** 0.161*** 0.126*** 
N 11,648 11,397 6,084 522 

1Applications funded as a direct result of the ESI-specific payline policy were recoded as 
unfunded. ***p-value ≤ 0.001; ** p-value ≤ 0.01; *p-value ≤ 0.05 

 
Both Tables 3 and 4 display the results for the matching validation. The range in differences is 
minimal – 2.4 to 2.7 percent for the actual model and 12.6 to 16.1 for the simulated model. 
Additionally, all models had statistically significant differences between the groups with the 
exception of the most restrictive model regressing the probability of funding on matched pairs that 
only differed by less than one percentage point in application percentile scores. When recoding for 
the simulation, 54 percent of newly emergent investigators between fiscal years 2011 and 2015 
directly benefitted from the ESI policy and would not have otherwise received funding from NIH. 
 

5. Discussion 
 
With respect to the first research question – is it possible to match NIH grant applications across 
time – the data quality, propensity model, and the direct match results all indicated sufficient data 
to match across time. The distribution of the modeled propensity scores were acceptable, and using 
the minima and maxima criteria for the region of common support only eliminated seven cases. 
However, despite using the direct matching algorithms and the relative slight differences in distance 
between the treated and control cases in the matched pairs, there were still statistically significant 
differences across the groups with respect to the matching covariates, meaning we were unable to 
achieve covariate balance entirely. The matching did diminish the differences between the groups, 
and many of the differences were close to no longer being statistically significant after matching. 
Results from the sensitivity analysis were also promising. It is unlikely that any one indicator could 
alter the model by 40 percent.  
 
The robustness of the matches were further validated through the application of the model to 
subsamples. The statistical significance of the findings support the quality of all the matches, even 
those with the most relative distance between the treated and control cases. Combining the 
sensitivity analysis with the model validation supports the use of the matching algorithms to 
compare data groups from different periods of time. 
 
The lack of covariate balance was not the only limitation to this research. A further limitation is the 
restriction of the sample to the six ICs who publish ESI-payline policies. While this was done 
intentionally to have a baseline of comparison for future research, this limits the generalizability of 
the study. Despite these limitations, both the McNemar test and the generalized linear model both 
showed statistically significant differences between the 2004 – 2008 cohort of ESI-equivalent 
applications and the 2011 – 2015 ESI applications, such that all things being equal, ESI applications 
are two percent less likely to receive funding post-policy than pre-policy. This research shows that 
the deficit is diminished by the policy, though the simulation is not without limitations.  
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In general, the paylines have been decreasing over time due to the hypercompetitive environment 
of more investigators competing for fewer funds (Alberts et al, 2014; Kimble et al, 2015). This 
research shows that the effectiveness of public policies aimed at increasing workforce diversity can 
be evaluated post-implementation using a pre-policy comparative sample after exploratory data 
analysis and adjusting for the environment in which the policy is implemented. 
 

6. Conclusions 
 
Matching cohorts across time is difficult and, as was the case in this research, requires severe 
restrictions to the data included in the sample, thus limiting the generalizability of the study. This 
study shows that it is imperative to perform robustness and validation checks when using a 
matching algorithm. Even after restricting the data to scored applications from Institutes/Centers 
with published ESI-specific payline benefits, while the propensity score distribution appeared 
sufficient, balance was not achieved between the cohorts. Sensitivity analysis confirmed the model 
required one specific covariate to alter the probability of being in the treatment group by 40 percent 
to invalidate the results. The greatest relative distance between a matched treated and control case 
was 13 percent, and the model results were consistent when restricting to higher quality matches. 
 
The initial model did not provide evidentiary support in favor of the ESI policy. However, when 
modifying the model to simulate the funding environment in which newly emergent investigators 
might find themselves if the policy were not in place, the likelihood of funding decreased 15 
percent. In other words, modeling policy effectiveness from existing data can be misleading. When 
comparing the funding pre- and post-policy, it looks as though the policy is not effective. However, 
after making some assumptions with respect to funding levels, the findings were quite different. 
The 15 percent deficit was reduced to 2 percent under the current policy. This research shows that 
54 percent of newly emergent investigators received funding as a result of the ESI policy. 
Additionally, this research confirms theories proposed by other researchers (Charette, et al., 2016) 
that the ESI policy stabilized the proportion of NIH funded ESIs, decreasing the funding deficit 
experienced by newly emergent investigators.  
 
This research raises additional questions that require future research. The increase in career 
development awards and the effect of this increase on applying for an R01 grant should be 
examined. Additionally, while the ESI policy funds newly emergent investigators, this raises the 
question as to whether the funding is available to sustain these researchers. The NIH issued a new 
policy, the Next Generation Researchers Initiative (NGRI), which promotes the growth, stability 
and diversity of the biomedical research workforce. We are continuing to research the later 
outcomes of investigators funded by the ESI policy, looking specifically at the likelihood of 
renewing the initial R01 grant as well as the application and funding of subsequent grants. 
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